You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I've downloaded the speech_commands_v0.02 tar file and extracted it into the following directory structure:
data/SCNUMBERS1024
└── SpeechCommands
└── speech_commands_v0.02
├── _background_noise_
├── backward
├── bed
├── bird
├── cat
├── dog
├── down
├── eight
├── five
├── follow
├── forward
├── four
├── go
├── happy
├── house
├── learn
├── left
├── marvin
├── nine
├── no
├── off
├── on
├── one
├── right
├── seven
├── sheila
├── six
├── stop
├── three
├── tree
├── two
├── up
├── visual
├── wow
├── yes
└── zero
I then try to train the model on this dataset via:
but run into a NoneType error, which leads me to believe than the dataset is not initialised properly somehow. the full output of running the above command is below:
~/.virtualenvs/pcinr/lib/python3.8/site-packages/torchaudio/backend/utils.py:53: UserWarning: "sox" backend is being deprecated. The default backend will be changed to "sox_io" backend in 0.8.0 and "sox" backend will be removed in 0.9.0. Please migrate to "sox_io" backend. Please refer to https://github.com/pytorch/audio/issues/903 for the detail.
warnings.warn(
1
{ 'architecture': 'pi-gan_wide',
'audio_length': 16000,
'autoconfig': 0,
'batch_size': 128,
'cdpam': 0,
'coord_multi': 1,
'dataset_name': 'SPEECHCOMMANDS',
'dataset_size': 128,
'deriv_per_sample': 1,
'double': 0,
'eval_every': 5000,
'eval_samples': 1,
'eval_upscale_ratio': 1,
'first_omega_0': 3000,
'hidden_omega_0': 30,
'input_dim': 1,
'latent_descent_steps': 1,
'latent_init_std': 0.001,
'latent_lr': 0.3,
'lr': 1e-05,
'max_high_res_batch_size': 16,
'meta_architecture': 'autodecoder',
'multiscale_STFT': 0,
'note': 'default',
'note_general': 'default',
'num_epochs': 10001,
'num_groups': 0,
'num_latent': 256,
'output_dim': 1,
'per_sample': 1,
'prog_weight_decay_every': 0,
'prog_weight_decay_factor': 0,
'sample_even': 1,
'samples_per_datapoint': 2000,
'save_audio': 1,
'save_audio_plots': 0,
'save_latents': 1,
'save_model': 1,
'save_path': 'results/default/SPEECHCOMMANDS/pi-gan_wide/autodecoder',
'use_gpu': 1,
'use_multi_gpu': 0,
'wandb': 0,
'wandb_project_name': 'neurips',
'weight_decay': 0,
'weight_norm': 0}
activations: ['sine', 'sine', 'none']
init_methods: [{'weights': 'siren_first', 'bias': 'polar'}, {'weights': 'siren', 'bias': 'polar'}, {'weights': 'siren_omega', 'omega': 30, 'bias': 'none'}]
layer 0: Film conditioned
layer 1: Film conditioned
layer 2: Film conditioned
layer 3: Film conditioned
piGAN_custom(
(film_mapping_net): PiGANMappingNetwork(
(net): Sequential(
(0): Linear(in_features=256, out_features=256, bias=True)
(1): LeakyReLU(negative_slope=0.2, inplace=True)
(2): Linear(in_features=256, out_features=256, bias=True)
(3): LeakyReLU(negative_slope=0.2, inplace=True)
(4): Linear(in_features=256, out_features=256, bias=True)
(5): LeakyReLU(negative_slope=0.2, inplace=True)
(6): Linear(in_features=256, out_features=730, bias=True)
)
)
(net): Sequential(
(0): ImplicitMLPLayer(
(linear): Linear(in_features=1, out_features=365, bias=True)
)
(1): ImplicitMLPLayer(
(linear): Linear(in_features=365, out_features=365, bias=True)
)
(2): ImplicitMLPLayer(
(linear): Linear(in_features=365, out_features=365, bias=True)
)
(3): ImplicitMLPLayer(
(linear): Linear(in_features=365, out_features=365, bias=True)
)
(4): ImplicitMLPLayer(
(linear): Linear(in_features=365, out_features=1, bias=True)
)
)
)
Number of parameters: 786852
Random Seed: 0
~/Desktop/phd/continuous-audio-representations/objective.py:11: UserWarning: torch.range is deprecated and will be removed in a future release because its behavior is inconsistent with Python's range builtin. Instead, use torch.arange, which produces values in [start, end).
self.finite_diff_derivative = torch.range(-1,1,2).unsqueeze(0).unsqueeze(0).to(device)
Seeing 1 GPUs
Starting run for 10001 epochs..
Traceback (most recent call last):
File "train.py", line 358, in <module>
train(model, optim_INR, optim_mapping, scheduler, train_loader, config)
File "train.py", line 80, in train
g = model(sampled_coords, z=z)
File "/home/kavi/.virtualenvs/pcinr/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/kavi/.virtualenvs/pcinr/lib/python3.8/site-packages/INR_collection/modules.py", line 487, in forward
concat = concat.repeat(1, coordinates.shape[1], 1)
AttributeError: 'NoneType' object has no attribute 'repeat'
Any idea why this might be? Thank you.
The text was updated successfully, but these errors were encountered:
I've downloaded the speech_commands_v0.02 tar file and extracted it into the following directory structure:
I then try to train the model on this dataset via:
but run into a NoneType error, which leads me to believe than the dataset is not initialised properly somehow. the full output of running the above command is below:
Any idea why this might be? Thank you.
The text was updated successfully, but these errors were encountered: