-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathenv_visualizer.py
845 lines (701 loc) · 37.8 KB
/
env_visualizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
import marinenav_env.envs.marinenav_env as marinenav_env
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib.animation as animation
import copy
import scipy.spatial
import gym
import json
import os
class EnvVisualizer:
def __init__(self,
seed:int=0,
draw_envs:bool=False, # Mode 2: plot the envrionment
draw_traj:bool=False, # Mode 3: plot final trajectories given action sequences
video_plots:bool=False, # Mode 4: Generate plots for a video
plot_dist:bool=False, # If return distributions are needed (for IQN agent) in the video
plot_qvalues:bool=False, # If Q values are needed in the video
dpi:int=96, # Monitor DPI
):
self.env = marinenav_env.MarineNavEnv2(seed)
self.env.reset()
self.fig = None # figure for visualization
self.axis_graph = None # sub figure for the map
self.robots_plot = []
self.robots_last_pos = []
self.robots_traj_plot = []
self.LiDAR_beams_plot = []
self.axis_title = None # sub figure for title
self.axis_action = None # sub figure for action command and steer data
self.axis_goal = None # sub figure for relative goal measurment
self.axis_perception = None # sub figure for perception output
self.axis_dvl = None # sub figure for DVL measurement
self.axis_dist = [] # sub figure(s) for return distribution of actions
self.axis_qvalues = None # subfigure for Q values of actions
self.episode_actions = [] # action sequence load from episode data
self.episode_actions_quantiles = None
self.episode_actions_taus = None
self.plot_dist = plot_dist # draw return distribution of actions
self.plot_qvalues = plot_qvalues # draw Q values of actions
self.draw_envs = draw_envs # draw only the envs
self.draw_traj = draw_traj # draw only final trajectories
self.video_plots = video_plots # draw video plots
self.plots_save_dir = None # video plots save directory
self.dpi = dpi # monitor DPI
self.agent_name = None # agent name
self.agent = None # agent (IQN or DQN for plot data)
self.configs = None # evaluation configs
self.episodes = None # evaluation episodes to visualize
def init_visualize(self,
env_configs=None # used in Mode 2
):
# initialize subplot for the map, robot state and sensor measurments
if self.draw_envs:
# Mode 2: plot the envrionment
if env_configs is None:
self.fig, self.axis_graph = plt.subplots(1,1,figsize=(8,8))
else:
num = len(env_configs)
if num % 3 == 0:
self.fig, self.axis_graphs = plt.subplots(int(num/3),3,figsize=(8*3,8*int(num/3)))
else:
self.fig, self.axis_graphs = plt.subplots(1,num,figsize=(8*num,8))
elif self.draw_traj:
if self.plot_dist:
self.fig = plt.figure(figsize=(24,16))
spec = self.fig.add_gridspec(5,6)
self.axis_graph = self.fig.add_subplot(spec[:,:4])
self.axis_perception = self.fig.add_subplot(spec[:2,4:])
self.axis_dist.append(self.fig.add_subplot(spec[2:,4]))
self.axis_dist.append(self.fig.add_subplot(spec[2:,5]))
else:
# Mode 3: plot final trajectories given action sequences
self.fig, self.axis_graph = plt.subplots(figsize=(16,16))
elif self.video_plots:
# Mode 4: Generate 1080p video plots
w = 1920
h = 1080
self.fig = plt.figure(figsize=(w/self.dpi,h/self.dpi),dpi=self.dpi)
if self.agent_name == "adaptive_IQN":
spec = self.fig.add_gridspec(5,6)
# self.axis_title = self.fig.add_subplot(spec[0,:])
# self.axis_title.text(-0.9,0.,"adaptive IQN performance",fontweight="bold",fontsize=45)
self.axis_graph = self.fig.add_subplot(spec[:,:4])
