-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinfer.py
761 lines (604 loc) · 25.3 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
import numpy as np
import cv2
import os
import math
import pickle
import json
import scipy
import scipy.ndimage.morphology as morphology
import scipy.ndimage.filters as filters
import torch
from torch.autograd import Variable as V
def distance(p1, p2):
a = p1[0] - p2[0]
b = p1[1] - p2[1]
return np.sqrt(a * a + b * b)
def vNorm(v1):
l = distance(v1, (0, 0)) + 0.0000001
return v1[0] / l, v1[1] / l
def anglediff(v1, v2):
v1 = vNorm(v1)
v2 = vNorm(v2)
return v1[0]*v2[0] + v1[1] * v2[1]
def cosine_similarity(k1, k2, k3):
vec1 = distance_norm(k2, k1)
vec2 = distance_norm(k3, k1)
return vec1[0] * vec2[0] + vec1[1] * vec2[1]
def distance_norm(k1, k2):
l = distance(k1, k2)
a = k1[0] - k2[0]
b = k1[1] - k2[1]
return a/l, b/l
def point2lineDistance(p, n1, n2):
length = distance(n1, n2)
v1 = [n1[0] - p[0], n1[1] - p[1]]
v2 = [n2[0] - p[0], n2[1] - p[1]]
area = abs(v1[0] * v2[1] - v1[1] * v2[0])
if n1 == n2:
return 0
return area / length
def douglasPeucker(node_list, e=5.0):
if len(node_list) <= 2:
return node_list
best_i = 1
best_d = 0
for i in range(1, len(node_list) - 1):
d = point2lineDistance(node_list[i], node_list[0], node_list[-1])
if d > best_d:
best_d = d
best_i = i
if best_d <= e:
return [node_list[0], node_list[-1]]
new_list = douglasPeucker(node_list[0:best_i + 1], e=e)
new_list = new_list[:-1] + douglasPeucker(node_list[best_i:len(node_list)], e=e)
return new_list
def graphInsert(node_neighbor, n1key, n2key):
if n1key != n2key:
if n1key in node_neighbor:
if n2key in node_neighbor[n1key]:
pass
else:
node_neighbor[n1key].append(n2key)
else:
node_neighbor[n1key] = [n2key]
if n2key in node_neighbor:
if n1key in node_neighbor[n2key]:
pass
else:
node_neighbor[n2key].append(n1key)
else:
node_neighbor[n2key] = [n1key]
return node_neighbor
def simpilfyGraph(node_neighbor, e=2.5):
visited = []
new_node_neighbor = {}
for node, node_nei in node_neighbor.items():
if len(node_nei) == 1 or len(node_nei) > 2:
if node in visited:
continue
# search node_nei
for next_node in node_nei:
if next_node in visited:
continue
node_list = [node, next_node]
while True:
if len(node_neighbor[node_list[-1]]) == 2:
if node_neighbor[node_list[-1]][0] == node_list[-2]:
node_list.append(node_neighbor[node_list[-1]][1])
else:
node_list.append(node_neighbor[node_list[-1]][0])
else:
break
for i in range(len(node_list) - 1):
if node_list[i] not in visited:
visited.append(node_list[i])
# simplify node_list
new_node_list = douglasPeucker(node_list, e=e)
for i in range(len(new_node_list) - 1):
new_node_neighbor = graphInsert(new_node_neighbor, new_node_list[i], new_node_list[i + 1])
return new_node_neighbor
def graph_refine(graph, isolated_thr=150, spurs_thr=30):
neighbors = graph
gid = 0
grouping = {}
for k, v in neighbors.items():
if k not in grouping:
# start a search
queue = [k]
while len(queue) > 0:
n = queue.pop(0)
if n not in grouping:
grouping[n] = gid
for nei in neighbors[n]:
queue.append(nei)
gid += 1
group_count = {}
for k, v in grouping.items():
if v not in group_count:
group_count[v] = (1, 0)
else:
group_count[v] = (group_count[v][0] + 1, group_count[v][1])
for nei in neighbors[k]:
a = k[0] - nei[0]
b = k[1] - nei[1]
d = np.sqrt(a * a + b * b)
group_count[v] = (group_count[v][0], group_count[v][1] + d / 2)
# short spurs
remove_list = []
for k, v in neighbors.items():
if len(v) == 1:
if len(neighbors[v[0]]) >= 3:
a = k[0] - v[0][0]
b = k[1] - v[0][1]
d = np.sqrt(a * a + b * b)
if d < spurs_thr:
remove_list.append(k)
remove_list2 = []
remove_counter = 0
new_neighbors = {}
def isRemoved(k):
gid = grouping[k]
if group_count[gid][0] <= 1:
return True
elif group_count[gid][1] <= isolated_thr:
return True
elif k in remove_list:
return True
elif k in remove_list2:
return True
else:
return False
for k, v in neighbors.items():
if isRemoved(k):
remove_counter += 1
pass
else:
new_nei = []
for nei in v:
if isRemoved(nei):
pass
else:
new_nei.append(nei)
new_neighbors[k] = list(new_nei)
return new_neighbors
def graph_shave(graph, spurs_thr=50):
neighbors = graph
# short spurs
remove_list = []
for k, v in neighbors.items():
if len(v) == 1:
d = distance(k, v[0])
cur = v[0]
l = [k]
while True:
if len(neighbors[cur]) >= 3:
break
elif len(neighbors[cur]) == 1:
l.append(cur)
break
else:
if neighbors[cur][0] == l[-1]:
next_node = neighbors[cur][1]
else:
next_node = neighbors[cur][0]
d += distance(cur, next_node)
l.append(cur)
cur = next_node
if d < spurs_thr:
for n in l:
if n not in remove_list:
remove_list.append(n)
def isRemoved(k):
if k in remove_list:
return True
else:
return False
new_neighbors = {}
remove_counter = 0
for k, v in neighbors.items():
if isRemoved(k):
remove_counter += 1
pass
else:
new_nei = []
for nei in v:
if isRemoved(nei):
pass
else:
new_nei.append(nei)
new_neighbors[k] = list(new_nei)
# print("shave", len(new_neighbors), "remove", remove_counter, "nodes")
return new_neighbors
def graph_refine_deloop(neighbors, max_step=10, max_length=200, max_diff=5):
removed = []
impact = []
remove_edge = []
new_edge = []
for k, v in neighbors.items():
if k in removed:
continue
if k in impact:
continue
if len(v) < 2:
continue
for nei1 in v:
if nei1 in impact:
continue
if k in impact:
continue
for nei2 in v:
if nei2 in impact:
continue
if nei1 == nei2:
continue
if cosine_similarity(k, nei1, nei2) > 0.984:
l1 = distance(k, nei1)
l2 = distance(k, nei2)
# print("candidate!", l1,l2,neighbors_cos(neighbors, k, nei1, nei2))
if l2 < l1:
nei1, nei2 = nei2, nei1
remove_edge.append((k, nei2))
remove_edge.append((nei2, k))
new_edge.append((nei1, nei2))
impact.append(k)
impact.append(nei1)
impact.append(nei2)
break
new_neighbors = {}
def isRemoved(k):
if k in removed:
return True
else:
return False
for k, v in neighbors.items():
if isRemoved(k):
pass
else:
new_nei = []
for nei in v:
if isRemoved(nei):
pass
elif (nei, k) in remove_edge:
pass
else:
new_nei.append(nei)
new_neighbors[k] = list(new_nei)
for new_e in new_edge:
nk1 = new_e[0]
nk2 = new_e[1]
if nk2 not in new_neighbors[nk1]:
new_neighbors[nk1].append(nk2)
if nk1 not in new_neighbors[nk2]:
new_neighbors[nk2].append(nk1)
# print("remove %d edges" % len(remove_edge))
return new_neighbors, len(remove_edge)
def detect_local_minima(arr, mask, threshold=0.5):
neighborhood = morphology.generate_binary_structure(len(arr.shape), 2)
