-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsiam_cse2017.tex
725 lines (639 loc) · 29.1 KB
/
siam_cse2017.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Jacobs Landscape Poster
% LaTeX Template
% Version 1.1 (14/06/14)
%
% Created by:
% Computational Physics and Biophysics Group, Jacobs University
% https://teamwork.jacobs-university.de:8443/confluence/display/CoPandBiG/LaTeX+Poster
%
% Further modified by:
% Nathaniel Johnston ([email protected])
%
% This template has been downloaded from:
% http://www.LaTeXTemplates.com
%
% License:
% CC BY-NC-SA 3.0 (http://creativecommons.org/licenses/by-nc-sa/3.0/)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%----------------------------------------------------------------------------------------
% PACKAGES AND OTHER DOCUMENT CONFIGURATIONS
%----------------------------------------------------------------------------------------
\documentclass[final]{beamer}
\usepackage[scale=1.105]{beamerposter} % Use the beamerposter package for laying out the poster
\usepackage{bm}
\usetheme{confposter} % Use the confposter theme supplied with this template
\usepackage{multicol}
\usepackage{stmaryrd}
\usepackage{subcaption}
\usepackage{caption}
\usepackage{mathabx}
%\usepackage{enumitem}
\setbeamercolor{block title}{fg=ngreen,bg=white} % Colors of the block titles
\setbeamercolor{block body}{fg=black,bg=white} % Colors of the body of blocks
\setbeamercolor{block alerted title}{fg=white,bg=dblue!70} % Colors of the highlighted block titles
\setbeamercolor{block alerted body}{fg=black,bg=dblue!10} % Colors of the body of highlighted blocks
% Many more colors are available for use in beamerthemeconfposter.sty
%-----------------------------------------------------------
% Define the column widths and overall poster size
% To set effective sepwid, onecolwid and twocolwid values, first choose how many columns you want and how much separation you want between columns
% In this template, the separation width chosen is 0.024 of the paper width and a 4-column layout
% onecolwid should therefore be (1-(# of columns+1)*sepwid)/# of columns e.g. (1-(4+1)*0.024)/4 = 0.22
% Set twocolwid to be (2*onecolwid)+sepwid = 0.464
% Set \thirdcolwid to be (3*onecolwid)+2*sepwid = 0.708
\newlength{\sepwid}
\newlength{\firstcolwid}
\newlength{\secondcolwid}
\newlength{\thirdcolwid}
\newlength{\fourthcolwid}
\setlength{\paperwidth}{48in} % A0 width: 46.8in
\setlength{\paperheight}{35in} % A0 height: 33.1in
\setlength{\sepwid}{0.00575\paperwidth} % Sep3ration width (white space) between columns
\setlength{\firstcolwid}{0.305\paperwidth} % Width of one column
\setlength{\secondcolwid}{0.32\paperwidth} % Width of two columns
\setlength{\thirdcolwid}{0.34\paperwidth} % Width of three columns
\setlength{\fourthcolwid}{0.275\paperwidth} % Width of three columns
\setlength{\topmargin}{-0.6in} % Reduce the top margin size
%-----------------------------------------------------------
% We often use mathcal for functions
\newcommand{\fnc}[1]{\ensuremath{\mathcal{#1}}}
\newcommand{\vecfnc}[1]{\ensuremath{\boldsymbol{\mathcal{#1}}}} % vector function
% matrices are often math sans serif type
\newcommand{\mat}[1]{\ensuremath{\mathsf{#1}}}
\newcommand{\mr}[1]{\mathrm{#1}}
\newcommand{\diff}[0]{\mr{d}}
\newcommand{\Tr}[0]{^\mr{T}}
% SBP operator matrices
\renewcommand{\H}[0]{\mat{H}}
\newcommand{\Hk}[0]{\H_{\kappa}}
\newcommand{\D}[0]{\mat{D}}
\newcommand{\Dx}[0]{\mat{D}_{x}}
\newcommand{\Dy}[0]{\mat{D}_{y}}
\newcommand{\Dz}[0]{\mat{D}_{z}}
\newcommand{\Skew}[0]{\mat{S}}
\newcommand{\Sx}[0]{\Skew_{x}}
\newcommand{\Sy}[0]{\Skew_{y}}
\newcommand{\Sz}[0]{\Skew_{z}}
\newcommand{\Q}[0]{\mat{Q}}
\newcommand{\Qx}[0]{\mat{Q}_{x}}
\newcommand{\Qy}[0]{\mat{Q}_{y}}
\newcommand{\Qz}[0]{\mat{Q}_{z}}
\newcommand{\E}[0]{\mat{E}}
\newcommand{\Ex}[0]{\mat{E}_{x}}
\newcommand{\Ey}[0]{\mat{E}_{y}}
\newcommand{\Ez}[0]{\mat{E}_{z}}
\newcommand{\R}[0]{\mat{R}}
\newcommand{\B}[0]{\mat{B}}
\newcommand{\Bg}[0]{\mat{B}_{\gamma}}
\newcommand{\Gk}[0]{\mat{F}_{\kappa}}
\newcommand{\Gn}[0]{\mat{F}_{\nu}}
\newcommand{\Cgk}[0]{\mat{C}_{\gamma\kappa}}
\newcommand{\Cgn}[0]{\mat{C}_{\gamma\nu}}
\newcommand{\Lxk}[0]{\bm{l}_{x,\kappa}^{\gamma}}
\newcommand{\Lyk}[0]{\bm{l}_{y,\kappa}^{\gamma}}
\newcommand{\Lxn}[0]{\bm{l}_{x,\nu}^{\gamma}}
\newcommand{\Lyn}[0]{\bm{l}_{y,\nu}^{\gamma}}
\newcommand{\Sig}[0]{\mat{\Sigma}}
\newcommand{\Lam}[0]{\mat{\Lambda}}
\newcommand{\Lamxx}[0]{\Lam_{xx}}
\newcommand{\Lamxy}[0]{\Lam_{xy}}
\newcommand{\Lamyx}[0]{\Lam_{yx}}
\newcommand{\Lamyy}[0]{\Lam_{yy}}
\newcommand{\fpk}{\fnc{P}_{k}}
\newcommand{\fpm}{\fnc{P}_{m}}
\newcommand{\pk}{\bm{p}_{k}}
\newcommand{\pM}{\bm{p}_{m}}
\newcommand{\dxfpk}{\frac{\partial\fnc{P}_{k}}{\partial x}}
\newcommand{\dxpk}{\bm{p}_{k}'}
\newcommand{\nmin}[1]{N^{*}_{#1}}
\newcommand{\nk}[0]{n_{\kappa}}
\newcommand{\poly}[1]{\mathbb{P}_{#1}}
\newcommand{\J}[0]{|\mat{J}|^{-1}}
\newcommand{\N}[0]{|\mat{N}^*|}
\newcommand{\Nx}[0]{\mat{N}_x}
\newcommand{\Ny}[0]{\mat{N}_y}
\newcommand{\Nxg}[0]{\mat{N}_{x,\gamma}}
\newcommand{\Nyg}[0]{\mat{N}_{y,\gamma}}
\newcommand{\Rg}[0]{\mat{R}_{\gamma}}
\newcommand{\Rgk}[0]{\mat{R}_{\gamma\kappa}}
\newcommand{\Rgn}[0]{\mat{R}_{\gamma\nu}}
\newcommand{\Dg}[0]{\mat{D}_{\gamma}}
\newcommand{\Dgk}[0]{\mat{D}_{\gamma\kappa}}
\newcommand{\Dgn}[0]{\mat{D}_{\gamma\nu}}
\newcommand{\Ukp}[0]{\bm{u}_\kappa}
\newcommand{\Vkp}[0]{\bm{v}_\kappa}
\newcommand{\Unu}[0]{\bm{u}_\nu}
\newcommand{\Vnu}[0]{\bm{v}_\nu}
\newcommand{\Wkp}[0]{\bm{w}_\kappa}
\newcommand{\Wnu}[0]{\bm{w}_\nu}
\newcommand{\Ugam}[0]{\bm{u}_\gamma}
\newcommand{\W}[0]{\bm{w}}
%\newcommand{\Gk}{\Gamma_\kappa}
\newcommand{\SumAll}{\sum_{\Omega_\kappa \in \fnc{T}_h}}
\newcommand{\M}[0]{\mat{M}}
\newcommand{\Mk}[0]{\mat{M}_{\kappa}}
\newcommand{\Uh}{\bm{u}_{h}}
\newcommand{\Vh}{\bm{v}_{h}}
\newcommand{\Ug}{\bm{u}_{\gamma}}
\newcommand{\Vg}{\bm{v}_{\gamma}}
\newcommand{\Siggk}[1]{\Sig_{\gamma\kappa}^{(#1)}}
\newcommand{\Siggn}[1]{\Sig_{\gamma\nu} ^{(#1)}}
\newcommand{\Siggam}[1]{\Sig_{\gamma}^{(#1)}}
\newcommand{\phnt}[1]{\phantom{#1}}
\newcommand{\LL}{\llbracket}
\newcommand{\RR}{\rrbracket}
\newcommand{\etal}[0]{{\em et~al.\@}\xspace}
\newcommand{\Jump}[1]{\llbracket {#1} \rrbracket}
\newcommand*{\ldblbrace}{\{\mskip-7mu\{}
\newcommand*{\rdblbrace}{\}\mskip-7mu\}}
\newcommand{\Avg}[1]{\ldblbrace {#1} \rdblbrace}
\usepackage{graphicx} % Required for including images
\usepackage{booktabs} % Top and bottom rules for tables
%----------------------------------------------------------------------------------------
% TITLE SECTION
%----------------------------------------------------------------------------------------
\title{Interior Penalties for SBP Discretizations of Linear Second-Order PDEs} % Poster title
\author{Jianfeng Yan, Jared Crean, and Jason E. Hicken} % Author(s)
\institute{Rensselaer Polytechnic Institute} % Institution(s)
%----------------------------------------------------------------------------------------
\begin{document}
%
% insert figures
%
\addtobeamertemplate{headline}{}
{
\begin{tikzpicture}[remember picture,overlay]
\node [shift={(12 cm,-7cm)}] at (current page.north west) {\includegraphics[height=3cm]{figures/rpi_logo.png}};