self.axis_graph.set_title("adaptive IQN performance",fontweight="bold",fontsize=30)
self.axis_perception = self.fig.add_subplot(spec[0:2,4:])
self.axis_dist.append(self.fig.add_subplot(spec[2:,4]))
self.axis_dist.append(self.fig.add_subplot(spec[2:,5]))
elif self.agent_name == "IQN":
spec = self.fig.add_gridspec(5,12)
# self.axis_title = self.fig.add_subplot(spec[0,:])
# self.axis_title.text(-0.9,0.,"IQN performance",fontweight="bold",fontsize=45)
self.axis_graph = self.fig.add_subplot(spec[:,:8])
self.axis_graph.set_title("IQN performance",fontweight="bold",fontsize=30)
self.axis_perception = self.fig.add_subplot(spec[0:2,8:])
self.axis_dist.append(self.fig.add_subplot(spec[2:,9:11]))
elif self.agent_name == "DQN":
spec = self.fig.add_gridspec(5,12)
self.axis_graph = self.fig.add_subplot(spec[:,:8])
self.axis_graph.set_title("DQN performance",fontweight="bold",fontsize=30)
self.axis_perception = self.fig.add_subplot(spec[0:2,8:])
self.axis_qvalues = self.fig.add_subplot(spec[2:,9:11])
else:
name = ""
if self.agent_name == "APF":
name = "Artificial Potential Field"
elif self.agent_name == "RVO":
name = "Reciprocal Velocity Obstacle"
spec = self.fig.add_gridspec(5,3)
self.axis_graph = self.fig.add_subplot(spec[:,:2])
self.axis_graph.set_title(f"{name} performance",fontweight="bold",fontsize=30)
self.axis_perception = self.fig.add_subplot(spec[:2,2])
self.axis_action = self.fig.add_subplot(spec[2:,2])
# self.axis_title.set_xlim([-1.0,1.0])
# self.axis_title.set_ylim([-1.0,1.0])
# self.axis_title.set_xticks([])
# self.axis_title.set_yticks([])
# self.axis_title.spines["left"].set_visible(False)
# self.axis_title.spines["top"].set_visible(False)
# self.axis_title.spines["right"].set_visible(False)
# self.axis_title.spines["bottom"].set_visible(False)
else:
# Mode 1 (default): Display an episode
self.fig = plt.figure(figsize=(32,16))
spec = self.fig.add_gridspec(5,4)
self.axis_graph = self.fig.add_subplot(spec[:,:2])
# self.axis_goal = self.fig.add_subplot(spec[0,2])
self.axis_perception = self.fig.add_subplot(spec[1:3,2])
# self.axis_dvl = self.fig.add_subplot(spec[3:,2])
# self.axis_observation = self.fig.add_subplot(spec[:,3])
### temp for ploting head figure ###
# self.fig, self.axis_graph = plt.subplots(1,1,figsize=(16,16))
# # self.fig, self.axis_perception = plt.subplots(1,1,figsize=(8,8))
if self.draw_envs and env_configs is not None:
for i,env_config in enumerate(env_configs):
self.load_env_config(env_config)
if len(env_configs) % 3 == 0:
self.plot_graph(self.axis_graphs[int(i/3),i%3])
else:
self.plot_graph(self.axis_graphs[i])
else:
self.plot_graph(self.axis_graph)
def plot_graph(self,axis):
# plot current velocity in the map
# if self.draw_envs:
# x_pos = list(np.linspace(0.0,self.env.width,100))
# y_pos = list(np.linspace(0.0,self.env.height,100))
# else:
# x_pos = list(np.linspace(-2.5,self.env.width+2.5,110))
# y_pos = list(np.linspace(-2.5,self.env.height+2.5,110))
x_pos = list(np.linspace(0.0,self.env.width,100))
y_pos = list(np.linspace(0.0,self.env.height,100))
pos_x = []
pos_y = []
arrow_x = []
arrow_y = []
speeds = np.zeros((len(x_pos),len(y_pos)))
for m,x in enumerate(x_pos):
for n,y in enumerate(y_pos):
v = self.env.get_velocity(x,y)
speed = np.clip(np.linalg.norm(v),0.1,10)
pos_x.append(x)
pos_y.append(y)
arrow_x.append(v[0])
arrow_y.append(v[1])
speeds[n,m] = np.log(speed)
cmap = cm.Blues(np.linspace(0,1,20))