local_min = (filters.minimum_filter(arr, footprint=neighborhood) == arr)
background = (arr == 0)
eroded_background = morphology.binary_erosion(background, structure=neighborhood, border_value=1)
detected_minima = local_min ^ eroded_background
return np.where((detected_minima & (mask > threshold)))
def detect_keypoints(ach, v_thr):
kp = np.copy(ach)
smooth_kp = scipy.ndimage.filters.gaussian_filter(np.copy(kp), 1)
smooth_kp = smooth_kp / max(np.amax(smooth_kp), 0.001)
keypoints = detect_local_minima(-smooth_kp, smooth_kp, v_thr)
return keypoints
def line_pooling(src, x0, y0, x, y, ori=False):
step = round(math.sqrt((x - x0) ** 2 + (y - y0) ** 2))
sample = np.linspace(np.array([x0, y0]), np.array([x, y]), step, dtype=int)
if ori:
mean = (np.mean(src[sample[round(step / 8):round(3 * step / 8), 0], sample[round(step / 8):round(3 * step / 8), 1]]) + np.mean(src[sample[round(5 * step / 8):round(7 * step / 8), 0], sample[round(5 * step / 8):round(7 * step / 8), 1]])) / 2
std = (np.std(src[sample[round(step / 8):round(3 * step / 8), 0], sample[round(step / 8):round(3 * step / 8), 1]]) + np.std(src[sample[round(5 * step / 8):round(7 * step / 8), 0], sample[round(5 * step / 8):round(7 * step / 8), 1]])) / 2
return mean, std
else:
mean = np.mean(src[sample[round(step / 4):round(3 * step / 4), 0], sample[round(step / 4):round(3 * step / 4), 1]])
std = np.std(src[sample[round(step / 4):round(3 * step / 4), 0], sample[round(step / 4):round(3 * step / 4), 1]])
return mean, std
def DecodeRoadGraphSVPO(seg, vex, ori, rad):
# seg_ori = cv2.erode(np.sqrt(ori[:, :, 0] ** 2 + ori[:, :, 1] ** 2), np.ones((5, 5), np.uint8))
# seg = cv2.erode(seg, np.ones((3, 3), np.uint8))
vertices = detect_keypoints(vex[:, :, 0], 0.05)
candidates = []
for j in range(0, len(vertices[0])):
x0 = vertices[0][j]
y0 = vertices[1][j]
if x0 == -1 and y0 == -1:
continue
z0 = round(vex[x0, y0, 1] * 8)
for k in range(j + 1, len(vertices[0])):
x = vertices[0][k]
y = vertices[1][k]
if x == -1 and y == -1:
continue
if abs(x - x0) < 5 and abs(y - y0) < 5:
vertices[0][k] = -1
vertices[1][k] = -1
x0 = (x0 + x) // 2
y0 = (y0 + y) // 2
z0 = max(z0, round(vex[x, y, 1] * 8))
candidates.append([x0, y0, z0])
neighbors = {}
for j in range(len(candidates)):
x0 = candidates[j][0]
y0 = candidates[j][1]
z0 = candidates[j][2]
proposals = []
for k in range(len(candidates)):
if j == k:
continue
x = candidates[k][0]
y = candidates[k][1]
if abs(x - x0) > rad or abs(y - y0) > rad:
continue
line_mean, line_std = line_pooling(seg, x0, y0, x, y)
if line_mean < 0.5 or line_std > 0.18:
continue
mean_x, _ = line_pooling(ori[:, :, 0], x0, y0, (x0 + x) // 2, (y0 + y) // 2)
mean_y, _ = line_pooling(ori[:, :, 1], x0, y0, (x0 + x) // 2, (y0 + y) // 2)
angle = math.atan2(y - y0, x - x0)
angle_pre = math.atan2(mean_y, mean_x)
delta_pre = abs(angle - angle_pre)
if delta_pre > math.pi:
delta_pre = 2 * math.pi - delta_pre
if delta_pre > (math.pi / 2):
continue
# angle = math.atan2(y - y0, x - x0)
dist = distance((x0, y0), (x, y))
proposals.append([x, y, dist, angle, line_mean])
for point in proposals[:-1]:
delta = abs(angle - point[3])
if delta > math.pi:
delta = 2 * math.pi - delta
if delta < (math.pi / 16):
if dist < point[2]:
proposals.remove(point)
else:
proposals.remove([x, y, dist, angle, line_mean])
break
proposals.sort(key=lambda t: t[4], reverse=True)
for point in proposals[:z0]:
if (x0, y0) in neighbors:
if (point[0], point[1]) in neighbors[(x0, y0)]:
pass
else:
neighbors[(x0, y0)].append((point[0], point[1]))
else:
neighbors[(x0, y0)] = [(point[0], point[1])]
if (point[0], point[1]) in neighbors:
if (x0, y0) in neighbors[(point[0], point[1])]:
pass
else:
neighbors[(point[0], point[1])].append((x0, y0))
else:
neighbors[(point[0], point[1])] = [(x0, y0)]
spurs_thr = 50
isolated_thr = 200
graph = graph_refine(neighbors, isolated_thr=isolated_thr, spurs_thr=spurs_thr)
rc = 100
while rc > 0:
graph, rc = graph_refine_deloop(graph_refine(graph, isolated_thr=isolated_thr, spurs_thr=spurs_thr))
graph = graph_shave(graph, spurs_thr=spurs_thr)
# graph = neighbors
return graph
def infer_cityscale():
from extractor import Extractor as Extractor
from network import SegVexPlusOriDLA as Net
input_dir = './datasets/cityscale/test/'
output_dir = './results/cityscale/'
weight_dir = './checkpoints/cityscale/best.th'
if not os.path.exists(output_dir):
os.mkdir(output_dir)
model = Extractor(Net, eval_mode=True)
model.load(weight_dir)
for i in range(180):
if i % 10 < 8 or i % 20 == 18:
continue
sat = cv2.imread(input_dir + "region_%d_sat.png" % i)
sat_img = np.array(sat, np.float32).transpose((2, 0, 1)) / 255.0 * 3.2 - 1.6
sat_img = V(torch.Tensor(np.expand_dims(sat_img, axis=0)).cuda())
pre = model.predict(sat_img)
seg_pre = pre['seg'].squeeze().cpu().data.numpy()
vex_pre = pre['vex'].squeeze().cpu().data.numpy().transpose((1, 2, 0))
ori_pre = pre['ori'].squeeze().cpu().data.numpy().transpose((1, 2, 0))
pre = None
sat_img = np.flip(sat, 0)
sat_img = np.array(sat_img, np.float32).transpose((2, 0, 1)) / 255.0 * 3.2 - 1.6
sat_img = V(torch.Tensor(np.expand_dims(sat_img, axis=0)).cuda())
pre = model.predict(sat_img)
seg_pre_v = pre['seg'].squeeze().cpu().data.numpy()
pre = None
sat_img = np.flip(sat, 1)
sat_img = np.array(sat_img, np.float32).transpose((2, 0, 1)) / 255.0 * 3.2 - 1.6
sat_img = V(torch.Tensor(np.expand_dims(sat_img, axis=0)).cuda())
pre = model.predict(sat_img)
seg_pre_h = pre['seg'].squeeze().cpu().data.numpy()
pre = None
sat_img = np.rot90(sat)
sat_img = np.array(sat_img, np.float32).transpose((2, 0, 1)) / 255.0 * 3.2 - 1.6
sat_img = V(torch.Tensor(np.expand_dims(sat_img, axis=0)).cuda())
pre = model.predict(sat_img)
seg_pre_r = pre['seg'].squeeze().cpu().data.numpy()
pre = None
seg_pre = np.clip(seg_pre + np.flip(seg_pre_v, 0) + np.flip(seg_pre_h, 1) + np.rot90(seg_pre_r, k=-1), a_min=0, a_max=1)
# cv2.imwrite('./seg.jpg', seg_pre * 255)
# cv2.imwrite('./vex.jpg', vex_pre[:, :, 0] * 255)
# seg_ori = np.sqrt(ori_pre[:, :, 0] ** 2 + ori_pre[:, :, 1] ** 2)
# seg_ori = cv2.erode(seg_ori, np.ones((5, 5), np.uint8))
# seg = np.clip(seg_ori, a_min=0, a_max=1)
# cv2.imwrite('./seg.jpg', seg * 255)
# ori_pre = (ori_pre / 2 + 0.5) * 255
# seg_ori = np.concatenate([np.expand_dims(seg_ori, 2), np.expand_dims(seg_ori * ori_pre[:, :, 0], 2), np.expand_dims(seg_ori * ori_pre[:, :, 1], 2)], 2)
# cv2.imwrite('./seg_ori.jpg', seg_ori)
# return
graph = DecodeRoadGraphSVPO(seg_pre, vex_pre, ori_pre, 75)