\end{tikzpicture}
\begin{tikzpicture}[remember picture,overlay]
\node [shift={(-12 cm,-7cm)}] at (current page.north east) {\includegraphics[height=3.5cm]{figures/odl.png}};
\end{tikzpicture}
}
\addtobeamertemplate{block end}{}{\vspace*{1ex}} % White space under blocks
\addtobeamertemplate{block alerted end}{}{\vspace*{2ex}} % White space under highlighted (alert) blocks
\setlength{\belowcaptionskip}{2ex} % White space under figures
\setlength\belowdisplayshortskip{2ex} % White space under equations
\begin{frame}[t] % The whole poster is enclosed in one beamer frame
\begin{columns}[t] % The [t] option aligns each column's content to the top
\begin{column}{\sepwid}\end{column} % Empty spacer column
\begin{column}{\sepwid}\end{column} % Empty spacer column
\begin{column}{\firstcolwid} % The first column
%----------------------------------------------------------------------------------------
% OBJECTIVES
%----------------------------------------------------------------------------------------
%\vskip-1.0cm
\setbeamercolor{block title}{fg=red,bg=white}
\begin{block}{\centering\LARGE Summary} \normalfont
%\begin{itemize}
The stability and high-order accuracy of summation-by-parts (SBP) discretizations makes them attractive for simulating conservation laws, but classical SBP methods are limited to tensor-product grids.
Multidimensional SBP operators (e.g. simplices) were recently proposed in~\cite{multiSBP}, and this work investigates interior penalties for multidimensional SBP discretizations of linear second-order PDEs. Specifically, we
\begin{itemize}
\setlength{\itemindent}{0em}
\item determine penalties
that are consistent, adjoint consistent, and stable;
\item generalize BR2~\cite{Bassi2005} and SIPG~\cite{Arnold2002} to
multidimensional SBP discretizations.
\end{itemize}
%\item
%reduced computational cost for DG implementations with Lagrange basis function.
%\end{itemize}
\end{block} % end of abstract
%----------------------------------------------------------------------------------------
% Notation
%----------------------------------------------------------------------------------------
%\begin{block}{Notation}
%\begin{itemize}
%\begin{minipage}{0.3\linewidth}
% \item $\Omega_\kappa$: $\kappa^{th}$ element
% \item $\gamma$: face
% \item $\mat{A}$: matrix
% \item $\fnc{U}$: function
%\end{minipage}
%\begin{minipage}{0.65\linewidth}
% \item $n_\kappa$: number of nodes in $\Omega_\kappa$
% \item $n_\gamma$: number of nodes on $\gamma$
% \item $\poly{p}$: polynomial space of degree $p$
% \item $\bm{u}_\kappa \in \mathbb{R}^{n_\kappa}$: function value of $\fnc{U}$ on $\Omega_\kappa$
%\end{minipage}
%\end{itemize}
%\end{block}
%
% SBP definition
%
%\setbeamercolor{block alerted title}{fg=dblue,bg=white} % Change the block title color
\setbeamercolor{block alerted title}{fg=blue,bg=jblue!20}
\setbeamercolor{block alerted body}{fg=black,bg=white}
\setlength{\parindent}{1em}
\begin{alertblock}{Multidimensional SBP operators are generalizations
of classical tensor-product SBP operators~\cite{multiSBP}}
A SBP operator $\D_x$ of degree $p$ on the domain $\Omega_\kappa$ satisfies
\small
\begin{itemize}
\setlength{\itemindent}{1em}
\item $(\Dx\pk)_i = \partial \fnc{P}/\partial x(x_i,y_i)$, for all polynomials $\mathcal{P}$ of degree $d \leq p$;
\item $\Dx = \H^{-1}(\Sx+\frac{1}{2}\Ex)$, where $\Sx=-\Sx^T,\: \Ex=\Ex^T$, and $\H$ is symmetric and positive definite;
\item $\bm{p}^T\Ex\bm{q} =\displaystyle\oint _{\Gamma} \fnc{P} \fnc{Q} n_{x}
\mr{d}\Gamma$, for all polynomials $\mathcal{P}$ and $\mathcal{Q}$ of degree $r \leq p$.