cmap = mpl.colors.ListedColormap(cmap[10:,:-1])
axis.contourf(x_pos,y_pos,speeds,cmap=cmap)
axis.quiver(pos_x, pos_y, arrow_x, arrow_y, width=0.001,scale_units='xy',scale=2.0)
# if not self.draw_envs:
# # plot the evaluation boundary
# boundary = np.array([[0.0,0.0],
# [self.env.width,0.0],
# [self.env.width,self.env.height],
# [0.0,self.env.height],
# [0.0,0.0]])
# axis.plot(boundary[:,0],boundary[:,1],color = 'r',linestyle="-.",linewidth=3)
# plot obstacles in the map
l = True
for obs in self.env.obstacles:
if l:
axis.add_patch(mpl.patches.Circle((obs.x,obs.y),radius=obs.r,color='m'))
l = False
else:
axis.add_patch(mpl.patches.Circle((obs.x,obs.y),radius=obs.r,color='m'))
axis.set_aspect('equal')
# if self.draw_envs:
# axis.set_xlim([0.0,self.env.width])
# axis.set_ylim([0.0,self.env.height])
# else:
# axis.set_xlim([-2.5,self.env.width+2.5])
# axis.set_ylim([-2.5,self.env.height+2.5])
axis.set_xlim([0.0,self.env.width])
axis.set_ylim([0.0,self.env.height])
axis.set_xticks([])
axis.set_yticks([])
# plot start and goal state of each robot
for idx,robot in enumerate(self.env.robots):
if not self.draw_envs:
axis.scatter(robot.start[0],robot.start[1],marker="o",color="yellow",s=200,zorder=6)
axis.text(robot.start[0]-1,robot.start[1]+1,str(idx),color="yellow",fontsize=25,zorder=8)
axis.scatter(robot.goal[0],robot.goal[1],marker="*",color="yellow",s=650,zorder=6)
axis.text(robot.goal[0]-1,robot.goal[1]+1,str(idx),color="yellow",fontsize=25,zorder=8)
self.robots_last_pos.append([])
self.robots_traj_plot.append([])
self.plot_robots(axis)
def plot_robots(self,axis,traj_color=None):
if not self.draw_envs:
for robot_plot in self.robots_plot:
robot_plot.remove()
self.robots_plot.clear()
robot_scale = 1.5
for i,robot in enumerate(self.env.robots):
if robot.deactivated:
continue
d = np.matrix([[0.5*robot_scale*robot.length],[0.5*robot_scale*robot.width]])
rot = np.matrix([[np.cos(robot.theta),-np.sin(robot.theta)], \
[np.sin(robot.theta),np.cos(robot.theta)]])
d_r = rot * d
xy = (robot.x-d_r[0,0],robot.y-d_r[1,0])
angle_d = robot.theta / np.pi * 180
if self.draw_traj:
robot.check_reach_goal()
c = "lime" if robot.reach_goal else 'r'
else:
c = 'lime'
# draw robot velocity (add initial length to avoid being hidden by the robot plot)
robot_r = 0.5*np.linalg.norm(np.array([robot.length,robot.width]))
init_len = robot_scale * robot_r + 0.1
velocity_len = np.linalg.norm(robot.velocity)
scaled_len = (velocity_len + init_len) / velocity_len
self.robots_plot.append(axis.quiver(robot.x,robot.y,scaled_len*robot.velocity[0],scaled_len*robot.velocity[1], \
color="r",width=0.005,headlength=5,headwidth=3,scale_units='xy',scale=1))
# draw robot
self.robots_plot.append(axis.add_patch(mpl.patches.Rectangle(xy,robot_scale*robot.length, \
robot_scale*robot.width, color=c, \
angle=angle_d,zorder=7)))
# if not self.draw_envs:
# # draw robot perception range
# self.robots_plot.append(axis.add_patch(mpl.patches.Circle((robot.x,robot.y), \
# robot.perception.range, color=c,
# alpha=0.2)))
# robot id
self.robots_plot.append(axis.text(robot.x-1,robot.y+1,str(i),color="yellow",fontsize=25,zorder=8))
if not self.draw_envs:
if self.robots_last_pos[i] != []:
h = axis.plot((self.robots_last_pos[i][0],robot.x),
(self.robots_last_pos[i][1],robot.y),
color='tab:orange' if traj_color is None else traj_color[i],
linewidth=3.0)
self.robots_traj_plot[i].append(h)
self.robots_last_pos[i] = [robot.x, robot.y]
