forked from FastLED/FastLED
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fastspi_arm.h
386 lines (314 loc) · 14.3 KB
/
fastspi_arm.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
#ifndef __INC_FASTSPI_ARM_H
#define __INC_FASTSPI_ARM_H
#if defined(__MK20DX128__) && defined(CORE_TEENSY)
#ifndef SPI_PUSHR_CONT
#define SPI_PUSHR_CONT SPI0_PUSHR_CONT
#define SPI_PUSHR_CTAS(X) SPI0_PUSHR_CTAS(X)
#define SPI_PUSHR_EOQ SPI0_PUSHR_EOQ
#define SPI_PUSHR_CTCNT SPI0_PUSHR_CTCNT
#define SPI_PUSHR_PCS(X) SPI0_PUSHR_PCS(X)
#endif
// Template function that, on compilation, expands to a constant representing the highest bit set in a byte. Right now,
// if no bits are set (value is 0), it returns 0, which is also the value returned if the lowest bit is the only bit
// set (the zero-th bit). Unclear if I will want this to change at some point.
template<int VAL, int BIT> class BitWork {
public:
static int highestBit() __attribute__((always_inline)) { return (VAL & 1 << BIT) ? BIT : BitWork<VAL, BIT-1>::highestBit(); }
};
template<int VAL> class BitWork<VAL, 0> {
public:
static int highestBit() __attribute__((always_inline)) { return 0; }
};
#define MAX(A, B) (( (A) > (B) ) ? (A) : (B))
#define USE_CONT 0
// Templated function to translate a clock divider value into the prescalar, scalar, and clock doubling setting for the world.
template <int VAL> void getScalars(uint32_t & preScalar, uint32_t & scalar, uint32_t & dbl) {
switch(VAL) {
// Handle the dbl clock cases
case 0: case 1:
case 2: preScalar = 0; scalar = 0; dbl = 1; break;
case 3: preScalar = 1; scalar = 0; dbl = 1; break;
case 5: preScalar = 2; scalar = 0; dbl = 1; break;
case 7: preScalar = 3; scalar = 0; dbl = 1; break;
// Handle the scalar value 6 cases (since it's not a power of two, it won't get caught
// below)
case 9: preScalar = 1; scalar = 2; dbl = 1; break;
case 18: case 19: preScalar = 1; scalar = 2; dbl = 0; break;
case 15: preScalar = 2; scalar = 2; dbl = 1; break;
case 30: case 31: preScalar = 2; scalar = 2; dbl = 0; break;
case 21: case 22: case 23: preScalar = 3; scalar = 2; dbl = 1; break;
case 42: case 43: case 44: case 45: case 46: case 47: preScalar = 3; scalar = 2; dbl = 0; break;
default: {
int p2 = BitWork<VAL/2, 15>::highestBit();
int p3 = BitWork<VAL/3, 15>::highestBit();
int p5 = BitWork<VAL/5, 15>::highestBit();
int p7 = BitWork<VAL/7, 15>::highestBit();
int w2 = 2 * (1 << p2);
int w3 = (VAL/3) > 0 ? 3 * (1 << p3) : 0;
int w5 = (VAL/5) > 0 ? 5 * (1 << p5) : 0;
int w7 = (VAL/7) > 0 ? 7 * (1 << p7) : 0;
int maxval = MAX(MAX(w2, w3), MAX(w5, w7));
if(w2 == maxval) { preScalar = 0; scalar = p2; }
else if(w3 == maxval) { preScalar = 1; scalar = p3; }
else if(w5 == maxval) { preScalar = 2; scalar = p5; }
else if(w7 == maxval) { preScalar = 3; scalar = p7; }
dbl = 0;
if(scalar == 0) { dbl = 1; }
else if(scalar < 3) { scalar--; }
}
}
return;
}
template <uint8_t _DATA_PIN, uint8_t _CLOCK_PIN, uint8_t _SPI_CLOCK_DIVIDER>
class ARMHardwareSPIOutput {
Selectable *m_pSelect;
// Borrowed from the teensy3 SPSR emulation code
static inline void enable_pins(void) __attribute__((always_inline)) {
//serial_print("enable_pins\n");
CORE_PIN11_CONFIG = PORT_PCR_DSE | PORT_PCR_MUX(2);
CORE_PIN12_CONFIG = PORT_PCR_MUX(2);
CORE_PIN13_CONFIG = PORT_PCR_DSE | PORT_PCR_MUX(2);
}
// Borrowed from the teensy3 SPSR emulation code
