-
Notifications
You must be signed in to change notification settings - Fork 66
/
inference_video.py
290 lines (264 loc) · 10.8 KB
/
inference_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import os
import cv2
import torch
import argparse
import numpy as np
from tqdm import tqdm
from torch.nn import functional as F
import warnings
import _thread
import skvideo.io
from queue import Queue, Empty
from model.pytorch_msssim import ssim_matlab
warnings.filterwarnings("ignore")
def transferAudio(sourceVideo, targetVideo):
import shutil
import moviepy.editor
tempAudioFileName = "./temp/audio.mkv"
# split audio from original video file and store in "temp" directory
if True:
# clear old "temp" directory if it exits
if os.path.isdir("temp"):
# remove temp directory
shutil.rmtree("temp")
# create new "temp" directory
os.makedirs("temp")
# extract audio from video
os.system('ffmpeg -y -i "{}" -c:a copy -vn {}'.format(sourceVideo, tempAudioFileName))
targetNoAudio = os.path.splitext(targetVideo)[0] + "_noaudio" + os.path.splitext(targetVideo)[1]
os.rename(targetVideo, targetNoAudio)
# combine audio file and new video file
os.system('ffmpeg -y -i "{}" -i {} -c copy "{}"'.format(targetNoAudio, tempAudioFileName, targetVideo))
if os.path.getsize(targetVideo) == 0: # if ffmpeg failed to merge the video and audio together try converting the audio to aac
tempAudioFileName = "./temp/audio.m4a"
os.system('ffmpeg -y -i "{}" -c:a aac -b:a 160k -vn {}'.format(sourceVideo, tempAudioFileName))
os.system('ffmpeg -y -i "{}" -i {} -c copy "{}"'.format(targetNoAudio, tempAudioFileName, targetVideo))
if (os.path.getsize(targetVideo) == 0): # if aac is not supported by selected format
os.rename(targetNoAudio, targetVideo)
print("Audio transfer failed. Interpolated video will have no audio")
else:
print("Lossless audio transfer failed. Audio was transcoded to AAC (M4A) instead.")
# remove audio-less video
os.remove(targetNoAudio)
else:
os.remove(targetNoAudio)
# remove temp directory
shutil.rmtree("temp")
parser = argparse.ArgumentParser(description='Interpolation for a pair of images')
parser.add_argument('--video', dest='video', type=str, default=None)
parser.add_argument('--output', dest='output', type=str, default=None)
parser.add_argument('--img', dest='img', type=str, default=None)
parser.add_argument('--montage', dest='montage', action='store_true', help='montage origin video')
parser.add_argument('--model', dest='modelDir', type=str, default='train_log', help='directory with trained model files')
parser.add_argument('--fp16', dest='fp16', action='store_true', help='fp16 mode for faster and more lightweight inference on cards with Tensor Cores')
parser.add_argument('--UHD', dest='UHD', action='store_true', help='support 4k video')
parser.add_argument('--scale', dest='scale', type=float, default=1.0, help='Try scale=0.5 for 4k video')
parser.add_argument('--skip', dest='skip', action='store_true', help='whether to remove static frames before processing')
parser.add_argument('--fps', dest='fps', type=int, default=None)
parser.add_argument('--png', dest='png', action='store_true', help='whether to vid_out png format vid_outs')
parser.add_argument('--ext', dest='ext', type=str, default='mp4', help='vid_out video extension')
parser.add_argument('--exp', dest='exp', type=int, default=1)
parser.add_argument('--multi', dest='multi', type=int, default=2)
args = parser.parse_args()
if args.exp != 1:
args.multi = (2 ** args.exp)
assert (not args.video is None or not args.img is None)
if args.skip:
print("skip flag is abandoned, please refer to issue #207.")
if args.UHD and args.scale==1.0:
args.scale = 0.5
assert args.scale in [0.25, 0.5, 1.0, 2.0, 4.0]
if not args.img is None:
args.png = True
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.set_grad_enabled(False)
if torch.cuda.is_available():
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
if(args.fp16):
torch.set_default_tensor_type(torch.cuda.HalfTensor)
from train_log.RIFE_HDv3 import Model
model = Model()
if not hasattr(model, 'version'):
model.version = 0
model.load_model(args.modelDir, -1)
print("Loaded 3.x/4.x HD model.")
model.eval()
model.device()
if not args.video is None:
videoCapture = cv2.VideoCapture(args.video)
fps = videoCapture.get(cv2.CAP_PROP_FPS)
tot_frame = videoCapture.get(cv2.CAP_PROP_FRAME_COUNT)
videoCapture.release()
if args.fps is None:
fpsNotAssigned = True
args.fps = fps * args.multi
else:
fpsNotAssigned = False
videogen = skvideo.io.vreader(args.video)
lastframe = next(videogen)
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
video_path_wo_ext, ext = os.path.splitext(args.video)
print('{}.{}, {} frames in total, {}FPS to {}FPS'.format(video_path_wo_ext, args.ext, tot_frame, fps, args.fps))
if args.png == False and fpsNotAssigned == True:
print("The audio will be merged after interpolation process")
else:
print("Will not merge audio because using png or fps flag!")