def plot_action_and_steer_state(self,action):
self.axis_action.clear()
a,w = self.env.robots[0].actions[action]
if self.video_plots:
self.axis_action.text(1,3,"action",fontsize=25)
self.axis_action.text(1,2,f"a: {a:.2f}",fontsize=20)
self.axis_action.text(1,1,f"w: {w:.2f}",fontsize=20)
self.axis_action.set_xlim([0,2.5])
self.axis_action.set_ylim([0,4])
else:
x_pos = 0.15
self.axis_action.text(x_pos,6,"Steer actions",fontweight="bold",fontsize=15)
self.axis_action.text(x_pos,5,f"Acceleration (m/s^2): {a:.2f}",fontsize=15)
self.axis_action.text(x_pos,4,f"Angular velocity (rad/s): {w:.2f}",fontsize=15)
# robot steer state
self.axis_action.text(x_pos,2,"Steer states",fontweight="bold",fontsize=15)
self.axis_action.text(x_pos,1,f"Forward speed (m/s): {self.env.robot.speed:.2f}",fontsize=15)
self.axis_action.text(x_pos,0,f"Orientation (rad): {self.env.robot.theta:.2f}",fontsize=15)
self.axis_action.set_ylim([-1,7])
self.axis_action.set_xticks([])
self.axis_action.set_yticks([])
self.axis_action.spines["left"].set_visible(False)
self.axis_action.spines["top"].set_visible(False)
self.axis_action.spines["right"].set_visible(False)
self.axis_action.spines["bottom"].set_visible(False)
def plot_measurements(self,robot_idx,R_matrix=None):
self.axis_perception.clear()
# self.axis_observation.clear()
# self.axis_dvl.clear()
# self.axis_goal.clear()
rob = self.env.robots[robot_idx]
# if rob.reach_goal:
# print(f"robot {robot_idx} reached goal, no measurements are available!")
# return
legend_size = 12
font_size = 15
rob.perception_output(self.env.obstacles,self.env.robots)
# plot detected objects in the robot frame (rotate x-axis by 90 degree (upward) in the plot)
range_c = 'g' if rob.cooperative else 'r'
self.axis_perception.add_patch(mpl.patches.Circle((0,0), \
rob.perception.range, color=range_c, \
alpha = 0.2))
# plot self velocity (add initial length to avoid being hidden by the robot plot)
robot_scale = 1.5
robot_r = 0.5*np.linalg.norm(np.array([rob.length,rob.width]))
init_len = robot_scale * robot_r
velocity_len = np.linalg.norm(rob.velocity)
scaled_len = (velocity_len + init_len) / velocity_len
abs_velocity_r = rob.perception.observation["self"][2:]
self.axis_perception.quiver(0.0,0.0,-scaled_len*abs_velocity_r[1],scaled_len*abs_velocity_r[0], \
color='r',width=0.008,headlength=5,headwidth=3,scale_units='xy',scale=1)
robot_c = 'g'
self.axis_perception.add_patch(mpl.patches.Rectangle((-0.5*robot_scale*rob.width,-0.5*robot_scale*rob.length), \
robot_scale*rob.width,robot_scale*rob.length, color=robot_c))
x_pos = 0
y_pos = 0
relation_pos = [[0.0,0.0]]
for i,obs in enumerate(rob.perception.observation["static"]):
# rotate by 90 degree
self.axis_perception.add_patch(mpl.patches.Circle((-obs[1],obs[0]), \
obs[2], color="m"))
relation_pos.append([-obs[1],obs[0]])
# include into observation info
# self.axis_observation.text(x_pos,y_pos,f"position: ({obs[0]:.2f},{obs[1]:.2f}), radius: {obs[2]:.2f}")
# y_pos += 1
# self.axis_observation.text(x_pos,y_pos,"Static obstacles",fontweight="bold",fontsize=15)
# y_pos += 2
if rob.cooperative:
# for i,obj_history in enumerate(rob.perception.observation["dynamic"].values()):
for i,obj in enumerate(rob.perception.observation["dynamic"]):
# plot the current position
# pos = obj_history[-1][:2]
# plot velocity (rotate by 90 degree)
velocity_len = np.linalg.norm(rob.velocity)
scaled_len = (velocity_len + init_len) / velocity_len
self.axis_perception.quiver(-obj[1],obj[0],-scaled_len*obj[3],scaled_len*obj[2],color="r", \