pickle.dump(graph, open(output_dir + "region_%d_graph.p" % i, "wb"))
# graph = simpilfyGraph(graph)
seg = np.zeros_like(seg_pre)
for u, v in graph.items():
n1 = u
for n2 in v:
cv2.line(sat, (int(n1[1]), int(n1[0])), (int(n2[1]), int(n2[0])), (0, 128, 255), 3)
cv2.line(seg, (int(n1[1]), int(n1[0])), (int(n2[1]), int(n2[0])), 255, 3)
for u, v in graph.items():
n1 = u
if len(v) < 3:
cv2.circle(sat, (int(n1[1]), int(n1[0])), 3, (0, 255, 255), -1)
else:
cv2.circle(sat, (int(n1[1]), int(n1[0])), 3, (0, 255, 128), -1)
cv2.imwrite(output_dir + "region_%d_vis.png" % i, sat)
cv2.imwrite(output_dir + "region_%d_seg.png" % i, seg)
def DecodeRoadGraphSVPO2(seg, vex, ori, rad):
# seg_ori = cv2.erode(np.sqrt(ori[:, :, 0] ** 2 + ori[:, :, 1] ** 2), np.ones((5, 5), np.uint8))
# seg = cv2.erode(seg, np.ones((3, 3), np.uint8))
vertices = detect_keypoints(vex[:, :, 0], 0.05)
candidates = []
for j in range(0, len(vertices[0])):
x0 = vertices[0][j]
y0 = vertices[1][j]
if x0 == -1 and y0 == -1:
continue
z0 = round(vex[x0, y0, 1] * 8)
for k in range(j + 1, len(vertices[0])):
x = vertices[0][k]
y = vertices[1][k]
if x == -1 and y == -1:
continue
if abs(x - x0) < 5 and abs(y - y0) < 5:
vertices[0][k] = -1
vertices[1][k] = -1
x0 = (x0 + x) // 2
y0 = (y0 + y) // 2
z0 = max(z0, round(vex[x, y, 1] * 8))
candidates.append([x0, y0, z0])
neighbors = {}
for j in range(len(candidates)):
x0 = candidates[j][0]
y0 = candidates[j][1]
z0 = candidates[j][2]
proposals = []
for k in range(len(candidates)):
if j == k:
continue
x = candidates[k][0]
y = candidates[k][1]
if abs(x - x0) > rad or abs(y - y0) > rad:
continue
line_mean, line_std = line_pooling(seg, x0, y0, x, y)
# line_mean_ori, line_std_ori = line_pooling(seg_ori, x0, y0, x, y, True)
if line_mean < 0.2 or line_std > 0.3:
continue
mean_x, _ = line_pooling(ori[:, :, 0], x0, y0, (x0 + x) // 2, (y0 + y) // 2)
mean_y, _ = line_pooling(ori[:, :, 1], x0, y0, (x0 + x) // 2, (y0 + y) // 2)
angle = math.atan2(y - y0, x - x0)
angle_pre = math.atan2(mean_y, mean_x)
delta_pre = abs(angle - angle_pre)
if delta_pre > math.pi:
delta_pre = 2 * math.pi - delta_pre
if delta_pre > (math.pi / 4):
continue
# angle = math.atan2(y - y0, x - x0)
dist = distance((x0, y0), (x, y))
proposals.append([x, y, dist, angle, line_mean])
for point in proposals[:-1]:
delta = abs(angle - point[3])
if delta > math.pi:
delta = 2 * math.pi - delta
if delta < (math.pi / 32):
if dist < point[2]:
proposals.remove(point)
else:
proposals.remove([x, y, dist, angle, line_mean])
break
proposals.sort(key=lambda t: t[4], reverse=True)
for point in proposals[:z0]:
if (x0, y0) in neighbors:
if (point[0], point[1]) in neighbors[(x0, y0)]:
pass
else:
neighbors[(x0, y0)].append((point[0], point[1]))
else:
neighbors[(x0, y0)] = [(point[0], point[1])]
if (point[0], point[1]) in neighbors:
if (x0, y0) in neighbors[(point[0], point[1])]:
pass
else:
neighbors[(point[0], point[1])].append((x0, y0))
else:
neighbors[(point[0], point[1])] = [(x0, y0)]
spurs_thr = 25
isolated_thr = 100
graph = graph_refine(neighbors, isolated_thr=isolated_thr, spurs_thr=spurs_thr)
rc = 100
while rc > 0:
graph, rc = graph_refine_deloop(graph_refine(graph, isolated_thr=0, spurs_thr=0))
graph = graph_shave(graph, spurs_thr=spurs_thr)
# graph = neighbors
return graph
def infer_spacenet():
from extractor import Extractor as Extractor
from network import SegVexPlusOriDLA as Net
input_dir = './datasets/spacenet/test/'
output_dir = './results/spacenet/'
weight_dir = './checkpoints/spacenet/best3.th'
if not os.path.exists(output_dir):
os.mkdir(output_dir)
model = Extractor(Net, eval_mode=True)
model.load(weight_dir)
dataset = json.load(open('./datasets/spacenet/dataset.json', 'r'))
for item in dataset['test']:
sat = cv2.imread(input_dir + item + '_sat.png')
sat_img = np.array(sat, np.float32).transpose((2, 0, 1)) / 255.0 * 3.2 - 1.6
sat_img = V(torch.Tensor(np.expand_dims(sat_img, axis=0)).cuda())
pre = model.predict(sat_img)
seg_pre = pre['seg'].squeeze().cpu().data.numpy()
vex_pre = pre['vex'].squeeze().cpu().data.numpy().transpose((1, 2, 0))
ori_pre = pre['ori'].squeeze().cpu().data.numpy().transpose((1, 2, 0))
pre = None
sat_img = np.flip(sat, 0)
sat_img = np.array(sat_img, np.float32).transpose((2, 0, 1)) / 255.0 * 3.2 - 1.6
sat_img = V(torch.Tensor(np.expand_dims(sat_img, axis=0)).cuda())
pre = model.predict(sat_img)
seg_pre_v = pre['seg'].squeeze().cpu().data.numpy()
pre = None
sat_img = np.flip(sat, 1)
sat_img = np.array(sat_img, np.float32).transpose((2, 0, 1)) / 255.0 * 3.2 - 1.6
sat_img = V(torch.Tensor(np.expand_dims(sat_img, axis=0)).cuda())
pre = model.predict(sat_img)
seg_pre_h = pre['seg'].squeeze().cpu().data.numpy()
pre = None
sat_img = np.rot90(sat)
sat_img = np.array(sat_img, np.float32).transpose((2, 0, 1)) / 255.0 * 3.2 - 1.6
sat_img = V(torch.Tensor(np.expand_dims(sat_img, axis=0)).cuda())
pre = model.predict(sat_img)
seg_pre_r = pre['seg'].squeeze().cpu().data.numpy()
pre = None
seg_pre = np.clip(seg_pre + np.flip(seg_pre_v, 0) + np.flip(seg_pre_h, 1) + np.rot90(seg_pre_r, k=-1), a_min=0, a_max=1)
# cv2.imwrite('./seg.jpg', seg_pre * 255)
# cv2.imwrite('./vex.jpg', vex_pre[:, :, 0] * 255)
# seg_ori = np.sqrt(ori_pre[:, :, 0] ** 2 + ori_pre[:, :, 1] ** 2)
# seg_ori = cv2.erode(seg_ori, np.ones((5, 5), np.uint8))
# seg = np.clip(seg_ori, a_min=0, a_max=1)
# cv2.imwrite('./seg.jpg', seg * 255)
# ori_pre = (ori_pre / 2 + 0.5) * 255
# seg_ori = np.concatenate([np.expand_dims(seg_ori, 2), np.expand_dims(seg_ori * ori_pre[:, :, 0], 2), np.expand_dims(seg_ori * ori_pre[:, :, 1], 2)], 2)
# cv2.imwrite('./seg_ori.jpg', seg_ori)
# return
graph = DecodeRoadGraphSVPO2(seg_pre, vex_pre, ori_pre, 75)
pickle.dump(graph, open(output_dir + "{}_graph.p".format(item), "wb"))
# graph = simpilfyGraph(graph)
seg = np.zeros_like(seg_pre)
for u, v in graph.items():
n1 = u
for n2 in v:
cv2.line(sat, (int(n1[1]), int(n1[0])), (int(n2[1]), int(n2[0])), (0, 128, 255), 3)
cv2.line(seg, (int(n1[1]), int(n1[0])), (int(n2[1]), int(n2[0])), 255, 3)
for u, v in graph.items():
n1 = u
if len(v) < 3:
cv2.circle(sat, (int(n1[1]), int(n1[0])), 3, (0, 255, 255), -1)
else:
cv2.circle(sat, (int(n1[1]), int(n1[0])), 3, (0, 255, 128), -1)
cv2.imwrite(output_dir + "{}_vis.png".format(item), sat)
cv2.imwrite(output_dir + "{}_seg.png".format(item), seg)