\end{itemize}
\normalfont
\end{alertblock}
\vskip-0.6cm
%
% Model PDE and discretization
%
\begin{alertblock}{We begin with a generic SBP discretization of the
linear parabolic PDE.}
\begin{itemize}
\item The model PDE is
\small
\begin{equation*}
\frac{\partial \fnc{U}}{\partial t} - \nabla\cdot\left( \Lambda \nabla \fnc{U} \right) = \fnc{F},
\end{equation*}
\normalfont
where
\small
$
\Lambda \equiv \left[\begin{smallmatrix} \lambda_{xx} & \lambda_{xy}\\
\lambda_{yx} & \lambda_{yy} \end{smallmatrix}\right]
$
\normalfont
is symmetric and positive definite. The PDE is equipped with
\small
\begin{equation*}
% $
% \label{eq:parabolic}
% \begin{aligned}
\fnc{U} = \fnc{U}_{0} \quad \text{for}\: t=0, \quad
\hat{\bm{n}} \cdot \left( \Lambda\nabla \fnc{U}\right) = \fnc{U}_\fnc{N}
\quad \text{on}\: \Gamma^\fnc{N}, \quad and \quad
\fnc{U} = \fnc{U}_\fnc{D} \quad \text{on}\: \Gamma^\fnc{D}
% $
% \end{aligned}
\end{equation*}
\normalfont
\item The generic consistent SBP discretization in strong form is
\small
\begin{equation*}\label{eq:parabolic_SBP}
\begin{aligned}
\frac{\diff \bm{u}_{\kappa}}{\diff t} =& \begin{bmatrix} \Dx & \Dy \end{bmatrix}_{\kappa}
\begin{bmatrix} \Lamxx & \Lamxy \\ \Lamyx & \Lamyy \end{bmatrix}_{\kappa}
\begin{bmatrix} \Dx \\ \Dy \end{bmatrix}_{\kappa}\bm{u}_{\kappa} + \bm{f}_\kappa \\
-&\Hk^{-1}\sum_{\gamma \subset \Gamma_\kappa^\fnc{I}}
\begin{bmatrix} \Rgk^T & \Dgk^T \end{bmatrix}
\begin{bmatrix} \Siggk{1} & \Siggk{3} \\ \Siggk{2} & \Siggk{4} \end{bmatrix}
\begin{bmatrix} \Rgk\Ukp - \Rgn\Unu \\ \Dgk\Ukp + \Dgn\Unu \end{bmatrix} \\
-&\Hk^{-1}\sum_{\gamma \subset \Gamma_\kappa^{\fnc{N}}} \Rgk^{T}\B_{\gamma} (\Dgk \Ukp - \bm{u}_{\gamma {\fnc{N}}})
-\Hk^{-1}\sum_{\gamma \subset \Gamma_\kappa^{\fnc{D}}}
\begin{bmatrix} \Rgk^T & \Dgk^T \end{bmatrix}
\begin{bmatrix} \phnt{-}\Sig_{\gamma}^{\fnc{D}} \\ -\Bg \end{bmatrix}
(\Rgk \Ukp -\bm{u}_{\gamma {\fnc{D}}}).
\end{aligned}
\end{equation*}
\normalfont
where $\Rgk \in \mathbb{R}^{n_{\gamma}\times n_{\kappa}}$ is a
degree $p$ projection operator from element $\Omega_\kappa$ to face $\gamma$, and the diagonal matrix $\Bg\in\mathbb{R}^{n_\gamma}$ defines a cubature rule of degree $2p$.
\item $\Sig^{(i)}$ and $\Sig^{\fnc{D}}$ are determined by adjoint and stability analysis.
\end{itemize}
\end{alertblock}
\setbeamercolor{block title}{fg=red,bg=white} % Change the block title color
\begin{block}{Acknowledgements}
{\rmfamily{J. Hicken was partially funded by the Air Force Office of Scientific Research Award FA9550-15-1-0242. The authors gratefully acknowledge this support. We also thank RPI's Scientific Computation Research Center for the use of computer facilities.}}
\end{block}
\end{column}
%-------------------------------------------------------------------------------
% 2nd column:
% Analysis of adjoint consistency and energy stability;
% Generalization of BR2 and SIPG
%-------------------------------------------------------------------------------
\begin{column}{\sepwid}\end{column} % Empty spacer column
\begin{column}{\secondcolwid} % Begin a column which is two columns wide (column 2)
\setlength{\parindent}{1em}
\setbeamercolor{block alerted title}{fg=blue,bg=jblue!20}
\setbeamercolor{block alerted body}{fg=black,bg=white}
\vskip-1.0cm
%
% Adjoint consistency
%
\begin{alertblock}{An adjoint consistency analysis places constraints on
the penalties}
Adjoint consistency is necessary for obtaining optimal error rates in the $L^2$ norm and superconvergent (integral) functional estimates.
%We consider the linear functional:
%\small
%\begin{equation*} \label{eq:fun}
% \fnc{J}(\fnc{U}) := \int_{\Omega} \fnc{G} \fnc{U} \, \diff \Omega
% + \int_{\Gamma^\fnc{N}} \fnc{V}_\fnc{N} \fnc{U} \, \diff\Gamma
% - \int_{\Gamma^\fnc{D}} \fnc{V}_\fnc{D} \hat{\bm{n}} \cdot \left(\Lambda \nabla \fnc{U} \right) \, \diff\Gamma ,
%\end{equation*}
%\normalfont
%and the corresponding discretization
%\small
%\begin{equation}\label{eq:fun_SBP}
%J_h(\bm{u}_h) := \sum_{\Omega_\kappa \in \fnc{T}_{h}}\bm{g}_{\kappa}^T\Hk\Ukp
%+ \sum_{\gamma \subset \Gamma^{\fnc{N}}} \bm{v}_{\gamma \fnc{N}}^T\Bg\Rgk\Ukp
%- \sum_{\gamma \subset \Gamma^{\fnc{D}}} \bm{v}_{\gamma \fnc{D}}^T\Bg\Dgk\Ukp
%+ \bm{v}_{\gamma \fnc{D}}^T\Sig_{\gamma}^{\fnc{D}} (\Rgk\Ukp - \bm{u}_{\gamma \fnc{D}})
%\end{equation}
%\normalfont
\textbf{Theorem 1} \label{thm:adjoint_conditions}
\textit{
The SBP discretization is adjoint consistent of order $h^{p+1}$
provided the exact adjoint $\fnc{V}$ is sufficiently smooth on $\Omega$ and
the penalty matrices satisfy
}
%\small
\begin{equation*} \label{adj_conditions}
\begin{alignedat}{2}
\Siggk{1} = \Siggn{1}, \quad
\Siggk{2} + \Siggn{2} = -\B_{\gamma}, \quad
\Siggk{3} + \Siggn{3} = \B_{\gamma}, \quad
\Siggk{4} = \Siggn{4}.
\end{alignedat}
\end{equation*}
\normalfont
%\vskip 0.2in
%\item Conservation verification:
% It is straightforward to show that the conditions~\eqref{adj_conditions} also imply that
% the SBP-SAT discretization is locally conservative.
\end{alertblock}
\vskip-0.6cm
\begin{alertblock}{An energy analysis further constrains the penalties to
ensure stability}
The homogeneous solution to the PDE satisfies the following energy estimate:
\begin{equation*}
\frac{1}{2} \frac{\diff}{\diff t} \int_{\Omega} \fnc{W}^{2} \, \diff \Omega =
-\int_{\Omega} \left(\nabla \fnc{W}\right) \cdot \Lambda \left(\nabla
\fnc{W} \right) \, \diff \Omega \leq 0.
\end{equation*}
\normalfont
To ensure linear stability, we require the discretization to mimic this behavior.
% We will
% \begin{itemize}
%% \item this analysis uses adjoint conditions \eqref{adj_conditions};
% \item use the notation $\Siggk{1} = \Siggn{1} \equiv \Siggam{1}$\normalfont, and
% $\Siggk{4} = \Siggn{4} \equiv \Siggam{4}$ \normalfont;
% \item assume that $\Siggk{3} -\Siggk{2}=\Bg$ \normalfont to simplify the analysis
% \end{itemize}
% We take following \textbf{steps}
%
% \begin{itemize}
% \item start with (\ref{adjoint_conditions}) and an additional condition $\Siggk{3} -\Siggk{2}=\Bg$;
% \item shift the volume terms in $B(\bm{u}_h, \bm{u}_h)$ to the faces;
% \item let the resulting face-based form be negative semi-definite through Schur complement.
% \end{itemize}
% \normalfont
\vskip 0.2in
\textbf{Theorem 2} \label{thm:stability-condition}
\textit{
The SBP-SAT discretization corresponding to the homogeneous version
of the PDE has a non-increasing solution norm, with respect to
the $\H$ matrix, provided
}
\begin{equation*} \label{stability_conditions}
\begin{aligned}
\Siggk{1}
\:\succeq\: & \alpha_{\gamma\kappa}^{-1}\Siggk{2} \mat{A}_{\gamma\kappa} \Siggk{2}
+ \alpha_{\gamma\nu}^{-1}\Siggn{2} \mat{A}_{\gamma\nu}\Siggn{2}, \quad and \quad
\Sig_{\gamma\kappa}^{\fnc{D}} \:\succeq\: & \alpha_{\gamma\kappa}^{-1}\Bg \mat{A}_{\gamma\kappa} \Bg
\end{aligned}
\end{equation*}
\normalfont
\textit{where}
\small
$\mat{A}_{\gamma\kappa} = \begin{bmatrix} \Rgk^T\Nxg \\ \Rgk^T\Nyg \end{bmatrix}^T
\begin{bmatrix}
\H^{-1}_{\kappa} & \\ & \H^{-1}_{\kappa}
\end{bmatrix} \Lam_{\kappa}
\begin{bmatrix} \Rgk^T\Nxg \\ \Rgk^T\Nyg \end{bmatrix}$\normalfont,
$\alpha_{\gamma\kappa} \ge 0$ \textit{and} $\sum_{\gamma \subset \Gamma_{\kappa}} \alpha_{\gamma\kappa} = 1$.
\vskip 0.2in
In the above theory, we have assumed $\Siggk{3} -\Siggk{2}=\Bg$ \normalfont to simplify the analysis.
\end{alertblock}
\vskip-0.6cm
\begin{alertblock}{The adjoint-consistency and stability conditions can be
used to recover analogs of popular methods in FEM}
The SBP discretization admits generalizations of BR2, SIPG and LDG~\cite{Arnold2002}.
\begin{itemize}
\setlength{\itemindent}{0.0em}
\item To the best of our knowledge, this is the first generalization of BR2 to SBP methods.
\item Our analysis allows SIPG to be related to BR2 using straightforward matrix analysis.
\item The SBP-SIPG penalty parameters
are similar to those given by Shahbazi~\cite{Shahbazi2005explicit}.
\end{itemize}
% \begin{itemize}
% \item \textbf{BR2:}
% The SBP discretization of BR2 in~\cite{Bassi2005} fits within the general framework~\eqref{eq:parabolic_SBP}, with following SAT coefficient matrices:
%%
% $ \Siggk{3} = -\Siggk{2} = \frac{1}{2}\Bg$,
% $\Siggk{4} = \Siggn{4} = 0$
%% \normalfont
% , $\Sig_{\gamma}^{(1)}$ and $\Sig_{\gamma}^{\fnc{D}}$ set to the R.H.S in (\ref{stability_conditions}).
%
% \vskip 0.2in
% \item \textbf{SIPG:}
% \textbf{Theorem 3} \textit{
% The SIPG variant of the SBP-SAT discretization is energy stable if
% }
%
% \begin{equation*} \label{eq:SIPG}
% \Siggam{1} = \delta_{\gamma}^{(1)} \Bg,
% \qquad\text{and}\qquad
% \Sig_{\gamma}^{\fnc{D}} = \delta_{\gamma}^{\fnc{D}} \Bg,
% \end{equation*}
% \normalfont
% \textit{where}
% $
% \delta_{\gamma}^{(1)} = \frac{(\lambda_{\max})_\kappa
% \| \Bg^{\frac{1}{2}} \Rgk \Hk^{-\frac{1}{2}} \|_{2}^{2}}%
% {4 \alpha_{\gamma\kappa}}
% + \frac{(\lambda_{\max})_\nu
% \| \Bg^{\frac{1}{2}} \Rgn \H_{\nu}^{-\frac{1}{2}} \|_{2}^{2}}%
% {4 \alpha_{\gamma\nu}}$, \textit{and}
% $
% \delta_{\gamma}^\fnc{D} = \frac{(\lambda_{\max})_\kappa
% \| \Bg^{\frac{1}{2}} \Rgk \Hk^{-\frac{1}{2}} \|_{2}^{2}}%
% {\alpha_{\gamma\kappa}} .