width=0.008,headlength=5,headwidth=3,scale_units='xy',scale=1)
# plot position (rotate by 90 degree)
self.axis_perception.add_patch(mpl.patches.Circle((-obj[1],obj[0]), \
rob.detect_r, color="g"))
relation_pos.append([-obj[1],obj[0]])
# include history into observation info
# self.axis_observation.text(x_pos,y_pos,f"position: ({obj[0]:.2f},{obj[1]:.2f}), velocity: ({obj[2]:.2f},{obj[3]:.2f})")
# y_pos += 1
# self.axis_observation.text(x_pos,y_pos,"Other Robots",fontweight="bold",fontsize=15)
# y_pos += 2
if R_matrix is not None:
# plot relation matrix
length = len(R_matrix)
assert len(relation_pos) == length, "The number of objects do not match size of the relation matrix"
for i in range(length):
for j in range(length):
self.axis_perception.plot([relation_pos[i][0],relation_pos[j][0]], \
[relation_pos[i][1],relation_pos[j][1]],
linewidth=2*R_matrix[i][j],color='k',zorder=0)
type = "cooperative" if rob.cooperative else "non-cooperative"
# self.axis_observation.text(x_pos,y_pos,f"Showing the observation of robot {robot_idx} ({type})",fontweight="bold",fontsize=20)
self.axis_perception.set_xlim([-rob.perception.range-1,rob.perception.range+1])
self.axis_perception.set_ylim([-rob.perception.range-1,rob.perception.range+1])
self.axis_perception.set_aspect('equal')
self.axis_perception.set_title(f'Robot {robot_idx}',fontsize=25)
self.axis_perception.set_xticks([])
self.axis_perception.set_yticks([])
self.axis_perception.spines["left"].set_visible(False)
self.axis_perception.spines["top"].set_visible(False)
self.axis_perception.spines["right"].set_visible(False)
self.axis_perception.spines["bottom"].set_visible(False)
# self.axis_observation.set_ylim([-1,y_pos+1])
# self.axis_observation.set_xticks([])
# self.axis_observation.set_yticks([])
# self.axis_observation.spines["left"].set_visible(False)
# self.axis_observation.spines["top"].set_visible(False)
# self.axis_observation.spines["right"].set_visible(False)
# self.axis_observation.spines["bottom"].set_visible(False)
# # plot robot velocity in the robot frame (rotate x-axis by 90 degree (upward) in the plot)
# h1 = self.axis_dvl.arrow(0.0,0.0,0.0,1.0, \
# color='k', \
# width = 0.02, \
# head_width = 0.08, \
# head_length = 0.12, \
# length_includes_head=True, \
# label='steering direction')
# # rotate by 90 degree
# h2 = self.axis_dvl.arrow(0.0,0.0,-abs_velocity_r[1],abs_velocity_r[0], \
# color='r',width=0.02, head_width = 0.08, \
# head_length = 0.12, length_includes_head=True, \
# label='velocity wrt seafloor')
# x_range = np.max([2,np.abs(abs_velocity_r[1])])
# y_range = np.max([2,np.abs(abs_velocity_r[0])])
# mpl.rcParams["font.size"]=12
# self.axis_dvl.set_xlim([-x_range,x_range])
# self.axis_dvl.set_ylim([-1,y_range])
# self.axis_dvl.set_aspect('equal')
# self.axis_dvl.legend(handles=[h1,h2],loc='lower center',fontsize=legend_size)
# self.axis_dvl.set_title('Velocity Measurement',fontsize=font_size)
# self.axis_dvl.set_xticks([])
# self.axis_dvl.set_yticks([])
# self.axis_dvl.spines["left"].set_visible(False)
# self.axis_dvl.spines["top"].set_visible(False)
# self.axis_dvl.spines["right"].set_visible(False)
# self.axis_dvl.spines["bottom"].set_visible(False)
# # give goal position info in the robot frame
# goal_r = rob.perception.observation["self"][:2]
# x1 = 0.07
# x2 = x1 + 0.13
# self.axis_goal.text(x1,0.5,"Goal Position (Relative)",fontsize=font_size)
# self.axis_goal.text(x2,0.25,f"({goal_r[0]:.2f}, {goal_r[1]:.2f})",fontsize=font_size)
# self.axis_goal.set_xticks([])
# self.axis_goal.set_yticks([])
# self.axis_goal.spines["left"].set_visible(False)
# self.axis_goal.spines["top"].set_visible(False)
# self.axis_goal.spines["right"].set_visible(False)
# self.axis_goal.spines["bottom"].set_visible(False)
def plot_return_dist(self,action):
