-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathCity.py
90 lines (77 loc) · 2.69 KB
/
City.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import numpy as np
class City(object):
def __init__(self, city_file_name):
self.city_file = city_file_name
self.num_city = 0
self.dis_matrix = []
self.is_cord = -1
self.x_list = np.zeros(0, dtype=int)
self.y_list = np.zeros(0, dtype=int)
def city_import(self):
file = open(self.city_file)
string = file.read()
if string[0] == "1":
self.city_import_xy()
self.is_cord = 1
else:
self.city_import_matrix()
self.is_cord = 0
def city_import_xy(self):
# 从文件读取坐标数据
file = open(self.city_file)
string = file.read()
file.close()
# 将数据导入列表中
data_n = []
data_x = []
data_y = []
rows = string.split("\n")
self.num_city = len(rows)
for i in range(self.num_city):
j = 0
while j < len(rows[i]):
if rows[i][j] == " " and rows[i][j + 1] == " ":
rows[i] = rows[i][0: j] + rows[i][j + 1: len(rows[i])]
j = j + 1
data = rows[i].split(" ")
data_n.append(i)
data_x.append(int(data[1]))
data_y.append(int(data[2]))
self.x_list = np.array(data_x)
self.y_list = np.array(data_y)
# 计算城市间的距离
for i in range(self.num_city):
dis_list = []
for j in range(self.num_city):
dis_list.append(np.sqrt(np.power(data_x[i] - data_x[j], 2) +
np.power(data_y[i] - data_y[j], 2)))
self.dis_matrix.append(dis_list)
def city_import_matrix(self):
file = open(self.city_file) # 从文件读取坐标数据
string = file.read()
file.close()
# 将数据导入列表中
city_cnt = 0
temp = []
data = []
rows = string.split("\n")
for i in range(len(rows)):
temp.append(rows[i].split(" "))
for i in range(len(temp)):
for j in range(len(temp[i])):
data.append(int(temp[i][j]))
if int(temp[i][j]) == 0:
city_cnt = city_cnt + 1
self.num_city = city_cnt
# 导入城市信息
dis_array = np.zeros((self.num_city, self.num_city))
cnt = 0
for i in range(self.num_city):
for j in range(i + 1):
dis_array[i][j] = data[cnt]
dis_array[j][i] = dis_array[i][j]
cnt = cnt + 1
self.dis_matrix = dis_array.tolist()
def get_dis_matrix(self):
self.city_import()
return np.array(self.dis_matrix)