forked from yangyanli/PointCNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_tu_berlin_data.py
239 lines (201 loc) · 10.6 KB
/
prepare_tu_berlin_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#!/usr/bin/python3
'''Convert TU-Berlin sketches to points with normals.'''
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import h5py
import math
import random
import argparse
import numpy as np
from datetime import datetime
from numpy import linalg as LA
from scipy.spatial import ConvexHull
from svgpathtools import svg2paths, Path, Line, CubicBezier
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import data_utils
def moving_least_square_with_rigid_transformation(p, q, v, r):
w = 1 / (LA.norm(p - v, axis=-1, ord=2, keepdims=True) ** 0.5 + r)
w_sum = np.sum(w)
p_star = np.sum(w * p, axis=0, keepdims=True) / w_sum # (1, 2)
p_hat = np.expand_dims(p - p_star, axis=1) # (N, 1, 2)
p_hat_x = np.concatenate([-p_hat[..., np.newaxis, 1], p_hat[..., np.newaxis, 0]], axis=-1)
p_p = np.concatenate([p_hat, -p_hat_x], axis=-2) # (N, 2, 2)
v_p_star = v - p_star # (1, 2)
v_p_star_x = np.concatenate([-v_p_star[..., np.newaxis, 1], v_p_star[..., np.newaxis, 0]], axis=-1)
vp_vp = np.transpose(np.concatenate([v_p_star, -v_p_star_x], axis=-2)) # (2, 2)
A = np.expand_dims(w, axis=-1) * np.matmul(p_p, np.expand_dims(vp_vp, axis=0)) # (N, 2, 2)
q_star = np.sum(w * q, axis=0, keepdims=True) / w_sum # (1, 2)
q_hat = np.expand_dims(q - q_star, axis=1) # (N, 1, 2)
fr_arrow_v = np.sum(np.matmul(q_hat, A), axis=0) # (1, 2)
fr_v = (LA.norm(v_p_star, axis=-1, ord=2) / (LA.norm(fr_arrow_v, axis=-1, ord=2) + 1e-6)) * fr_arrow_v + q_star
return fr_v[0, 0], fr_v[0, 1]
def augment(path_nested, num):
path_list = []
path = Path()
for p in path_nested:
for segment in p:
path.append(segment)
end_points_list = []
for segment in path:
s = segment.bpoints()[0]
e = segment.bpoints()[-1]
end_points_list.append((s.real, s.imag))
end_points_list.append((e.real, e.imag))
end_points = np.array(end_points_list)
hull_points = end_points[ConvexHull(end_points).vertices]
idx_xmin, idx_ymin = np.argmin(hull_points, axis=0)
idx_xmax, idx_ymax = np.argmax(hull_points, axis=0)
x_range = 0.15 * (hull_points[idx_xmax][0] - hull_points[idx_xmin][0])
y_range = 0.15 * (hull_points[idx_ymax][1] - hull_points[idx_ymin][1])
idx_min_max = np.unique([idx_xmin, idx_ymin, idx_xmax, idx_ymax])
for _ in range(num):
# global deformation
p = hull_points
q = hull_points.copy()
for idx in idx_min_max:
x, y = p[idx]
q[idx] = (x + random.gauss(0, x_range), y + y_range * random.gauss(0, y_range))
path_deformed = Path()
for segment in path:
points = []
for v in segment.bpoints():
real, imag = moving_least_square_with_rigid_transformation(p, q, np.array([v.real, v.imag]),
max(x_range, y_range))
point_xformed = complex(real, imag)
points.append(point_xformed)
if len(segment.bpoints()) == 2:
line = Line(points[0], points[1])
path_deformed.append(line)
else:
cubic_bezier = CubicBezier(points[0], points[1], points[2], points[3])
path_deformed.append(cubic_bezier)
path_list.append(path_deformed)
return path_list
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--folder', '-f', help='Path to data folder')
parser.add_argument('--point_num', '-p', help='Point number for each sample', type=int, default=1024)
parser.add_argument('--save_ply', '-s', help='Convert .pts to .ply', action='store_true')
parser.add_argument('--augment', '-a', help='Data augmentation', action='store_true')
parser.add_argument('--create-train-test',
help='Concatenate file lists to generate train_files.txt and test_files.txt',
action='store_true')
args = parser.parse_args()
print(args)
batch_size = 2048
fold_num = 3
tag_aug = '_ag' if args.augment else ''
folder_svg = args.folder if args.folder else '../../data/tu_berlin/svg'
root_folder = os.path.dirname(folder_svg)
folder_pts = os.path.join(root_folder, 'pts' + tag_aug)
filelist_svg = [line.strip() for line in open(os.path.join(folder_svg, 'filelist.txt'))]
category_label = dict()
with open(os.path.join(os.path.dirname(folder_svg), 'categories.txt'), 'w') as file_categories:
for filename in filelist_svg:
category = os.path.split(filename)[0]
if category not in category_label:
file_categories.write('%s %d\n' % (category, len(category_label)))
