-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBoid.pde
executable file
·241 lines (214 loc) · 6.39 KB
/
Boid.pde
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
// Boid class
// Methods for Separation, Cohesion, Alignment added
class Boid {
Vec2D loc;
Vec2D vel;
Vec2D acc;
float r = 40;
float maxforce;
float maxspeed;
float desiredseparation = 35.0f;
float neighbordist = 30.0;
float phase;
PShape sirouette = loadShape("silhouette.svg");
public Boid(Vec2D l,float size,float ms, float mf) {
loc=l;
acc = new Vec2D();
vel = Vec2D.randomVector();
r = size;
maxspeed = ms;
maxforce = mf;
phase = random(-PI,PI);
}
//test
void setSpeed(float speed) {
maxspeed = speed;
}
void run(ArrayList boids) {
flock(boids);
update();
borders();
render();
}
// We accumulate a new acceleration each time based on three rules
void flock(ArrayList boids) {
Vec2D sep = separate(boids); // Separation
Vec2D ali = align(boids); // Alignment
Vec2D coh = cohesion(boids); // Cohesion
// Arbitrarily weight these forces
sep.scaleSelf(1.5);
ali.scaleSelf(1.0);
coh.scaleSelf(1.0);
// Add the force vectors to acceleration
acc.addSelf(sep);
acc.addSelf(ali);
acc.addSelf(coh);
//println(coh);
float phasemod = map(frameCount % 10000,0,1000,0,4*PI);
Vec2D sinVal;
//TODO: wiggle with sin curve.
sinVal = new Vec2D(sin(phasemod+phase)*r*20, cos(phasemod+phase)*r*20);
acc.addSelf(sinVal);
}
// Method to update location
void update() {
// Update velocity
vel.addSelf(acc);
// Limit speed
vel.limit(maxspeed);
loc.addSelf(vel);
// Reset accelertion to 0 each cycle
acc.clear();
}
void seek(Vec2D target) {
acc.addSelf(steer(target,false));
}
void arrive(Vec2D target) {
acc.addSelf(steer(target,true));
}
// A method that calculates a steering vector towards a target
// Takes a second argument, if true, it slows down as it approaches the target
Vec2D steer(Vec2D target, boolean slowdown) {
Vec2D steer; // The steering vector
Vec2D desired = target.sub(loc); // A vector pointing from the location to the target
float d = desired.magnitude(); // Distance from the target is the magnitude of the vector
// If the distance is greater than 0, calc steering (otherwise return zero vector)
if (d > 0) {
// Normalize desired
desired.normalize();
// Two options for desired vector magnitude (1 -- based on distance, 2 -- maxspeed)
if (slowdown && d < 100.0f) desired.scaleSelf(maxspeed*d/100.0f); // This damping is somewhat arbitrary
else desired.scaleSelf(maxspeed);
// Steering = Desired minus Velocity
steer = desired.sub(vel).limit(maxforce); // Limit to maximum steering force
}
else {
steer = new Vec2D();
}
return steer;
}
void render() {
// Draw a triangle rotated in the direction of velocity
float angle = 140;
// println("a:"+angle);
float theta = vel.heading() + radians(angle);
fill(0);
noStroke();
//stroke(0);
pushMatrix();
translate(loc.x,loc.y);
rotate(theta);
shape(sirouette,0,0,r,r);
noFill();
stroke(0);
/* beginShape(TRIANGLES);
vertex(0, -r*2);
vertex(-r, r*2);
vertex(r, r*2);
endShape();*/
popMatrix();
}
// Wraparound
void borders() {
if (loc.x < -r) loc.x = width+r;
if (loc.y < -r) loc.y = height+r;
if (loc.x > width+r) loc.x = -r;
if (loc.y > height+r) loc.y = -r;
}
// Separation
// Method checks for nearby boids and steers away
Vec2D separate (ArrayList boids) {
Vec2D steer = new Vec2D();
int count = 0;
// For every boid in the system, check if it's too close
for (int i = 0 ; i < boids.size(); i++) {
Boid other = (Boid) boids.get(i);
//test
//other.setSpeed(random(1.5,3.5));
float d = loc.distanceTo(other.loc);
// If the distance is greater than 0 and less than an arbitrary amount (0 when you are yourself)
if ((d > 0) && (d < desiredseparation)) {
// Calculate vector pointing away from neighbor
Vec2D diff = loc.sub(other.loc);
diff.normalizeTo(1.0/d);
steer.addSelf(diff);
count++; // Keep track of how many
}
}
// Average -- divide by how many
if (count > 0) {
steer.scaleSelf(1.0/count);
}
// As long as the vector is greater than 0
if (steer.magnitude() > 0) {
// Implement Reynolds: Steering = Desired - Velocity
steer.normalizeTo(maxspeed);
steer.subSelf(vel);
steer.limit(maxforce);
}
return steer;
}
// Alignment
// For every nearby boid in the system, calculate the average velocity
Vec2D align (ArrayList boids) {
Vec2D steer = new Vec2D();
int count = 0;
for (int i = 0 ; i < boids.size(); i++) {
Boid other = (Boid) boids.get(i);
float d = loc.distanceTo(other.loc);
if ((d > 0) && (d < neighbordist)) {
steer.addSelf(other.vel);
count++;
}
}
if (count > 0) {
steer.scaleSelf(1.0/count);
}
// As long as the vector is greater than 0
if (steer.magnitude() > 0) {
// Implement Reynolds: Steering = Desired - Velocity
steer.normalizeTo(maxspeed);
steer.subSelf(vel);
steer.limit(maxforce);
}
return steer;
}
// Cohesion
// For the average location (i.e. center) of all nearby boids, calculate steering vector towards that location
Vec2D cohesion (ArrayList boids) {
Vec2D sum = new Vec2D(); // Start with empty vector to accumulate all locations
int count = 0;
for (int i = 0 ; i < boids.size(); i++) {
Boid other = (Boid) boids.get(i);
float d = loc.distanceTo(other.loc);
if ((d > 0) && (d < neighbordist)) {
sum.addSelf(other.loc); // Add location
count++;
}
}
if (count > 0) {
sum.scaleSelf(1.0/count);
return steer(sum,false); // Steer towards the location
}
return sum;
}
}
// Flock class
// Does very little, simply manages the ArrayList of all the boids
class Flock {
//ArrayList boids; // An arraylist for all the boids
ArrayList<Boid> boids; // An arraylist for all the boids
Flock() {
//boids = new ArrayList(); // Initialize the arraylist
boids = new ArrayList<Boid>();
}
void run() {
for (int i = 0; i < boids.size(); i++) {
Boid b = (Boid) boids.get(i);
b.run(boids); // Passing the entire list of boids to each boid individually
}
}
void addBoid(Boid b) {
boids.add(b);
}
}