-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_dataset_splits.py
48 lines (38 loc) · 1.52 KB
/
create_dataset_splits.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import os
import shutil
import pandas as pd
from deepchem.data import NumpyDataset
from deepchem.splits import MaxMinSplitter
from sklearn.model_selection import train_test_split
from config import DATASET_FINAL_FILE_PATH, SPLITS_DIR
def split_dataset(
df: pd.DataFrame,
split_type: str,
) -> tuple[pd.DataFrame, pd.DataFrame]:
assert split_type in {"random", "time", "maxmin"}
if split_type == "random":
df_train, df_test = train_test_split(
df, train_size=0.8, random_state=0, stratify=df["label"]
)
elif split_type == "time":
df = df.sort_values(by="year")
df_train = df[: int(0.8 * len(df))]
df_test = df[int(0.8 * len(df)) :]
else: # maxmin
dataset = NumpyDataset(X=df, ids=df["SMILES"])
splitter = MaxMinSplitter()
dataset_train, dataset_test = splitter.train_test_split(
dataset, frac_train=0.8, seed=0
)
df_train = pd.DataFrame(dataset_train.X, columns=df.columns)
df_test = pd.DataFrame(dataset_test.X, columns=df.columns)
return df_train, df_test
if __name__ == "__main__":
if os.path.exists(SPLITS_DIR):
shutil.rmtree(SPLITS_DIR)
os.mkdir(SPLITS_DIR)
df = pd.read_csv(DATASET_FINAL_FILE_PATH)
for split in ["random", "time", "maxmin"]:
df_train, df_test = split_dataset(df, split_type=split)
df_train.to_csv(os.path.join(SPLITS_DIR, f"{split}_train.csv"), index=False)
df_test.to_csv(os.path.join(SPLITS_DIR, f"{split}_test.csv"), index=False)