forked from asarnow/pyem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstar2bild.py
executable file
·122 lines (118 loc) · 5.22 KB
/
star2bild.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (C) 2018 Daniel Asarnow
# University of California, San Francisco
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import logging
import numpy as np
import pandas as pd
import sys
from healpy import pix2ang
from pyem import geom
from pyem import star
from pyem import util
from scipy.spatial import cKDTree
def main(args):
log = logging.getLogger('root')
hdlr = logging.StreamHandler(sys.stdout)
log.addHandler(hdlr)
log.setLevel(logging.getLevelName(args.loglevel.upper()))
if args.boxsize is None:
log.error("Please specify box size")
return 1
df = star.parse_star(args.input, keep_index=False)
if args.cls is not None:
df = star.select_classes(df, args.cls)
if args.apix is None:
args.apix = star.calculate_apix(df)
if args.sym is not None:
args.sym = util.relion_symmetry_group(args.sym)
df[star.Relion.ANGLEPSI] = 0
rots = geom.e2r_vec(np.deg2rad(df[star.Relion.ANGLES].values))
dfs = [star.transform_star(df, op, rots=rots) for op in args.sym]
dfi = pd.concat(dfs, axis=0, keys=np.arange(len(args.sym)))
newrots = np.array([geom.e2r_vec(np.deg2rad(x[star.Relion.ANGLES].values)) for x in dfs])
mag = np.array([geom.phi5(r) for r in newrots.reshape(-1, 3, 3)]).reshape(len(args.sym), -1)
idx = np.argmin(mag, axis=0)
midx = [(i, a) for a, i in enumerate(idx)]
df = dfi.loc[midx]
nside = 2**args.healpix_order
angular_sampling = np.sqrt(3 / np.pi) * 60 / nside
theta, phi = pix2ang(nside, np.arange(12 * nside ** 2))
phi = np.pi - phi
hp = np.column_stack((np.sin(theta) * np.cos(phi),
np.sin(theta) * np.sin(phi),
np.cos(theta)))
kdtree = cKDTree(hp)
st = np.sin(np.deg2rad(df[star.Relion.ANGLETILT]))
ct = np.cos(np.deg2rad(df[star.Relion.ANGLETILT]))
sp = np.sin(np.deg2rad(df[star.Relion.ANGLEROT]))
cp = np.cos(np.deg2rad(df[star.Relion.ANGLEROT]))
ptcls = np.column_stack((st * cp, st * sp, ct))
_, idx = kdtree.query(ptcls)
cnts = np.bincount(idx, minlength=theta.size)
frac = cnts / np.max(cnts).astype(np.float64)
mu = np.mean(frac)
sigma = np.std(frac)
log.info("%.0f (%.2f%%) +/- %.1f (%.2f%%) particles per bin" %
(np.mean(cnts), mu, np.std(cnts), sigma))
color_scale = (frac - mu) / sigma
color_scale[color_scale > 5] = 5
color_scale[color_scale < -1] = -1
color_scale /= 6
color_scale += 1 / 6.
imin = np.argmin(cnts)
imax = np.argmax(cnts)
log.info("Min %d particles (%.2f%%); color %f,0,%f" %
(cnts[imin], frac[imin] * 100, color_scale[imin], 1 - color_scale[imin]))
log.info("Max %d particles (%.2f%%); color %f,0,%f" %
(cnts[imax], frac[imax] * 100, color_scale[imax], 1 - color_scale[imax]))
r = args.boxsize * args.apix / 2
rp = np.reshape(r + r * frac * args.height_scale, (-1, 1))
base1 = hp * r
base2 = hp * rp
base1 = base1[:, [0, 1, 2]] + np.array([r]*3)
base2 = base2[:, [0, 1, 2]] + np.array([r]*3)
height = np.squeeze(np.abs(rp - r))
idx = np.where(height >= 0.01)[0]
width = args.width_scale * np.pi * r * angular_sampling / 360
bild = np.hstack((base1, base2, np.ones((base1.shape[0], 1)) * width))
fmt_color = ".color %f 0 %f\n"
fmt_cyl = ".cylinder %f %f %f %f %f %f %f\n"
with open(args.output, "w") as f:
for i in idx:
f.write(fmt_color % (color_scale[i], 1 - color_scale[i]))
f.write(fmt_cyl % tuple(bild[i]))
return 0
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("input", help="Input .star file")
parser.add_argument("output", help="Output .bild file")
parser.add_argument("--healpix-order",
help="Healpix order (Relion convention)", type=int,
default=4)
parser.add_argument("--apix",
help="Angstroms per pixel (calculate from STAR by default)",
type=float)
parser.add_argument("--boxsize", help="Box size in pixels", type=int)
parser.add_argument("--height-scale", type=float, default=0.3)
parser.add_argument("--width-scale", type=float, default=0.5)
parser.add_argument("--loglevel", help="Log level", default="WARNING")
parser.add_argument("--class",
help="Only use the specified class, may be passed multiple times",
type=int, action="append", dest="cls")
parser.add_argument("--sym", help="Symmetry group to impose on distribution (Relion conventions)")
sys.exit(main(parser.parse_args()))