for axis in self.axis_dist:
axis.clear()
dist_interval = 1
mean_bar = 0.35
idx = 0
xlim = [np.inf,-np.inf]
for idx, cvar in enumerate(action["cvars"]):
ylabelright=[]
quantiles = np.array(action["quantiles"][idx])
q_means = np.mean(quantiles,axis=0)
max_a = np.argmax(q_means)
for i, a in enumerate(self.env.robots[0].actions):
q_mean = q_means[i]
# q_mean = np.mean(quantiles[:,i])
ylabelright.append(
"\n".join([f"a: {a[0]:.2f}",f"w: {a[1]:.2f}"])
)
# ylabelright.append(f"mean: {q_mean:.2f}")
self.axis_dist[idx].axhline(i*dist_interval, color="black", linewidth=2.0, zorder=0)
self.axis_dist[idx].scatter(quantiles[:,i], i*np.ones(len(quantiles[:,i]))*dist_interval,color="g", marker="x",s=80,linewidth=3)
self.axis_dist[idx].hlines(y=i*dist_interval, xmin=np.min(quantiles[:,i]), xmax=np.max(quantiles[:,i]),zorder=0)
if i == max_a:
self.axis_dist[idx].vlines(q_mean, ymin=i*dist_interval-mean_bar, ymax=i*dist_interval+mean_bar,color="red",linewidth=5)
else:
self.axis_dist[idx].vlines(q_mean, ymin=i*dist_interval-mean_bar, ymax=i*dist_interval+mean_bar,color="blue",linewidth=3)
self.axis_dist[idx].tick_params(axis="x", labelsize=15)
self.axis_dist[idx].set_ylim([-1.0,i+1])
self.axis_dist[idx].set_yticks([])
if idx == len(action["cvars"])-1:
self.axis_dist[idx].set_yticks(range(0,i+1))
self.axis_dist[idx].yaxis.tick_right()
self.axis_dist[idx].set_yticklabels(labels=ylabelright,fontsize=15)
if len(action["cvars"]) > 1:
if idx == 0:
self.axis_dist[idx].set_title("adpative: "+r'$\phi$'+f" = {cvar:.2f}",fontsize=20)
else:
self.axis_dist[idx].set_title(r'$\phi$'+f" = {cvar:.2f}",fontsize=20)
else:
self.axis_dist[idx].set_title(r'$\phi$'+f" = {cvar:.2f}",fontsize=20)
xlim[0] = min(xlim[0],np.min(quantiles)-5)
xlim[1] = max(xlim[1],np.max(quantiles)+5)
for idx, cvar in enumerate(action["cvars"]):
# self.axis_dist[idx].xaxis.set_ticks(np.arange(xlim[0],xlim[1]+1,(xlim[1]-xlim[0])/5))
self.axis_dist[idx].set_xlim(xlim)
def plot_action_values(self,action):
self.axis_qvalues.clear()
dist_interval = 1
mean_bar = 0.35
ylabelright=[]
q_values = np.array(action["qvalues"])
max_a = np.argmax(q_values)
for i, a in enumerate(self.env.robots[0].actions):
ylabelright.append(
"\n".join([f"a: {a[0]:.2f}",f"w: {a[1]:.2f}"])
)
self.axis_qvalues.axhline(i*dist_interval, color="black", linewidth=2.0, zorder=0)
if i == max_a:
self.axis_qvalues.vlines(q_values[i], ymin=i*dist_interval-mean_bar, ymax=i*dist_interval+mean_bar,color="red",linewidth=8)
else:
self.axis_qvalues.vlines(q_values[i], ymin=i*dist_interval-mean_bar, ymax=i*dist_interval+mean_bar,color="blue",linewidth=5)
self.axis_qvalues.set_title("action values",fontsize=20)
self.axis_qvalues.tick_params(axis="x", labelsize=15)
self.axis_qvalues.set_ylim([-1.0,i+1])
self.axis_qvalues.set_yticks(range(0,i+1))
self.axis_qvalues.yaxis.tick_right()
self.axis_qvalues.set_yticklabels(labels=ylabelright,fontsize=15)
self.axis_qvalues.set_xlim([np.min(q_values)-5,np.max(q_values)+5])
def one_step(self,actions,robot_idx=0):
assert len(actions) == len(self.env.robots), "Number of actions not equal number of robots!"
