forked from rene4jazz/visimil
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapplication.py
executable file
·155 lines (120 loc) · 4.2 KB
/
application.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#!/usr/bin/env python3
from __future__ import division
from keras.applications.vgg16 import VGG16
from keras.preprocessing import image
from keras.applications.vgg16 import preprocess_input
import os
from io import BytesIO
from PIL import Image
import numpy as np
from numpy import linalg as LA
import requests
from flask import Flask, jsonify
from flask import request, make_response, abort
from elasticsearch import Elasticsearch
#if os.environ.get('ES_HOSTS'):
# ELASTICSEARCH_HOSTS = \
# [{'host': es_host, 'port': 9200}
# for es_host in os.environ.get('ES_HOSTS').split(",")]
#else:
# ELASTICSEARCH_HOSTS = None
app = Flask(__name__)
es = Elasticsearch([{'host': "127.0.0.1", 'port': 9200}])
@app.errorhandler(404)
def not_found(error):
return make_response(jsonify({'error': 'Not found'}), 404)
def get_features(url):
response = requests.get(url)
img = Image.open(BytesIO(response.content)).convert('RGB')
target_size = (224, 224)
model = VGG16(weights='imagenet', include_top=False, pooling='avg')
if img.size != target_size:
img = img.resize(target_size)
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
features = model.predict(x).flatten()
return features.tolist()
def cos_similarity(a_vect, b_vect):
return np.dot(a_vect, b_vect)/(LA.norm(a_vect, 2) * LA.norm(b_vect, 2))
@app.route('/api/v1/search', methods=['POST'])
def search():
if not request.json or 'url' not in request.json:
abort(400)
features = get_features(request.json['url'])
# np_features = np.asarray(features);
acc = 0.2
dim = 100
if 'template' in request.json:
if 'almost_identical' == request.json['template']:
acc = 200
dim = 500
if 'accuracy' in request.json:
acc = request.json['accuracy']
if acc > 2000.0:
acc = 2000.0
if acc < 0.001:
acc = 0.001
offset = 1.0/acc**2
if 'threshold' in request.json:
dim = request.json['threshold']
if dim > 512:
dim = 512
if dim < 1:
dim = 1
fields = []
features_as_fields = []
field_name = ''
for i, f in enumerate(features):
field_name = 'F'+str(i)
fields.append(
{'range': {field_name: {'gte': f-offset, 'lte': f+offset}}})
features_as_fields.append({field_name: f})
query = \
{'query':
{'bool':
{'minimum_number_should_match': dim,
'should': fields}}}
result = es.search(index='visimil', doc_type='image', body=query)
results = []
for hit in result['hits']['hits']:
hit_f = \
np.asarray(
[list(v.values())[0] for v in sorted(
[{attr: value} for attr, value in hit['_source'].items()],
key=lambda x:sorted(x.keys()))])
cs = cos_similarity(features, hit_f)
results.append({'id': hit['_id'], 'score': hit['_score'], 'cs': cs})
return jsonify(
{'accuracy': acc,
'threshold': dim,
'count': result['hits']['total'],
'max_score': result['hits']['max_score'],
'results': sorted(results, key=lambda k: k['cs'], reverse=True)})
@app.route('/api/v1/add', methods=['POST'])
def add_image():
if not request.json or 'url' not in request.json or 'id' not in request.json:
abort(400)
features = get_features(request.json['url'])
doc = {}
for i, f in enumerate(features):
doc["F" + str(i)] = f
result = \
es.index(
index='visimil', id=request.json['id'], doc_type='image', body=doc)
return jsonify({'result': result})
@app.route('/health_check', methods=['GET'])
def elasticsearch_check():
app_health = \
{'app_health': {
'app_ok': False,
'reasons': {'elasticsearch_ok': False}}}
ELASTICSEARCH_HOSTS = False
if not ELASTICSEARCH_HOSTS:
return jsonify(app_health)
else:
app_health = app_health['app_health']['app_ok'] = True
app_health = app_health['app_health']['reasons']['elasticsearch_ok'] = True
return jsonify(app_health)
if __name__ == '__main__':
app.run(debug=True)