static inline void disable_pins(void) __attribute__((always_inline)) {
//serial_print("disable_pins\n");
CORE_PIN11_CONFIG = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
CORE_PIN12_CONFIG = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
CORE_PIN13_CONFIG = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1);
}
public:
ARMHardwareSPIOutput() { m_pSelect = NULL; }
ARMHardwareSPIOutput(Selectable *pSelect) { m_pSelect = pSelect; }
void setSelect(Selectable *pSelect) { m_pSelect = pSelect; }
static inline void update_ctar0(uint32_t ctar) __attribute__((always_inline)) {
if (SPI0_CTAR0 == ctar) return;
uint32_t mcr = SPI0_MCR;
if (mcr & SPI_MCR_MDIS) {
SPI0_CTAR0 = ctar;
} else {
SPI0_MCR = mcr | SPI_MCR_MDIS | SPI_MCR_HALT;
SPI0_CTAR0 = ctar;
SPI0_MCR = mcr;
}
}
static inline void update_ctar1(uint32_t ctar) __attribute__((always_inline)) {
if (SPI0_CTAR1 == ctar) return;
uint32_t mcr = SPI0_MCR;
if (mcr & SPI_MCR_MDIS) {
SPI0_CTAR1 = ctar;
} else {
SPI0_MCR = mcr | SPI_MCR_MDIS | SPI_MCR_HALT;
SPI0_CTAR1 = ctar;
SPI0_MCR = mcr;
}
}
static inline void set_ctar1_bits(int bits) {
// Set ctar1 to 16 bits
int ctar = SPI0_CTAR1;
// clear the FMSZ bits
ctar &= SPI_CTAR_FMSZ(0x0F);
ctar |= SPI_CTAR_FMSZ((bits-1) & 0x0F);
update_ctar1(ctar);
}
static inline void set_ctar0_bits(int bits) {
// Set ctar1 to 16 bits
int ctar = SPI0_CTAR1;
// clear the FMSZ bits
ctar &= SPI_CTAR_FMSZ(0x0F);
ctar |= SPI_CTAR_FMSZ((bits-1) & 0x0F);
update_ctar1(ctar);
}
void setSPIRate() {
// Configure CTAR0, defaulting to 8 bits and CTAR1, defaulting to 16 bits
uint32_t _PBR = 0;
uint32_t _BR = 0;
uint32_t _CSSCK = 0;
uint32_t _DBR = 0;
// if(_SPI_CLOCK_DIVIDER >= 256) { _PBR = 0; _BR = _CSSCK = 7; _DBR = 0; } // osc/256
// else if(_SPI_CLOCK_DIVIDER >= 128) { _PBR = 0; _BR = _CSSCK = 6; _DBR = 0; } // osc/128
// else if(_SPI_CLOCK_DIVIDER >= 64) { _PBR = 0; _BR = _CSSCK = 5; _DBR = 0; } // osc/64
// else if(_SPI_CLOCK_DIVIDER >= 32) { _PBR = 0; _BR = _CSSCK = 4; _DBR = 0; } // osc/32
// else if(_SPI_CLOCK_DIVIDER >= 16) { _PBR = 0; _BR = _CSSCK = 3; _DBR = 0; } // osc/16
// else if(_SPI_CLOCK_DIVIDER >= 8) { _PBR = 0; _BR = _CSSCK = 1; _DBR = 0; } // osc/8
// else if(_SPI_CLOCK_DIVIDER >= 7) { _PBR = 3; _BR = _CSSCK = 0; _DBR = 1; } // osc/7
// else if(_SPI_CLOCK_DIVIDER >= 5) { _PBR = 2; _BR = _CSSCK = 0; _DBR = 1; } // osc/5
// else if(_SPI_CLOCK_DIVIDER >= 4) { _PBR = 0; _BR = _CSSCK = 0; _DBR = 0; } // osc/4
// else if(_SPI_CLOCK_DIVIDER >= 3) { _PBR = 1; _BR = _CSSCK = 0; _DBR = 1; } // osc/3
// else { _PBR = 0; _BR = _CSSCK = 0; _DBR = 1; } // osc/2
getScalars<_SPI_CLOCK_DIVIDER>(_PBR, _BR, _DBR);
_CSSCK = _BR;
uint32_t ctar0 = SPI_CTAR_FMSZ(7) | SPI_CTAR_PBR(_PBR) | SPI_CTAR_BR(_BR) | SPI_CTAR_CSSCK(_CSSCK);
uint32_t ctar1 = SPI_CTAR_FMSZ(15) | SPI_CTAR_PBR(_PBR) | SPI_CTAR_BR(_BR) | SPI_CTAR_CSSCK(_CSSCK);
#if USE_CONT == 1
ctar0 |= SPI_CTAR_CPHA | SPI_CTAR_CPOL;
ctar1 |= SPI_CTAR_CPHA | SPI_CTAR_CPOL;
#endif
if(_DBR) {
ctar0 |= SPI_CTAR_DBR;
ctar1 |= SPI_CTAR_DBR;
}
update_ctar0(ctar0);
update_ctar1(ctar1);
}
void init() {
// set the pins to output
FastPin<_DATA_PIN>::setOutput();
FastPin<_CLOCK_PIN>::setOutput();
release();
// Enable SPI0 clock
uint32_t sim6 = SIM_SCGC6;
if (!(sim6 & SIM_SCGC6_SPI0)) {
//serial_print("init1\n");
SIM_SCGC6 = sim6 | SIM_SCGC6_SPI0;
SPI0_CTAR0 = SPI_CTAR_FMSZ(7) | SPI_CTAR_PBR(1) | SPI_CTAR_BR(1);