for i,action in enumerate(actions):
rob = self.env.robots[i]
current_velocity = self.env.get_velocity(rob.x, rob.y)
rob.update_state(action,current_velocity)
self.plot_robots()
self.plot_measurements(robot_idx)
# if not self.plot_dist and not self.plot_qvalues:
# self.plot_action_and_steer_state(action["action"])
if self.step % self.env.robots[0].N == 0:
if self.plot_dist:
self.plot_return_dist(action)
elif self.plot_qvalues:
self.plot_action_values(action)
self.step += 1
def init_animation(self):
# plot initial robot position
self.plot_robots()
# plot initial measurments
# self.plot_measurements()
def visualize_control(self,action_sequence,start_idx=0):
# update robot state and make animation when executing action sequence
actions = []
# counter for updating distributions plot
self.step = start_idx
for i,a in enumerate(action_sequence):
for _ in range(self.env.robots[0].N):
# action = {}
# action["action"] = a
# if self.video_plots:
# if self.plot_dist:
# action["cvars"] = self.episode_actions_cvars[i]
# action["quantiles"] = self.episode_actions_quantiles[i]
# action["taus"] = self.episode_actions_taus[i]
# elif self.plot_qvalues:
# action["qvalues"] = self.episode_actions_values[i]
actions.append(a)
if self.video_plots:
for i,action in enumerate(actions):
self.one_step(action)
self.fig.savefig(f"{self.plots_save_dir}/step_{self.step}.png",pad_inches=0.2,dpi=self.dpi)
else:
# self.animation = animation.FuncAnimation(self.fig, self.one_step,frames=actions, \
# init_func=self.init_animation,
# interval=10,repeat=False)
for i,action in enumerate(actions):
self.one_step(action)
plt.show()
def load_env_config(self,episode_dict):
episode = copy.deepcopy(episode_dict)
self.env.reset_with_eval_config(episode)
if self.plot_dist:
# load action cvars, quantiles and taus
self.episode_actions_cvars = episode["robot"]["actions_cvars"]
self.episode_actions_quantiles = episode["robot"]["actions_quantiles"]
self.episode_actions_taus = episode["robot"]["actions_taus"]
elif self.plot_qvalues:
# load action values
self.episode_actions_values = episode["robot"]["actions_values"]
def load_env_config_from_eval_files(self,config_f,eval_f,eval_id,env_id):
with open(config_f,"r") as f:
episodes = json.load(f)
episode = episodes[f"env_{env_id}"]
eval_file = np.load(eval_f,allow_pickle=True)
episode["robot"]["action_history"] = copy.deepcopy(eval_file["actions"][eval_id][env_id])
self.load_env_config(episode)
def load_env_config_from_json_file(self,filename):
with open(filename,"r") as f:
episode = json.load(f)
self.load_env_config(episode)
# def play_episode(self,start_idx=0):
# for plot in self.robot_traj_plot:
# plot[0].remove()
# self.robot_traj_plot.clear()
# current_v = self.env.get_velocity(self.env.start[0],self.env.start[1])
# self.env.robot.reset_state(self.env.start[0],self.env.start[1], current_velocity=current_v)
# self.init_visualize()
# self.visualize_control(self.episode_actions,start_idx)
def load_eval_config_and_episode(self,config_file,eval_file):
with open(config_file,"r") as f:
self.configs = json.load(f)
self.episodes = np.load(eval_file,allow_pickle=True)
def play_eval_episode(self,eval_id,episode_id,colors,robot_ids=None):
self.env.reset_with_eval_config(self.configs[episode_id])
self.init_visualize()
trajectories = self.episodes["trajectories"][eval_id][episode_id]
self.play_episode(trajectories,colors,robot_ids)
def play_episode(self,
trajectories,
colors,
robot_ids=None,
max_steps=None,
start_step=0):
# sort robots according trajectory lengths
all_robots = []
for i,traj in enumerate(trajectories):
plot_observation = False if robot_ids is None else i in robot_ids
all_robots.append({"id":i,"traj_len":len(traj),"plot_observation":plot_observation})
all_robots = sorted(all_robots, key=lambda x: x["traj_len"])
all_robots[-1]["plot_observation"] = True
if max_steps is None:
max_steps = all_robots[-1]["traj_len"]-1
robots = []
