forked from CSET-Toolbox/CSET
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample1.m
231 lines (182 loc) · 7.4 KB
/
example1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
% -----------------------------------------------------------------------
% SIRT reconstruction algorithm using the projection and backprojection
% operations defined in ASTRA toolbox
% -----------------------------------------------------------------------
close all;
clear;
clc;
tic;
%Add folders to MATLAB path
% addpath(genpath('C:/Users/banjak/Desktop/Post-doc/1.Programs/Reconstruction/Reconstruction-SART-TV-FISTA/Data'));
% addpath(genpath('C:/Users/banjak/Desktop/Post-doc/1.Programs/Reconstruction/Reconstruction-SART-TV-FISTA/ASTRA-toolbox'));
% addpath(genpath('C:/Users/banjak/Desktop/Post-doc/1.Programs/Reconstruction/Reconstruction-SART-TV-FISTA/denoising_FISTA-TV'));
% addpath(genpath('C:/Users/banjak/Desktop/Post-doc/1.Programs/Reconstruction/Reconstruction-SART-TV-FISTA/Matlab-toolbox'));
% addpath(genpath('C:/Users/banjak/Desktop/Post-doc/1.Programs/Reconstruction/Reconstruction-SART-TV-FISTA/Spot-toolbox'));
% Create 3D volume geometry
nb_rows = 256;
nb_columns = 256;
nb_slices = 512;
vol_geom = astra_create_vol_geom(nb_rows, nb_columns, nb_slices);
nb_projs = 70;
angle_min = -70*pi/180; % min. scanning angle
angle_max = 70*pi/180; % max. scanning angle
% Create projection geometry
pix_size_x = 1; % horizontal pixel size
pix_size_y = 1; %vertical pixel size
M = 256; % nb. of rows
N = 256; % nb. of columns
angles = linspace2(angle_min, angle_max, nb_projs);
proj_geom = astra_create_proj_geom('parallel3d', pix_size_x, pix_size_y, M, N, angles);
sigma = 0.02; %standard deviation of Gaussian noise
% sigma = 0; %standard deviation of Gaussian
Voxel = [nb_rows, nb_columns, nb_slices];
%Read volume from a binary file
file = fopen('3D_model_with_pores_256_256_512_float.raw');
Volume = fread(file,'float','ieee-be');
image = reshape(single(Volume), Voxel);
x = image(:); % write image in the form of a vector
% Save image to a binary file
name_orig_img = sprintf('./Reconstruction_results/Original_Image_%d_%d_%d.raw',nb_columns,nb_rows,nb_slices);
file_orig_img = fopen(name_orig_img,'w');
fwrite(file_orig_img,image,'double');
fclose(file_orig_img);
%%
%-------------------------------------------------------------------
%---------------Reconstruction algorithm and parameters-------------
%-------------------------------------------------------------------
regularization = 1;
FISTA = 1;
lambda = 0.2; %relaxation factor
Niter = 200; % nb. of iterations
Algo_type = 'SIRT'; % options: SART, SIRT, OS-SART
Nsubsets = 9; % Number of subsets (considered only if OS-SART was chosen)
alpha_TV = 1; % relaxation parameter for TV minimization
Ntv = 10; % nb. of iterations for TV minimization
t_acc = 1; % parameter for FISTA acceleration technique
%% Generate projection hdata
% Create the Spot operator for ASTRA using the GPU.