}
setSPIRate();
// Configure SPI as the master and enable
SPI0_MCR |= SPI_MCR_MSTR; // | SPI_MCR_CONT_SCKE);
SPI0_MCR &= ~(SPI_MCR_MDIS | SPI_MCR_HALT);
enable_pins();
}
static void waitFully() __attribute__((always_inline)) {
while( (SPI0_SR & 0xF000) > 0);
while (!(SPI0_SR & SPI_SR_TCF));
SPI0_SR |= (SPI_SR_TCF | SPI_SR_EOQF);
}
static bool needwait() __attribute__((always_inline)) { return (SPI0_SR & 0x4000); }
static void wait() __attribute__((always_inline)) { while( (SPI0_SR & 0x4000) ); }
static void wait1() __attribute__((always_inline)) { while( (SPI0_SR & 0xF000) >= 0x2000); }
enum ECont { CONT, NOCONT };
enum EWait { PRE, POST, NONE };
enum ELast { NOTLAST, LAST };
#if USE_CONT == 1
#define CM CONT
#else
#define CM NOCONT
#endif
#define WM PRE
template<ECont CONT_STATE, EWait WAIT_STATE, ELast LAST_STATE> class Write {
public:
static void writeWord(uint16_t w) __attribute__((always_inline)) {
if(WAIT_STATE == PRE) { wait(); }
SPI0_PUSHR = ((LAST_STATE == LAST) ? SPI_PUSHR_EOQ : 0) |
((CONT_STATE == CONT) ? SPI_PUSHR_CONT : 0) |
SPI_PUSHR_CTAS(1) | (w & 0xFFFF);
if(WAIT_STATE == POST) { wait(); }
}
static void writeByte(uint8_t b) __attribute__((always_inline)) {
if(WAIT_STATE == PRE) { wait(); }
SPI0_PUSHR = ((LAST_STATE == LAST) ? SPI_PUSHR_EOQ : 0) |
((CONT_STATE == CONT) ? SPI_PUSHR_CONT : 0) |
SPI_PUSHR_CTAS(0) | (b & 0xFF);
if(WAIT_STATE == POST) { wait(); }
}
};
static void writeWord(uint16_t w) __attribute__((always_inline)) { wait(); SPI0_PUSHR = SPI_PUSHR_CTAS(1) | (w & 0xFFFF); }
static void writeWordNoWait(uint16_t w) __attribute__((always_inline)) { SPI0_PUSHR = SPI_PUSHR_CTAS(1) | (w & 0xFFFF); }
static void writeByte(uint8_t b) __attribute__((always_inline)) { wait(); SPI0_PUSHR = SPI_PUSHR_CTAS(0) | (b & 0xFF); }
static void writeBytePostWait(uint8_t b) __attribute__((always_inline)) { SPI0_PUSHR = SPI_PUSHR_CTAS(0) | (b & 0xFF); wait(); }
static void writeByteNoWait(uint8_t b) __attribute__((always_inline)) { SPI0_PUSHR = SPI_PUSHR_CTAS(0) | (b & 0xFF); }
static void writeWordCont(uint16_t w) __attribute__((always_inline)) { wait(); SPI0_PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1) | (w & 0xFFFF); }
static void writeWordContNoWait(uint16_t w) __attribute__((always_inline)) { SPI0_PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(1) | (w & 0xFFFF); }
static void writeByteCont(uint8_t b) __attribute__((always_inline)) { wait(); SPI0_PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(0) | (b & 0xFF); }
static void writeByteContPostWait(uint8_t b) __attribute__((always_inline)) { SPI0_PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(0) | (b & 0xFF); wait(); }
static void writeByteContNoWait(uint8_t b) __attribute__((always_inline)) { SPI0_PUSHR = SPI_PUSHR_CONT | SPI_PUSHR_CTAS(0) | (b & 0xFF); }
// not the most efficient mechanism in the world - but should be enough for sm16716 and friends
template <uint8_t BIT> inline static void writeBit(uint8_t b) {
uint32_t ctar1_save = SPI0_CTAR1;
// Clear out the FMSZ bits, reset them for 9 bits transferd for the start bit
uint32_t ctar1 = (ctar1_save & (~SPI_CTAR_FMSZ(15))) | SPI_CTAR_FMSZ(0);
update_ctar1(ctar1);
writeWord( (b & (1 << BIT)) != 0);
update_ctar1(ctar1_save);
}
void inline select() __attribute__((always_inline)) { if(m_pSelect != NULL) { m_pSelect->select(); } }