for robot in all_robots:
if robot["plot_observation"] is True:
robots.append(robot)
idx = 0
current_robot_step = 0
for i in range(max_steps):
if i >= robots[idx]["traj_len"]:
current_robot_step = 0
idx += 1
self.plot_robots(self.axis_graph,colors)
self.plot_measurements(robots[idx]["id"])
# action = [actions[j][i] for j in range(len(self.env.robots))]
# self.env.step(action)
for j,rob in enumerate(self.env.robots):
if rob.deactivated:
continue
rob.x = trajectories[j][i][0]
rob.y = trajectories[j][i][1]
rob.theta = trajectories[j][i][2]
rob.speed = trajectories[j][i][3]
rob.velocity = np.array(trajectories[j][i][4:])
if self.video_plots:
if current_robot_step % self.env.robots[0].N == 0:
action = self.action_data(robots[idx]["id"])
if self.agent_name == "adaptive_IQN" or self.agent_name == "IQN":
self.plot_return_dist(action)
elif self.agent_name == "DQN":
self.plot_action_values(action)
elif self.agent_name == "APF" or self.agent_name == "RVO":
self.plot_action_and_steer_state(action)
self.fig.savefig(f"{self.plots_save_dir}/step_{start_step+i}.png",dpi=self.dpi)
else:
plt.pause(0.01)
for j,rob in enumerate(self.env.robots):
if i == len(trajectories[j])-1:
rob.deactivated = True
current_robot_step += 1
def draw_dist_plot(self,
trajectories,
robot_id,
step_id,
colors
):
self.init_visualize()
for i in range(step_id+1):
self.plot_robots(self.axis_graph,traj_color=colors)
for j,rob in enumerate(self.env.robots):
if rob.deactivated:
continue
rob.x = trajectories[j][i+1][0]
rob.y = trajectories[j][i+1][1]
rob.theta = trajectories[j][i+1][2]
rob.speed = trajectories[j][i+1][3]
rob.velocity = np.array(trajectories[j][i+1][4:])
if i+1 == len(trajectories[j])-1:
rob.deactivated = True
# plot observation
self.plot_measurements(robot_id)
action = self.action_data(robot_id)
self.plot_return_dist(action)
self.fig.savefig("IQN_dist_plot.png",bbox_inches="tight")
def action_data(self, robot_id):
rob = self.env.robots[robot_id]
observation,_,_ = rob.perception_output(self.env.obstacles,self.env.robots)
if self.agent_name == "adaptive_IQN":
# compute total distribution and adaptive CVaR distribution
a_cvar,quantiles_cvar,_,cvar = self.agent.act_adaptive(observation)
a_greedy,quantiles_greedy,_ = self.agent.act(observation)
action = dict(action=[a_cvar,a_greedy],
cvars=[cvar,1.0],
quantiles=[quantiles_cvar[0],quantiles_greedy[0]])
elif self.agent_name == "IQN":
a_greedy,quantiles_greedy,_ = self.agent.act(observation)
action = dict(action=[a_greedy],
cvars=[1.0],
quantiles=[quantiles_greedy[0]])
elif self.agent_name == "DQN":
a,qvalues = self.agent.act_dqn(observation)
action = dict(action=a,qvalues=qvalues[0])
elif self.agent_name == "APF" or self.agent_name == "RVO":
action = self.agent.act(observation)
return action
def draw_trajectory(self,
trajectories,
colors,
name=None,
):
# Used in Mode 3
self.init_visualize()
# select a robot that is active utill the end of the episode
robot_id = 0
max_length = 0
for i,traj in enumerate(trajectories):
print("rob: ",i," len: ",len(traj))
if len(traj) > max_length:
robot_id = i
max_length = len(traj)
print("\n")
for i in range(len(trajectories[robot_id])-1):
self.plot_robots(self.axis_graph,traj_color=colors)
for j,rob in enumerate(self.env.robots):
if rob.deactivated:
continue
rob.x = trajectories[j][i+1][0]
rob.y = trajectories[j][i+1][1]
rob.theta = trajectories[j][i+1][2]
rob.speed = trajectories[j][i+1][3]
rob.velocity = np.array(trajectories[j][i+1][4:])
if i+1 == len(trajectories[j])-1:
rob.deactivated = True
# for robot_plot in self.robots_plot:
# robot_plot.remove()
# self.robots_plot.clear()
fig_name = "trajectory_test.png" if name is None else f"trajectory_{name}.png"
self.fig.savefig(fig_name,bbox_inches="tight")
def draw_video_plots(self,episode,save_dir,start_idx,agent):
# Used in Mode 4
self.agent = agent
self.load_env_config(episode)
self.plots_save_dir = save_dir
self.play_episode(start_idx)
return self.step