category_label[category] = len(category_label)
filelist_svg_failed = []
data = np.zeros((batch_size, args.point_num, 6))
label = np.zeros((batch_size), dtype=np.int32)
for idx_fold in range(fold_num):
filelist_svg_fold = [filename for i, filename in enumerate(filelist_svg) if i % fold_num == idx_fold]
random.seed(idx_fold)
random.shuffle(filelist_svg_fold)
filename_filelist_svg_fold = os.path.join(root_folder, 'filelist_fold_%d.txt' % (idx_fold))
if os.path.exists(filename_filelist_svg_fold):
print('{}-{} exists, skipping'.format(datetime.now(), filename_filelist_svg_fold))
continue
with open(filename_filelist_svg_fold, 'w') as filelist_svg_fold_file:
for filename in filelist_svg_fold:
filelist_svg_fold_file.write('%s\n' % (filename))
idx_h5 = 0
idx = 0
filename_filelist_h5 = os.path.join(root_folder, 'fold_%d_files%s.txt' % (idx_fold, tag_aug))
with open(filename_filelist_h5, 'w') as filelist_h5_file:
for idx_file, filename in enumerate(filelist_svg_fold):
filename_svg = os.path.join(folder_svg, filename)
try:
paths, attributes = svg2paths(filename_svg)
except:
filelist_svg_failed.append(filename_svg)
print('{}-Failed to parse {}!'.format(datetime.now(), filename_svg))
continue
points_array = np.zeros(shape=(args.point_num, 3), dtype=np.float32)
normals_array = np.zeros(shape=(args.point_num, 3), dtype=np.float32)
path = Path()
for p in paths:
p_non_empty = Path()
for segment in p:
if segment.length() > 0:
p_non_empty.append(segment)
if len(p_non_empty) != 0:
path.append(p_non_empty)
path_list = []
if args.augment:
for removal_idx in range(6):
path_with_removal = Path()
for p in path[:math.ceil((0.4 + removal_idx * 0.1) * len(paths))]:
path_with_removal.append(p)
path_list.append(path_with_removal)
path_list = path_list + augment(path, 6)
else:
path_list.append(path)
for path_idx, path in enumerate(path_list):
for sample_idx in range(args.point_num):
sample_idx_float = (sample_idx + random.random()) / (args.point_num - 1)
while True:
try:
point = path.point(sample_idx_float)
normal = path.normal(sample_idx_float)
break
except:
sample_idx_float = random.random()
continue
points_array[sample_idx] = (point.real, sample_idx_float, point.imag)
normals_array[sample_idx] = (normal.real, random.random() * 1e-6, normal.imag)
points_min = np.amin(points_array, axis=0)
points_max = np.amax(points_array, axis=0)
points_center = (points_min + points_max) / 2
scale = np.amax(points_max - points_min) / 2
points_array = (points_array - points_center) * (0.8 / scale, 0.4, 0.8 / scale)
if args.save_ply:
tag_aug_idx = tag_aug + '_' + str(path_idx) if args.augment else tag_aug
filename_pts = os.path.join(folder_pts, filename[:-4] + tag_aug_idx + '.ply')
data_utils.save_ply(points_array, filename_pts, normals=normals_array)
idx_in_batch = idx % batch_size
data[idx_in_batch, ...] = np.concatenate((points_array, normals_array), axis=-1).astype(np.float32)
label[idx_in_batch] = category_label[os.path.split(filename)[0]]
if ((idx + 1) % batch_size == 0) \
or (idx_file == len(filelist_svg_fold) - 1 and path_idx == len(path_list) - 1):
item_num = idx_in_batch + 1
filename_h5 = 'fold_%d_%d%s.h5' % (idx_fold, idx_h5, tag_aug)
print('{}-Saving {}...'.format(datetime.now(), os.path.join(root_folder, filename_h5)))
filelist_h5_file.write('./%s\n' % (filename_h5))
file = h5py.File(os.path.join(root_folder, filename_h5), 'w')
file.create_dataset('data', data=data[0:item_num, ...])
file.create_dataset('label', data=label[0:item_num, ...])
file.close()
idx_h5 = idx_h5 + 1
idx = idx + 1
if len(filelist_svg_failed) != 0:
print('{}-Failed to parse {} sketches!'.format(datetime.now(), len(filelist_svg_failed)))
if args.create_train_test:
print('{}-Generating train_files.txt and test_files.txt'.format(datetime.now()))
train_files = open(os.path.join(root_folder, "train_files.txt"), "w")
test_files = open(os.path.join(root_folder, "test_files.txt"), "w")
with train_files, test_files:
for idx_fold in range(fold_num):
filename = os.path.join(root_folder, 'fold_%d_files%s.txt' % (idx_fold, tag_aug))
contents = open(filename, "r").read()
# Use folders 0..N-1 for train and N for test
if idx_fold < fold_num - 1:
train_files.write(contents)
else:
test_files.write(contents)
if __name__ == '__main__':
main()