void inline release() __attribute__((always_inline)) { if(m_pSelect != NULL) { m_pSelect->release(); } }
static void writeBytesValueRaw(uint8_t value, int len) {
while(len--) { Write<CM, WM, NOTLAST>::writeByte(value); }
}
void writeBytesValue(uint8_t value, int len) {
setSPIRate();
select();
while(len--) {
writeByte(value);
}
waitFully();
release();
}
// Write a block of n uint8_ts out
template <class D> void writeBytes(register uint8_t *data, int len) {
setSPIRate();
uint8_t *end = data + len;
select();
while(data != end) {
writeByte(D::adjust(*data++));
}
D::postBlock(len);
waitFully();
release();
}
void writeBytes(register uint8_t *data, int len) { writeBytes<DATA_NOP>(data, len); }
// write a block of uint8_ts out in groups of three. len is the total number of uint8_ts to write out. The template
// parameters indicate how many uint8_ts to skip at the beginning and/or end of each grouping
template <uint8_t SKIP, class D, EOrder RGB_ORDER> void writeBytes3(register uint8_t *data, int len, register uint8_t scale) {
// setSPIRate();
uint8_t *end = data + len;
select();
if((SKIP & FLAG_START_BIT) == 0) {
//If no start bit stupiditiy, write out as many 16-bit blocks as we can
uint8_t *first_end = end - (len % (SPI_ADVANCE * 2));
while(data != first_end) {
if(WM == NONE) { wait1(); }
Write<CM, WM, NOTLAST>::writeWord(D::adjust(data[SPI_B0], scale) << 8 | D::adjust(data[SPI_B1], scale));
Write<CM, WM, NOTLAST>::writeWord(D::adjust(data[SPI_B2], scale) << 8 | D::adjust(data[SPI_ADVANCE + SPI_B0], scale));
Write<CM, WM, NOTLAST>::writeWord(D::adjust(data[SPI_ADVANCE + SPI_B1], scale) << 8 | D::adjust(data[SPI_ADVANCE + SPI_B2], scale));
data += (SPI_ADVANCE + SPI_ADVANCE);
}
if(data != end) {
if(WM == NONE) { wait1(); }
// write out the rest as alternating 16/8-bit blocks (likely to be just one)
Write<CM, WM, NOTLAST>::writeWord(D::adjust(data[SPI_B0], scale) << 8 | D::adjust(data[SPI_B1], scale));
Write<CM, WM, NOTLAST>::writeByte(D::adjust(data[SPI_B2], scale));
}
D::postBlock(len);
waitFully();
} else if(SKIP & FLAG_START_BIT) {
uint32_t ctar1_save = SPI0_CTAR1;
// Clear out the FMSZ bits, reset them for 9 bits transferd for the start bit
uint32_t ctar1 = (ctar1_save & (~SPI_CTAR_FMSZ(15))) | SPI_CTAR_FMSZ(8);
update_ctar1(ctar1);
while(data != end) {
writeWord( 0x100 | D::adjust(data[SPI_B0], scale));
writeByte(D::adjust(data[SPI_B1], scale));
writeByte(D::adjust(data[SPI_B2], scale));
data += SPI_ADVANCE;
}
D::postBlock(len);
waitFully();
// restore ctar1
update_ctar1(ctar1_save);
// } else {
// while(data != end) {
// writeByte(D::adjust(data[SPI_B0], scale);
// writeWord(D::adjust(data[SPI_B1], scale) << 8 | D::adjust(data[SPI_B2], scale));
// data += SPI_ADVANCE;
// }
// waitFully();
}
release();
}
template <uint8_t SKIP, EOrder RGB_ORDER> void writeBytes3(register uint8_t *data, int len, register uint8_t scale) {
writeBytes3<SKIP, DATA_NOP, RGB_ORDER>(data, len, scale);
}
template <class D, EOrder RGB_ORDER> void writeBytes3(register uint8_t *data, int len, register uint8_t scale) {
writeBytes3<0, D, RGB_ORDER>(data, len, scale);
}
template <EOrder RGB_ORDER> void writeBytes3(register uint8_t *data, int len, register uint8_t scale) {
writeBytes3<0, DATA_NOP, RGB_ORDER>(data, len, scale);
}
void writeBytes3(register uint8_t *data, int len, register uint8_t scale) {
writeBytes3<0, DATA_NOP, RGB>(data, len, scale);
}
};
#endif
#endif