-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy pathLLL_nonce_leakage.py
145 lines (127 loc) · 5.8 KB
/
LLL_nonce_leakage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# -*- coding: utf-8 -*-
"""
@author: iceland
@credit: KV, pianist-coder
"""
###################################################################################
import random
import math
import secp256k1 as ice
import time
from gmpy2 import mpq
###################################################################################
N = ice.N
fix_bits = 56
out_file_name = 'pseudo_sig_rsz.txt'
kbits = 256 - fix_bits
###################################################################################
def reduction(input_vectors, tolerance):
def gramschmidt_orthogonalization(vectors):
num_vectors = len(vectors)
basis = [None] * num_vectors
for i in range(num_vectors):
basis[i] = vectors[i].copy()
for j in range(i):
projection = sum(vectors[i][k] * basis[j][k] for k in range(len(vectors[i]))) / \
sum(basis[j][k] * basis[j][k] for k in range(len(basis[j])))
for k in range(len(vectors[i])):
basis[i][k] -= projection * basis[j][k]
return basis
def update_orthogonal_vectors(orthogonalized, basis_vectors, index):
j = index - 1
while j >= 0:
mu_kj = sum(x * y for x, y in zip(orthogonalized[j], basis_vectors[index])) / sum(x ** 2 for x in orthogonalized[j])
if abs(mu_kj) > 0.5:
basis_vectors[index] = [v - round(mu_kj) * basis_vectors[j][k] for k, v in enumerate(basis_vectors[index])]
j -= 1
return basis_vectors
num_vectors = len(input_vectors)
basis_vectors = [None] * num_vectors
basis_vectors = [[mpq(x) for x in vec] for vec in input_vectors]
orthogonalized = gramschmidt_orthogonalization(basis_vectors)
index = 1
while index < num_vectors:
basis_vectors = update_orthogonal_vectors(orthogonalized, basis_vectors, index)
lhs_dot_lhs = sum(x ** 2 for x in orthogonalized[index - 1])
projection_coefficient = sum(x * y for x, y in zip(orthogonalized[index - 1], basis_vectors[index])) / lhs_dot_lhs
dot_product = sum(x ** 2 for x in orthogonalized[index])
if dot_product >= (tolerance - projection_coefficient ** 2) * lhs_dot_lhs:
index += 1
else:
basis_vectors[index], basis_vectors[index - 1] = basis_vectors[index - 1], basis_vectors[index]
orthogonalized = gramschmidt_orthogonalization(basis_vectors)
index = max(index - 1, 1)
return [[int(x) for x in b] for b in basis_vectors]
def write_rsz_file(rr, ss, zz, pb):
with open(out_file_name, 'w') as f:
sz = len(rr)
for i in range(sz):
f.write('r = ' + hex(rr[i])[2:].zfill(64) + '\n')
f.write('s = ' + hex(ss[i])[2:].zfill(64) + '\n')
f.write('z = ' + hex(zz[i])[2:].zfill(64) + '\n')
f.write('pubkey = ' + pb.hex())
def modinv(v):
return pow(v, N-2, N)
def getx(Q):
return int(Q[1:33].hex(), 16)
def minimum_sigs_required(num_bits: int) -> int:
return math.ceil(1.03 * 4 / 3 * 256 / num_bits)
def identity_plus2(u, elem=1):
result = [[0] * (u + 2) for _ in range(u)]
for i in range(u):
result[i][i] = elem
return result
if __name__ == '__main__':
n = 1 + minimum_sigs_required(fix_bits)
print(f'\n Fixed Nonce bits = {fix_bits} Minimum Signature Required = {n}')
secret = random.randint(1, N)
pub = ice.scalar_multiplication(secret)
print('###############################################################################')
print(f'secret: {hex(secret)[2:]}')
print(f'Pubkey: {pub.hex()}')
print('###############################################################################')
fixed_k_prefix = random.randrange(2**kbits, N)
z = [random.randrange(1, N) for i in range(n)]
nonces = [random.randrange(1, 2**kbits) + fixed_k_prefix for i in range(n)]
sigs_r = [getx(ice.scalar_multiplication(nonces[i])) for i in range(n)]
mod_inv_nonces = [modinv(nonces[i]) for i in range(n)]
sigs_s = [(z[i] + secret * sigs_r[i]) * mod_inv_nonces[i] % N for i in range(n)]
sinv = [modinv(s) for s in sigs_s]
write_rsz_file(sigs_r, sigs_s, z, pub)
matrix = identity_plus2(n - 1, N)
row, row2 = [], []
[zn, rn, sn] = [z[-1], sigs_r[-1], sigs_s[-1]]
rnsn_inv = rn * modinv(sn)
znsn_inv = zn * modinv(sn)
for i in range(n-1):
row.append((sigs_r[i] * modinv(sigs_s[i])) - rnsn_inv)
row2.append((z[i] * modinv(sigs_s[i])) - znsn_inv)
row.append((2**kbits) / N)
row.append(0)
row2.append(0)
row2.append(2**kbits)
matrix.append(row)
matrix.append(row2)
print(' Original Matrix')
print(matrix)
start = time.time()
new_matrix = reduction(matrix, 0.35)
print('\n\n Reduced Matrix')
print(new_matrix)
###################################################################################
for row in new_matrix:
potential_nonce_diff = row[0]
sigs_s_0 = sigs_s[0]
zn_times_sigs_s_0 = zn * sigs_s_0
sn_times_z_0 = sn * z[0]
sn_times_sigs_s_0_times_potential_nonce_diff = sn * sigs_s_0 * potential_nonce_diff
denominator = (rn * sigs_s_0) - (sigs_r[0] * sn)
denominator_inv = modinv(denominator)
potential_priv_key = (sn_times_z_0 - zn_times_sigs_s_0 - sn_times_sigs_s_0_times_potential_nonce_diff) * denominator_inv % N
if ice.scalar_multiplication(potential_priv_key) == pub:
print('-'*79)
print(f' Found private key = {hex(potential_priv_key)[2:]}')
print('-'*79)
###################################################################################
end = time.time()
print(f"time = {end - start:.2f} sec")