This repository has been archived by the owner on Oct 26, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathml.R
345 lines (268 loc) · 11.5 KB
/
ml.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
library(dimRed)
#===============================================================================
## Assumptions
## 'train' and 'test' have the same number of columns
## The columns consist of compound features followed by target features
#===============================================================================
rls_avg <- function(train,
trainLabels,
test,
compFeatIndx,
targFeatIndx,
predFunParams = list(lambda = 0.125),
dimReduction = 'none') {
## separate into compound and target features
trainCompoundFeatures <- train[,compFeatIndx]
trainTargetFeatures <- train[,targFeatIndx]
testCompoundFeatures <- test[,compFeatIndx]
testTargetFeatures <- test[,targFeatIndx]
## DIMENSIONALITY REDUCTION
if (dimReduction != 'none') {
trainCompoundFeatures <- dim_red(trainCompoundFeatures, dimReduction)
trainTargetFeatures <- dim_red(trainTargetFeatures, dimReduction)
testCompoundFeatures <- dim_red(testCompoundFeatures, dimReduction)
testTargetFeatures <- dim_red(testTargetFeatures, dimReduction)
}
## PARAMETER VALUES
lambda <- predFunParams$lambda
## KERNELS
Kc_train <- rbf_kernel(as.matrix(trainCompoundFeatures))
Kt_train <- rbf_kernel(as.matrix(trainTargetFeatures))
Kc_test <- rbf_kernel(as.matrix(testCompoundFeatures),
as.matrix(trainCompoundFeatures))
Kt_test <- rbf_kernel(as.matrix(testTargetFeatures),
as.matrix(trainTargetFeatures))
## PREDICTIONS
y <- trainLabels
lambdaI <- lambda * diag(ncol(Kc_train)) ## lambda * identity matrix
yhat_c <- Kc_test %*% (solve(Kc_train + lambdaI) %*% y)
yhat_t <- Kt_test %*% (solve(Kt_train + lambdaI) %*% y)
yhat <- (yhat_c + yhat_t) / 2
## return predicted labels
yhat
}
#===============================================================================
rls_kron <- function(train,
trainLabels,
test,
compFeatIndx,
targFeatIndx,
predFunParams = list(lambda = 0.125),
dimReduction = 'none') {
## separate into compound and target features
trainCompoundFeatures <- train[,compFeatIndx]
trainTargetFeatures <- train[,targFeatIndx]
testCompoundFeatures <- test[,compFeatIndx]
testTargetFeatures <- test[,targFeatIndx]
## DIMENSIONALITY REDUCTION
if (dimReduction != 'none') {
trainCompoundFeatures <- dim_red(trainCompoundFeatures, dimReduction)
trainTargetFeatures <- dim_red(trainTargetFeatures, dimReduction)
testCompoundFeatures <- dim_red(testCompoundFeatures, dimReduction)
testTargetFeatures <- dim_red(testTargetFeatures, dimReduction)
}
## PARAMETER VALUES
lambda <- predFunParams$lambda
## KERNELS
Kc_train <- rbf_kernel(as.matrix(trainCompoundFeatures))
Kt_train <- rbf_kernel(as.matrix(trainTargetFeatures))
Kc_test <- rbf_kernel(as.matrix(testCompoundFeatures),
as.matrix(trainCompoundFeatures))
Kt_test <- rbf_kernel(as.matrix(testTargetFeatures),
as.matrix(trainTargetFeatures))
Ktrain <- Kc_train * Kt_train
Ktest <- Kc_test * Kt_test
## PREDICTIONS
y <- trainLabels
lambdaI <- lambda * diag(ncol(Kc_train)) ## lambda * identity matrix
yhat <- Ktest %*% (solve(Ktrain + lambdaI) %*% y)
## return predicted labels
yhat
}
#===============================================================================
rls_kron_graphreg <- function(train,
trainLabels,
test,
compFeatIndx,
targFeatIndx,
predFunParams = list(lambda = 0.125, p = 5),
dimReduction = 'none') {
## separate into compound and target features
trainCompoundFeatures <- train[,compFeatIndx]
trainTargetFeatures <- train[,targFeatIndx]
testCompoundFeatures <- test[,compFeatIndx]
testTargetFeatures <- test[,targFeatIndx]
## DIMENSIONALITY REDUCTION
if (dimReduction != 'none') {
trainCompoundFeatures <- dim_red(trainCompoundFeatures, dimReduction)
trainTargetFeatures <- dim_red(trainTargetFeatures, dimReduction)
testCompoundFeatures <- dim_red(testCompoundFeatures, dimReduction)
testTargetFeatures <- dim_red(testTargetFeatures, dimReduction)
}
## PARAMETER VALUES
lambda <- predFunParams$lambda
p <- predFunParams$p
## KERNELS
Kc_train <- rbf_kernel(as.matrix(trainCompoundFeatures))
Kt_train <- rbf_kernel(as.matrix(trainTargetFeatures))
Kc_test <- rbf_kernel(as.matrix(testCompoundFeatures),
as.matrix(trainCompoundFeatures))
Kt_test <- rbf_kernel(as.matrix(testTargetFeatures),
as.matrix(trainTargetFeatures))
Ktrain <- Kc_train * Kt_train
Ktest <- Kc_test * Kt_test
## SPARSIFICATION (keep top 5 values in each row)
if (p > 0) {
Ktrain <- sparsifier(Ktrain, p)
Ktest <- sparsifier(Ktest, p)
}
## PREDICTIONS
y <- trainLabels
lambdaI <- lambda * diag(ncol(Kc_train)) ## lambda * identity matrix
yhat <- Ktest %*% (solve(Ktrain + lambdaI) %*% y)
## return predicted labels
yhat
}
#===============================================================================
ensembler <- function(train,
trainLabels,
test,
compFeatIndx,
targFeatIndx,
predFunParams = list(numLearners = 20,
bag = F,
r = 0.7,
baseLearner = 'rls_kron',
lambda = 0.125),
dimReduction = 'none') {
## PARAMETER VALUES
numLearners <- predFunParams$numLearners
bag <- predFunParams$bag
r <- predFunParams$r
baseLearner <- match.fun(predFunParams$baseLearner)
