We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
When i train the transfomer, i found the attention values are almost same Encoder: [0.10000075, 0.10000038, 0.09999962, 0.10000114, 0.09999923, 0.09999923, 0.1 0.09999847, 0.10000038, 0.10000075, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] Decoder: [0.19999756 0.2000006 0.20000137 0.2000006 0.19999985 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ] [0.1666655 0.16666678 0.16666868 0.16666678 0.1666674 0.16666487 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ] [0.14285614 0.14285722 0.14285886 0.14285722 0.14285776 0.14285503 0.14285776 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ] [0.12499904 0.125 0.12500095 0.12499953 0.125 0.12499809 0.125 0.12500238 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ]
The text was updated successfully, but these errors were encountered:
当我训练转让人时,我发现注意值几乎是相同的 编码器: [0.10000075,0.10000038,0.09999962,0.10000114,0.099999923,0.0999999923,0.09999923,0.1099999923,0.1 0.109999999999847,0.100000000000000000000000,000000,000,0,0,0,0,0,0,0,0,0,0,09,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,,0, 0,0,0] 解码器: [0.199999756 0.2000006 0.20000137 0.2000006 0.199999985 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 0.1666674 0.16666487 0.0.0.0.0.0.0.0.0.0.0.0.0.0 . ] [0.14285614 0.14285722 0.14285886 0.14285722 0.14285776 0.14285503 0.14285776 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ] [0.12499904 0.125 0.12500095 0.12499953 0.125 0.12499809 0.125 0.12500238 0. 0. 0. 0.0.0.0.0.0.0.0.0 . ]
Hi, I also met the same problem. Do you know the cause of this?
Sorry, something went wrong.
No branches or pull requests
When i train the transfomer, i found the attention values are almost same
Encoder:
[0.10000075, 0.10000038, 0.09999962, 0.10000114, 0.09999923, 0.09999923, 0.1 0.09999847, 0.10000038, 0.10000075, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Decoder:
[0.19999756 0.2000006 0.20000137 0.2000006 0.19999985 0.
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. ]
[0.1666655 0.16666678 0.16666868 0.16666678 0.1666674 0.16666487
0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. ]
[0.14285614 0.14285722 0.14285886 0.14285722 0.14285776 0.14285503
0.14285776 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. ]
[0.12499904 0.125 0.12500095 0.12499953 0.125 0.12499809
0.125 0.12500238 0. 0. 0. 0.
0. 0. 0. 0. 0. 0.
0. 0. ]
The text was updated successfully, but these errors were encountered: