-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlearning.py
343 lines (289 loc) · 13.3 KB
/
learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import sys
import numpy as np
import torch
from advertorch.context import ctx_noparamgrad_and_eval
from torch.nn.parallel import DistributedDataParallel as DDP
from tqdm import tqdm
from core import AdversaryCreator
from utils.utils import AverageMeter
from nets.dual_bn import set_bn_mode
def if_use_dbn(model):
if isinstance(model, DDP):
return model.module.bn_type.startswith('d')
else:
return model.bn_type.startswith('d')
def train(model, data_loader, optimizer, loss_fun, device, adversary=None, adv_lmbd=0.5,
start_iter=0, max_iter=np.inf, att_BNn=False, progress=True):
model.train()
loss_all = 0
total = 0
correct = 0
max_iter = len(data_loader) if max_iter == np.inf else max_iter
data_iterator = iter(data_loader)
tqdm_iters = tqdm(range(start_iter, max_iter), file=sys.stdout) \
if progress else range(start_iter, max_iter)
if adversary is None:
# ordinary training.
set_bn_mode(model, False) # set clean mode
for step in tqdm_iters:
# for data, target in tqdm(data_loader, file=sys.stdout):
try:
data, target = next(data_iterator)
except StopIteration:
data_iterator = iter(data_loader)
data, target = next(data_iterator)
optimizer.zero_grad()
data = data.to(device)
target = target.to(device)
output = model(data)
loss = loss_fun(output, target)
loss_all += loss.item() * target.size(0)
total += target.size(0)
pred = output.data.max(1)[1]
correct += pred.eq(target.view(-1)).sum().item()
loss.backward()
optimizer.step()
else:
# Use adversary to perturb data.
for step in tqdm_iters:
all_logits = []
all_targets = []
try:
data, target = next(data_iterator)
except StopIteration:
data_iterator = iter(data_loader)
data, target = next(data_iterator)
optimizer.zero_grad()
# clean data
data = data.to(device)
target = target.to(device)
if adv_lmbd < 1. or if_use_dbn(model): # FIXME if dbn, the skip will make a void BNc
set_bn_mode(model, False) # set clean mode
logits = model(data)
clf_loss_clean = loss_fun(logits, target)
all_logits.append(logits)
all_targets.append(target)
else:
clf_loss_clean = 0.
if adv_lmbd > 0 or if_use_dbn(model):
# noise data
# ---- use adv ----
if att_BNn:
set_bn_mode(model, True) # set noise mode
with ctx_noparamgrad_and_eval(model):
noise_data = adversary.perturb(data, target)
noise_target = target
# -----------------
set_bn_mode(model, True) # set noise mode
logits_noise = model(noise_data)
clf_loss_noise = loss_fun(logits_noise, noise_target)
all_logits.append(logits_noise)
all_targets.append(noise_target)
else:
clf_loss_noise = 0
loss = (1 - adv_lmbd) * clf_loss_clean + adv_lmbd * clf_loss_noise
output = torch.cat(all_logits, dim=0)
target = torch.cat(all_targets, dim=0)
loss_all += loss.item() * target.size(0)
total += target.size(0)
pred = output.data.max(1)[1]
correct += pred.eq(target.view(-1)).sum().item()
loss.backward()
optimizer.step()
return loss_all / total, correct / total
def train_slimmable(model, data_loader, optimizer, loss_fun, device, adversary=None, adv_lmbd=0.5,
start_iter=0, max_iter=np.inf, att_BNn=False,
slim_ratios=[0.5, 0.75, 1.0], slim_shifts=0, out_slim_shifts=None,
progress=True, loss_temp='none'):
"""If slim_ratios is a single value, use `train` and set slim_ratio outside, instead.
"""
# expand scalar slim_shift to list
if not isinstance(slim_shifts, (list, tuple)):
slim_shifts = [slim_shifts for _ in range(len(slim_ratios))]
if not isinstance(out_slim_shifts, (list, tuple)):
out_slim_shifts = [out_slim_shifts for _ in range(len(slim_ratios))]
model.train()
total, correct, loss_all = 0, 0, 0
max_iter = len(data_loader) if max_iter == np.inf else max_iter
data_iterator = iter(data_loader)
if adversary is None:
# ordinary training.
set_bn_mode(model, False) # set clean mode
for step in tqdm(range(start_iter, max_iter), file=sys.stdout, disable=not progress):
# for data, target in tqdm(data_loader, file=sys.stdout):
try:
data, target = next(data_iterator)
except StopIteration:
data_iterator = iter(data_loader)
data, target = next(data_iterator)
optimizer.zero_grad()
data = data.to(device)
target = target.to(device)
loss = 0.
for slim_ratio, in_slim_shift, out_slim_shift \
in sorted(zip(slim_ratios, slim_shifts, out_slim_shifts), reverse=False,
key=lambda ss_pair: ss_pair[0]):
model.switch_slim_mode(slim_ratio, slim_bias_idx=in_slim_shift, out_slim_bias_idx=out_slim_shift)
output = model(data)
if loss_temp == 'none':
_loss = loss_fun(output, target)
elif loss_temp == 'auto':
_loss = loss_fun(output/slim_ratio, target) * slim_ratio
elif loss_temp.replace('.', '', 1).isdigit(): # is float
_temp = float(loss_temp)
_loss = loss_fun(output / _temp, target) * _temp
else:
raise NotImplementedError(f"loss_temp: {loss_temp}")
loss_all += _loss.item() * target.size(0)
total += target.size(0)
pred = output.data.max(1)[1]
correct += pred.eq(target.view(-1)).sum().item()
_loss.backward()
optimizer.step()
else:
# Use adversary to perturb data.
for step in tqdm(range(start_iter, max_iter), file=sys.stdout, disable=not progress):
# for data, target in tqdm(data_loader, file=sys.stdout):
try:
data, target = next(data_iterator)
except StopIteration:
data_iterator = iter(data_loader)
data, target = next(data_iterator)
optimizer.zero_grad()
# clean data
data = data.to(device)
target = target.to(device)
for slim_ratio, in_slim_shift, out_slim_shift \
in sorted(zip(slim_ratios, slim_shifts, out_slim_shifts), reverse=False,
key=lambda ss_pair: ss_pair[0]):
# TODO also set mode at test.
model.switch_slim_mode(slim_ratio, slim_bias_idx=in_slim_shift,
out_slim_bias_idx=out_slim_shift)
all_logits, all_targets = [], []
if adv_lmbd < 1. or if_use_dbn(model): # FIXME if dbn, the skip will make a void BNc
set_bn_mode(model, False) # set clean mode
logits = model(data)
clf_loss_clean = loss_fun(logits, target)
all_logits.append(logits)
all_targets.append(target)
else:
clf_loss_clean = 0.
if adv_lmbd > 0 or if_use_dbn(model):
# noise data
# ---- use adv ----
if att_BNn:
set_bn_mode(model, True) # set noise mode
with ctx_noparamgrad_and_eval(model):
noise_data = adversary.perturb(data, target)
noise_target = target
# -----------------
set_bn_mode(model, True) # set noise mode
logits_noise = model(noise_data)
clf_loss_noise = loss_fun(logits_noise, noise_target)
all_logits.append(logits_noise)
all_targets.append(noise_target)
else:
clf_loss_noise = 0
loss = (1 - adv_lmbd) * clf_loss_clean + adv_lmbd * clf_loss_noise
loss_all += loss.item() * target.size(0)
all_logits_t = torch.cat(all_logits, dim=0)
all_targets_t = torch.cat(all_targets, dim=0)
total += all_targets_t.size(0)
pred = all_logits_t.data.max(1)[1]
correct += pred.eq(all_targets_t.view(-1)).sum().item()
loss.backward()
optimizer.step()
return loss_all / total, correct / total
# =========== Test ===========
def test_dbn(model, data_loader, loss_fun, device,
adversary=None, detector=None, att_BNn=False, adversary_name=None, progress=False,
mix_dual_logit_lmbd=-1, attack_mix_dual_logit_lmbd=-1, deep_mix=False,
):
model.eval()
noise_type = 1 if adversary else 0
loss_all = 0
total = 0
correct = 0
tqdm_data_loader = tqdm(data_loader, file=sys.stdout) if progress else data_loader
for data, target in tqdm_data_loader:
data = data.to(device)
target = target.to(device)
set_bn_mode(model, is_noised=False) # use clean mode to predict noise.