% $
% \end{itemize}
% \normalfont
\end{alertblock}
%\setbeamercolor{block title}{fg=red,bg=white} % Change the block title color
%
%\begin{block}{Acknowledgements}
% \small{\rmfamily{J. Hicken was partially funded by the Air Force Office of Scientific Research Award FA9550-15-1-0242. The authors gratefully acknowledge this support. We also thank RPI's Scientific Computation
% Research Center for the use of computer facilities.}}
%\end{block}
\setbeamercolor{block title}{fg=blue,bg=white}
\begin{block}{References}
\nocite{*} % Insert publications even if they are not cited in the poster
\footnotesize{\bibliographystyle{unsrt}
\bibliography{reference}\vspace{0.15in}}
\end{block}
\end{column} % End of the first column
%\end{column} % End of the second column
\begin{column}{\sepwid}\end{column} % Empty spacer column
\begin{column}{\thirdcolwid}
\setlength{\parindent}{1em}
\setbeamercolor{block alerted title}{fg=blue,bg=jblue!20}
\setbeamercolor{block alerted body}{fg=black,bg=white}
% \setbeamercolor{block title}{fg=red,bg=white} % Change the block title color
\vskip-1.0cm
\begin{alertblock}{The theory was verified using two families of triangular
SBP operators, SBP-$\Gamma$ and SBP-$\Omega$~\cite{multiSBP}}
$\quad\quad\circ$: SBP nodes, $\sqbullet$: face cubature points.
\begin{tabular}{p{0.15\textwidth}p{0.2\textwidth}p{0.2\textwidth}p{0.2\textwidth}p{0.2\textwidth}}
& \multicolumn{4}{c}{\textbf{degree}} \\\cline{2-5}
\textbf{family} &
\multicolumn{1}{c}{$p=1$} &
\multicolumn{1}{c}{$p=2$} &
\multicolumn{1}{c}{$p=3$} &
\multicolumn{1}{c}{$p=4$} \rule{0ex}{3ex} \\\hline
\vspace*{-0.12\textwidth}\textbf{SBP}-$\bm{\Omega}$ &
%\parbox[t]{0.2\textwidth}{\rule{0ex}{0.16\textwidth}SBP-$\Omega$} &
\parbox[b]{0.2\textwidth}{%
\begin{center}%
\includegraphics[width=0.16\textwidth]{figures/p1_Omega}\\
3 nodes\end{center}} &
\parbox[b]{0.2\textwidth}{%
\begin{center}%
\includegraphics[width=0.16\textwidth]{figures/p2_Omega}\\
6 nodes\end{center}} &
\parbox[b]{0.2\textwidth}{%
\begin{center}%
\includegraphics[width=0.16\textwidth]{figures/p3_Omega}\\
10 nodes\end{center}} &
\parbox[b]{0.2\textwidth}{%
\begin{center}%
\includegraphics[width=0.16\textwidth]{figures/p4_Omega}\\
15 nodes\end{center}} \\\hline
\vspace*{-0.12\textwidth}\textbf{SBP}-$\bm{\Gamma}$ &
\parbox[b]{0.2\textwidth}{%
\begin{center}%
\includegraphics[width=0.16\textwidth]{figures/p1_Gamma}\\
3 nodes\end{center}} &
\parbox[b]{0.2\textwidth}{%
\begin{center}%
\includegraphics[width=0.16\textwidth]{figures/p2_Gamma}\\
7 nodes\end{center}} &
\parbox[b]{0.2\textwidth}{%
\begin{center}%
\includegraphics[width=0.16\textwidth]{figures/p3_Gamma}\\
12 nodes\end{center}} &
\parbox[b]{0.2\textwidth}{%
\begin{center}%
\includegraphics[width=0.16\textwidth]{figures/p4_Gamma}\\
18 nodes\end{center}} \\\hline
\end{tabular}
\end{alertblock}
\vskip-0.6cm
\begin{alertblock}{The expected convergence rates and stability properties
were obtained}
\begin{itemize}
\item \textbf{Convergence rates of solution and functional}
\begin{figure}
\centering
\begin{subfigure}[b]{0.48\linewidth}
\centering
\includegraphics[width=1.\linewidth]{figures/p_accuracy.png}
\subcaption*{Solution accuracy, $O(p+1)$}
% \label{fig:p_accuracy}
\end{subfigure}%
\begin{subfigure}[b]{0.48\linewidth}
\centering
\includegraphics[width=1.\linewidth]{figures/j_accuracy.png}
\subcaption*{Functional accuracy, $O(2p)$}
% \label{fig:j_accuracy}
\end{subfigure}
% \caption{Convergence rate study }
\end{figure}
% \item
% \textbf{Tightness of stability bound:} We scale $\Sig^{(1)}$ and $\Sig^{\fnc{D}}$ by a relaxation factor $\alpha$,
% which serves as a measure of tightness of the stability bound, i.e.,
%
% \begin{itemize}
% \item overly conservative SAT penalties will allow for $\alpha \ll 1$;
% \item necessary and sufficient stability condition only permit $\alpha \ge 1$.