lambda <- predFunParams$lambda
## ENSEMBLE TIME!
yhat <- 0
for (i in 1:numLearners) {
train_i <- train
trainLabels_i <- trainLabels
test_i <- test
## BAGGING
if (bag) {
baggedInstances <- sample(nrow(train), replace = T)
train_i <- train[baggedInstances,]
trainLabels_i <- trainLabels[baggedInstances]
}
## FEATURE SUBSPACING
numCompoundFeatures <- length(compFeatIndx)
numTargetFeatures <- length(targFeatIndx)
if (r < 1) {
## COMPOUND FEATURES
compoundFeatures <-
sample(numCompoundFeatures, floor(numCompoundFeatures*r))
numCompoundFeatures <- length(compoundFeatures)
## TARGET FEATURES
targetFeatures <-
sample(numTargetFeatures, floor(numTargetFeatures*r))
numTargetFeatures <- length(targetFeatures)
## SET OF SUBSPACED FEATURES
selectedFeatures <-
c(compoundFeatures, (targetFeatures + numCompoundFeatures))
## MODIFIED TRAINING AND TEST SETS
train_i <- train_i[, selectedFeatures]
test_i <- test_i[, selectedFeatures]
}
## PREDICTIONS
yhat <- yhat + baseLearner(train,
trainLabels,
test,
1:numCompoundFeatures,
(numCompoundFeatures+1):ncol(train),
predFunParams,
dimReduction)
}
## return predicted labels
yhat <- yhat / numLearners
yhat
}
#===============================================================================
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
#===============================================================================
rbf_kernel <- function(X, Y, sigma) {
## if argument 'Y' was not passed to the function...
if (missing(Y))
Y <- X
## SIGMA
if (missing(sigma)) ## if 'sigma' was not passed to the function...
sigma <- ncol(X) ## sigma = number of features
## compute RBF kernel
rbfKernel <- rdetools::rbfkernel(X, sigma, Y)
## return RBF kernel
rbfKernel
}
#===============================================================================
dim_red <- function(dta, dimReduction) {
## For inspiration, type this in the console and hit Enter:
##
## dimRed::dimRedMethodList()
##
## The output is a list of dimensionality reduction techniques to consider
## DIMENSIONALITY REDUCTION
if (dimReduction == 'pca') {
dta <- prcomp(dta, retx = T, center = T)$x[,1:10]
} else if (dimReduction == 'kpca') {
dta <- kpca(dta, kernel = "rbfdot",
kpar=list(sigma=0.2),features = 10 )
} else if (dimReduction == 'isomap') {
dta <- embed(dat, "Isomap", mute = NULL, knn = 10)
} else if (dimReduction == 'lapeig') {
leim <- LaplacianEigenmaps()
emb <- leim@fun(dat, leim@stdpars, ndim = 10)
dta <- emb@data@data
} else if (dimReduction == 'mds') {
mds <- MDS()
emb <- mds@fun(dat, mds@stdpars, ndim = 10)
dta <- emb@data@data
} else if (dimReduction == 'nmds') {
nmds <- nMDS()
emb <- nmds@fun(dat, mds@stdpars, ndim = 10)
dta <- emb@data@data
}
## return dimensionality-reduced data
dta
}
#===============================================================================
sparsifier <- function(mtrx, p) {
## sparsify
for (i in 1:nrow(mtrx)) {
row_i <- mtrx[i,]
sorted <- sort(row_i, decreasing = T, index.return = T)
toBeKeptIndices <- sorted$ix[1:p]
toBeZeroedIndices <- setdiff(1:ncol(mtrx), toBeKeptIndices)
mtrx[i,toBeZeroedIndices] <- 0
}
## return sparsified similarity matrix
mtrx
}
#===============================================================================
# check_missing <- function(train,
# trainLabels,
# test,
# numCompoundFeat) {
#
# ## if any important arguments missing...
# if (missing(train) ||
# missing(trainLabels) ||
# missing(test) ||
# missing(numCompoundFeat))
# ## STOP!!!
# stop('function \'ml.R::rls()\' did not receive argument(s): ',
# if (missing(train)) '\'train\' ' else '',
# if (missing(trainLabels)) '\'trainLabels\' ' else '',
# if (missing(test)) '\'test\' ' else '',
# if (missing(numCompoundFeat)) '\'numCompoundFeat\' ' else '')
# }
#===============================================================================