if adversary:
if mix_dual_logit_lmbd >= 0:
if attack_mix_dual_logit_lmbd < 0:
attack_mix_dual_logit_lmbd = mix_dual_logit_lmbd
joint_adversary = AdversaryCreator(adversary_name)(
lambda x: model.mix_dual_forward(x, lmbd=attack_mix_dual_logit_lmbd,
deep_mix=deep_mix)
)
with ctx_noparamgrad_and_eval(model): # make sure BN's are in eval mode
data = joint_adversary.perturb(data, target)
else:
set_bn_mode(model, att_BNn) # set noise mode
with ctx_noparamgrad_and_eval(model): # make sure BN's are in eval mode
data = adversary.perturb(data, target)
if detector is None or detector == 'none':
# use clean BN
set_bn_mode(model, is_noised=False)
elif isinstance(detector, str):
if detector == 'clean':
disc_pred = False
elif detector == 'noised':
disc_pred = True
elif detector == 'gt':
disc_pred = noise_type > 0
elif detector == 'rgt':
disc_pred = noise_type <= 0
else:
raise ValueError(f"Invalid str detector: {detector}")
set_bn_mode(model, is_noised=disc_pred)
else:
raise NotImplementedError("Not support detector model.")
if mix_dual_logit_lmbd >= 0:
output = model.mix_dual_forward(data, lmbd=mix_dual_logit_lmbd, deep_mix=deep_mix)
else:
output = model(data)
loss = loss_fun(output, target)
loss_all += loss.item()
total += target.size(0)
pred = output.data.max(1)[1]
correct += pred.eq(target.view(-1)).sum().item()
return loss_all / len(data_loader), correct / total
def test(model, data_loader, loss_fun, device, adversary=None, progress=False):
"""Run test single model.
Returns: loss, acc
"""
model.eval()
loss_all, total, correct = 0, 0, 0
for data, target in tqdm(data_loader, file=sys.stdout, disable=not progress):
data, target = data.to(device), target.to(device)
if adversary:
with ctx_noparamgrad_and_eval(model): # make sure BN's are in eval mode
data = adversary.perturb(data, target)
with torch.no_grad():
output = model(data)
loss = loss_fun(output, target)
loss_all += loss.item()
total += target.size(0)
pred = output.data.max(1)[1]
correct += pred.eq(target.view(-1)).sum().item()
return loss_all / len(data_loader), correct/total
def refresh_bn(model, data_loader, device, adversary=None, progress=False):
model.train()
for data, target in tqdm(data_loader, file=sys.stdout, disable=not progress):
data, target = data.to(device), target.to(device)
if adversary:
with ctx_noparamgrad_and_eval(model): # make sure BN's are in eval mode
data = adversary.perturb(data, target)
with torch.no_grad():
model(data)
def fed_test_model(fed, running_model, test_loaders, loss_fun, device):
test_acc_mt = AverageMeter()
for test_idx, test_loader in enumerate(test_loaders):
fed.download(running_model, test_idx)
_, test_acc = test(running_model, test_loader, loss_fun, device)
# print(' {:<11s}| Test Acc: {:.4f}'.format(fed.clients[test_idx], test_acc))
# wandb.summary[f'{fed.clients[test_idx]} test acc'] = test_acc
test_acc_mt.append(test_acc)
return test_acc_mt.avg