% \end{itemize}
% \normalfont
% \begin{figure}
% \begin{subfigure}{0.45\textwidth}
% \centering
% \includegraphics[width=1.0\linewidth]{figures/relaxation_eigMin_gamma.png}
%% \subcaption{SBP-$\Gamma$}
% \label{fig:relaxation_cn_gamma}
% \end{subfigure}
% \begin{subfigure}{0.45\textwidth}
% \centering
% \includegraphics[width=1.0\linewidth]{figures/relaxation_eigMin_omega.png}
%% \subcaption{SBP-$\Omega$}
% \label{fig:relaxation_cn_omega}
% \end{subfigure}
% \caption{Relaxation effect on SATs, left:SBP-$\Gamma$, right:SBP-$\Omega$}
% \label{fig:relaxation}
% \end{figure}
% \begin{minipage}{0.25\linewidth}
\begin{columns}[t]
\begin{column}{0.3\textwidth}
\item \textbf{Energy stability:}
If the penalty matrices do not satisfy the requirements of the stability theory, the solution norm may grow exponentially.
\end{column}
% \setbeamertemplate{caption}{default}
\begin{column}{0.625\textwidth}
\begin{figure}
\includegraphics[width=0.92\linewidth]{figures/energy_stability.png}
\caption*{Energy history of homogeneous problem using BDF2 and SBP-$\Gamma$}
\end{figure}
\end{column}
%\vskip-0.25cm
\end{columns}
\end{itemize}
% \end{itemize}
\end{alertblock}
%----------------------------------------------------------------------------------------
% REFERENCES
%----------------------------------------------------------------------------------------
% \begin{block}{References}
%
% \nocite{*} % Insert publications even if they are not cited in the poster
% \footnotesize{\bibliographystyle{unsrt}
% \bibliography{sample}\vspace{0.15in}}
%
% \end{block}
%----------------------------------------------------------------------------------------
% ACKNOWLEDGEMENTS
%----------------------------------------------------------------------------------------
% \setbeamercolor{block title}{fg=red,bg=white} % Change the block title color
%
% \begin{block}{Acknowledgements}
% \footnotesize{\rmfamily{J. Hicken was partially funded by the Air Force Office of Scientific Research Award FA9550-15-1-0242. The authors gratefully acknowledge this support. We also thank RPI's Scientific Computation
% Research Center for the use of computer facilities.}} \\
%
% \end{block}
%----------------------------------------------------------------------------------------
% CONTACT INFORMATION
%----------------------------------------------------------------------------------------
%\setbeamercolor{block alerted title}{fg=black,bg=norange} % Change the alert block title colors
%\setbeamercolor{block alerted body}{fg=black,bg=white} % Change the alert block body colors
%
%\begin{block}{Contact Information}
%
%\begin{itemize}
%\item Web: \href{http://www.university.edu/smithlab}{http://www.university.edu/smithlab}
%\item Email: \href{mailto:[email protected]}{[email protected]}
%\item Phone: +1 (000) 111 1111
%\end{itemize}
%
%\end{block}
%
%\begin{center}
%\begin{tabular}{ccc}
%\includegraphics[width=0.4\linewidth]{logo.png} & \hfill & \includegraphics[width=0.4\linewidth]{logo.png}
%\end{tabular}
%\end{center}
%----------------------------------------------------------------------------------------
\end{column}
\begin{column}{\sepwid}\end{column} % Empty spacer column
\begin{column}{\sepwid}\end{column} % Empty spacer column
\end{columns} % End of all the columns in the poster
\end{frame} % End of the enclosing frame
\end{document}