else:
videogen = []
for f in os.listdir(args.img):
if 'png' in f:
videogen.append(f)
tot_frame = len(videogen)
videogen.sort(key= lambda x:int(x[:-4]))
lastframe = cv2.imread(os.path.join(args.img, videogen[0]), cv2.IMREAD_UNCHANGED)[:, :, ::-1].copy()
videogen = videogen[1:]
h, w, _ = lastframe.shape
vid_out_name = None
vid_out = None
if args.png:
if not os.path.exists('vid_out'):
os.mkdir('vid_out')
else:
if args.output is not None:
vid_out_name = args.output
else:
vid_out_name = '{}_{}X_{}fps.{}'.format(video_path_wo_ext, args.multi, int(np.round(args.fps)), args.ext)
vid_out = cv2.VideoWriter(vid_out_name, fourcc, args.fps, (w, h))
def clear_write_buffer(user_args, write_buffer):
cnt = 0
while True:
item = write_buffer.get()
if item is None:
break
if user_args.png:
cv2.imwrite('vid_out/{:0>7d}.png'.format(cnt), item[:, :, ::-1])
cnt += 1
else:
vid_out.write(item[:, :, ::-1])
def build_read_buffer(user_args, read_buffer, videogen):
try:
for frame in videogen:
if not user_args.img is None:
frame = cv2.imread(os.path.join(user_args.img, frame), cv2.IMREAD_UNCHANGED)[:, :, ::-1].copy()
if user_args.montage:
frame = frame[:, left: left + w]
read_buffer.put(frame)
except:
pass
read_buffer.put(None)
def make_inference(I0, I1, n):
global model
if model.version >= 3.9:
res = []
for i in range(n):
res.append(model.inference(I0, I1, (i+1) * 1. / (n+1), args.scale))
return res
else:
middle = model.inference(I0, I1, args.scale)
if n == 1:
return [middle]
first_half = make_inference(I0, middle, n=n//2)
second_half = make_inference(middle, I1, n=n//2)
if n%2:
return [*first_half, middle, *second_half]
else:
return [*first_half, *second_half]
def pad_image(img):
if(args.fp16):
return F.pad(img, padding).half()
else:
return F.pad(img, padding)
if args.montage:
left = w // 4
w = w // 2
tmp = max(128, int(128 / args.scale))
ph = ((h - 1) // tmp + 1) * tmp
pw = ((w - 1) // tmp + 1) * tmp
padding = (0, pw - w, 0, ph - h)
pbar = tqdm(total=tot_frame)
if args.montage:
lastframe = lastframe[:, left: left + w]
write_buffer = Queue(maxsize=500)
read_buffer = Queue(maxsize=500)
_thread.start_new_thread(build_read_buffer, (args, read_buffer, videogen))
_thread.start_new_thread(clear_write_buffer, (args, write_buffer))
I1 = torch.from_numpy(np.transpose(lastframe, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.
I1 = pad_image(I1)
temp = None # save lastframe when processing static frame
while True:
if temp is not None:
frame = temp
temp = None
else:
frame = read_buffer.get()
if frame is None:
break
I0 = I1
I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.
I1 = pad_image(I1)
I0_small = F.interpolate(I0, (32, 32), mode='bilinear', align_corners=False)
I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False)
ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3])
break_flag = False
if ssim > 0.996:
frame = read_buffer.get() # read a new frame
if frame is None:
break_flag = True
frame = lastframe
else:
temp = frame
I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.
I1 = pad_image(I1)
I1 = model.inference(I0, I1, scale=args.scale)
I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False)
ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3])
frame = (I1[0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w]
if ssim < 0.2:
output = []
for i in range(args.multi - 1):
output.append(I0)
'''
output = []
step = 1 / args.multi
alpha = 0
for i in range(args.multi - 1):
alpha += step
beta = 1-alpha
output.append(torch.from_numpy(np.transpose((cv2.addWeighted(frame[:, :, ::-1], alpha, lastframe[:, :, ::-1], beta, 0)[:, :, ::-1].copy()), (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.)
'''
else:
output = make_inference(I0, I1, args.multi - 1)
if args.montage:
write_buffer.put(np.concatenate((lastframe, lastframe), 1))
for mid in output:
mid = (((mid[0] * 255.).byte().cpu().numpy().transpose(1, 2, 0)))
write_buffer.put(np.concatenate((lastframe, mid[:h, :w]), 1))
else:
write_buffer.put(lastframe)
for mid in output:
mid = (((mid[0] * 255.).byte().cpu().numpy().transpose(1, 2, 0)))
write_buffer.put(mid[:h, :w])
pbar.update(1)
lastframe = frame
if break_flag:
break
if args.montage:
write_buffer.put(np.concatenate((lastframe, lastframe), 1))
else:
write_buffer.put(lastframe)
write_buffer.put(None)
import time
while(not write_buffer.empty()):
time.sleep(0.1)
pbar.close()
if not vid_out is None:
vid_out.release()
# move audio to new video file if appropriate
if args.png == False and fpsNotAssigned == True and not args.video is None:
try:
transferAudio(args.video, vid_out_name)
except:
print("Audio transfer failed. Interpolated video will have no audio")
targetNoAudio = os.path.splitext(vid_out_name)[0] + "_noaudio" + os.path.splitext(vid_out_name)[1]
os.rename(targetNoAudio, vid_out_name)