W = opTomo('cuda', proj_geom, vol_geom);
p = W*x; % generate sinogram
% reshape the vector into a sinogram
sinogram = reshape(p, W.proj_size);
nb_pixels_sino = nb_projs*M*N;
p = reshape(sinogram, [nb_pixels_sino 1]);
%--------------------------------------------------------------------
%--------------------------------------------------------------------
% add noise to sinogram
p = p + randn(size(p))*sigma*max(p);
sinogram = reshape(p, W.proj_size);
% save sinogram to a binary file
sinogram_save = zeros(N,M,nb_projs);
for i=1:nb_projs
slice = squeeze(sinogram(:,i,:));
sinogram_save(:,:,i) = slice;
end
name_sino = sprintf('./Reconstruction_results/Sino_%d_%d_%d.raw',M,N,nb_projs);
file_sino = fopen(name_sino,'w');
fwrite(file_sino,sinogram_save,'double');
fclose(file_sino);
%% Reconstruction
nb_voxels = nb_rows*nb_columns*nb_slices;
if(strcmp(Algo_type,'SART'))
Nsubsets = nb_projs;
elseif(strcmp(Algo_type,'SIRT'))
Nsubsets = 1;
else
SubdivisionCheck(nb_projs, Nsubsets);
end
% partition of the projection indices
Ns = nb_projs/Nsubsets; % nb. of projections for each subset
NraysSub = Ns*N*M; % nb. of rays for each subset
Wsubsets = cell(1,Nsubsets);
for k=1:Nsubsets
Wsubsets{k} = ((k-1)*NraysSub+1):(k*NraysSub);
end
% Initialize image by zeros
rec = zeros(nb_rows,nb_columns,nb_slices,'single');
% Transform into vector form
y = rec(:);
y_temp2 = rec(:);
Rsubs = cell(1,Nsubsets);
Csubs = cell(1,Nsubsets);
fprintf('Reconstruction using %s algorithm \n',Algo_type)
if(regularization && FISTA)
disp('TV regularization and FISTA acceleration are applied');
elseif(regularization)
disp('TV regularization is applied');
end
%% Iterate
for i =1:Niter
fprintf('Iteration: %d \n',i);
y_prev = y;
for k=1:Nsubsets
% Create weighting matrices R and C during 1st iteration only
if(i==1)
Rsubs{k} = 1 ./ (W(Wsubsets{k},:)*ones(size(y),'single'));
Csubs{k} = 1 ./ (W(Wsubsets{k},:)'*ones(NraysSub,1,'single'));
Rsubs{k}(Rsubs{k}==Inf) = 0;
Csubs{k}(Csubs{k}==Inf) = 0;
end
%compute projection difference
u = p(Wsubsets{k}) - W(Wsubsets{k},:)*y;
%update image y
y = y + lambda*Csubs{k}.*(W(Wsubsets{k},:)'*(Rsubs{k}.*u));
% non-negative regularization
y(y<0) = 0;
end
%=================================================
%-------------- TV regularization ----------------
%=================================================
if(regularization==1)
disp('TV regularization');
% % reshape y into a 3D matrix
% y = reshape(y, W.vol_size);
% y_prev = reshape(y_prev, W.vol_size);
% d=im3Dnorm(y-y_prev,'L2');
% y = TVkernel(y, alpha_TV, d, Ntv);
% % reshape y into a 1D array
% y = reshape(y, [nb_voxels 1]);
%=================================================
%---------- CUDA Implementation -----------------
%=================================================
y = reshape(y, W.vol_size);
y=minimizeTV(y,alpha_TV,Ntv);
y = reshape(y, [nb_voxels 1]);
end
%=================================================
%------------- FISTA acceleration ----------------
%=================================================
if(FISTA==1)
disp('FISTA');
t_acc_inc = (1 + sqrt(1 + 4 *t_acc.^2))/2;
y_temp1 = y;
y = y + ((t_acc-1)/t_acc_inc)*(y_temp1-y_temp2);
t_acc = t_acc_inc;
y_temp2 = y_temp1;
end
%======================================================
%-----Save reconstructed volume every 10 iterations----
%======================================================
if(~mod(i,10))
reconstruction_sirt = reshape(y, W.vol_size); % Transform into 3D matrix form
name_img = sprintf('./Reconstruction_results/SIRT_rec_%d_%d_%d_Niter=%d.raw',nb_columns,nb_rows,nb_slices,i);
file_img = fopen(name_img,'w');
fwrite(file_img,reconstruction_sirt,'double');
fclose(file_img);
end
end
% Show 3D reconstructed image
% figure, imshow3D(reconstruction_sirt);
% title('SIRT Reconstruction');
%display PSNR value
PSNR = 10*log10((max(x)-min(x))^2/mean(norm(x-y)));
fprintf('PSNR = %d \n',PSNR);
toc;
%%
% Function: check if the given number of susbsets can divide the total number of projections
function SubdivisionCheck(nb_projs, Nsubsets)
if(mod(nb_projs,Nsubsets) ~= 0)
error('Nsubsets must divide the total nb. of projections');
end
end
%%