From e6237f77880892d66549074e3c5bbbab7d5533b1 Mon Sep 17 00:00:00 2001
From: Xin Wang <wangxinalex@gmail.com>
Date: Wed, 3 Jul 2024 15:06:29 +0800
Subject: [PATCH] Update 01.Linear-DP-01.md
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit

correct typo of linear dp
应该是nums[j]>=nums[i]
---
 Contents/10.Dynamic-Programming/03.Linear-DP/01.Linear-DP-01.md | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

diff --git a/Contents/10.Dynamic-Programming/03.Linear-DP/01.Linear-DP-01.md b/Contents/10.Dynamic-Programming/03.Linear-DP/01.Linear-DP-01.md
index f2b619a8..2d63f589 100644
--- a/Contents/10.Dynamic-Programming/03.Linear-DP/01.Linear-DP-01.md
+++ b/Contents/10.Dynamic-Programming/03.Linear-DP/01.Linear-DP-01.md
@@ -83,7 +83,7 @@
 
 - 如果 $nums[j] < nums[i]$,则 $nums[i]$ 可以接在 $nums[j]$ 后面,此时以 $nums[i]$ 结尾的最长递增子序列长度会在「以 $nums[j]$ 结尾的最长递增子序列长度」的基础上加 $1$,即:$dp[i] = dp[j] + 1$。
 
-- 如果 $nums[j] \le nums[i]$,则 $nums[i]$ 不可以接在 $nums[j]$ 后面,可以直接跳过。
+- 如果 $nums[j] \ge nums[i]$,则 $nums[i]$ 不可以接在 $nums[j]$ 后面,可以直接跳过。
 
 综上,我们的状态转移方程为:$dp[i] = max(dp[i], dp[j] + 1), 0 \le j < i, nums[j] < nums[i]$。