-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDAGfns.R
109 lines (103 loc) · 3.54 KB
/
DAGfns.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
### This function gives edges weights between the bounds
# with both positive and negative signs
wFUN <- function(m, lb, ub){ # function for edge weights
runif(m, lb, ub)*sample(c(-1, 1), m, replace = TRUE)
}
### This function generates Gaussian data from a DAG
# following the topological order
rmvDAG <- function(trueDAGedges, N, standardise = TRUE) {
trueDAG <- 1*(trueDAGedges != 0) # the edge presence in the DAG
n <- ncol(trueDAG) # number of variables
data <- matrix(0, nrow = N, ncol = n) # to store the simulated data
top_order <- rev(BiDAG:::DAGtopartition(n, trueDAG)$permy) # go down order
for (jj in top_order) {
parents <- which(trueDAG[, jj] == 1) # find parents
lp <- length(parents) # number of parents
if (lp == 0) { # no parents
data[, jj] <- 0
} else if (lp == 1) { # one parent
data[, jj] <- data[, parents]*trueDAGedges[parents, jj]
} else { # more than one parent
data[, jj] <- colSums(t(data[, parents])*trueDAGedges[parents, jj])
}
# add random noise
data[, jj] <- data[, jj] + rnorm(N)
}
if(standardise) { # whether to standardise
scale(data)
} else {
data
}
}
samplecomp <- function (MCMCchain, truedag, p = c(0.99, 0.95, 0.9, 0.8, 0.7,
0.6, 0.5, 0.4, 0.3, 0.2), pdag = TRUE, burnin = 0.2, trans = TRUE, rnd = 2)
{
if (is.matrix(truedag))
truedag <- m2graph(truedag)
MCMCmatlist <- MCMCchain$traceadd$incidence
n <- nrow(MCMCmatlist[[1]])
truecp <- pcalg::dag2cpdag(truedag)
if (MCMCchain$info$DBN) {
pdag <- FALSE
if (trans == TRUE) {
cat("comparison is performed for transition structures \n")
trueadj <- DBNcut(graph2m(truedag), MCMCchain$info$nsmall,
MCMCchain$info$bgn)
truedag <- m2graph(trueadj)
truecpadj <- graph2m(truecp)
truecpadj <- DBNcut(truecpadj, MCMCchain$info$nsmall,
MCMCchain$info$bgn)
truecp <- m2graph(truecpadj)
}
else {
cat("comparison is performed for initial structures \n")
trueadj <- DBNinit(graph2m(truedag), MCMCchain$info$nsmall,
MCMCchain$info$bgn)
truedag <- m2graph(trueadj)
truecpadj <- DBNinit(graph2m(truecp), MCMCchain$info$nsmall,
MCMCchain$info$bgn)
truecp <- m2graph(truecpadj)
n <- MCMCchain$info$nsmall + MCMCchain$info$bgn
}
}
endstep <- length(MCMCmatlist)
startstep <- max(as.integer(burnin * endstep), 1)
if (pdag) {
dags <- lapply(MCMCmatlist[startstep:endstep], BiDAG:::dagadj2cpadj)
}
else {
dags <- MCMCmatlist[startstep:endstep]
}
if (MCMCchain$info$DBN) {
if (trans) {
dags <- lapply(dags, DBNcut, n.dynamic = MCMCchain$info$nsmall,
n.static = MCMCchain$info$bgn)
}
else {
dags <- lapply(dags, DBNinit, n.dynamic = MCMCchain$info$nsmall,
n.static = MCMCchain$info$bgn)
}
}
postprobmat <- Reduce("+", dags)/(endstep - startstep + 1)
if (length(p) == 1) {
mlist <- matrix(0, nrow = n, ncol = n)
mlist[which(postprobmat > p)] <- 1
res <- compareDAGs(mlist, truedag)
res <- c(res, p)
names(res)[length(res)] <- "p"
}
else {
mlist <- list()
i <- 1
for (py in 1:length(p)) {
mlist[[i]] <- matrix(0, nrow = n, ncol = n)
mlist[[i]][which(postprobmat > p[py])] <- 1
i <- i + 1
}
res <- lapply(mlist, compareDAGs, truedag, rnd = rnd)
res <- Reduce(rbind, res)
res <- cbind(res, p)
rownames(res) <- c(1:nrow(res))
}
return(res)
}