-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy patharbitrage_strategy.py
297 lines (251 loc) · 9.76 KB
/
arbitrage_strategy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
"""
NEAR Swarm Arbitrage Strategy Example
Demonstrates a plugin-based agent for DEX arbitrage opportunities.
This example shows:
1. How to create an advanced arbitrage plugin
2. Market data integration from multiple sources
3. LLM-powered opportunity analysis
4. Proper error handling and resource cleanup
5. Best practices for logging and monitoring
Usage:
1. Create plugin configuration:
```yaml
# agent.yaml
name: arbitrage-agent
description: "DEX arbitrage agent with LLM analysis"
version: "0.1.0"
capabilities:
- market_analysis
- dex_integration
- arbitrage
llm:
provider: ${LLM_PROVIDER}
model: ${LLM_MODEL}
temperature: 0.7
system_prompt: |
You are an arbitrage analysis expert.
Evaluate DEX opportunities considering:
1. Price differences
2. Trading volumes
3. Gas costs
4. Slippage impact
Always prioritize safety and profitability.
near:
network: ${NEAR_NETWORK:-testnet}
account_id: ${NEAR_ACCOUNT_ID}
private_key: ${NEAR_PRIVATE_KEY}
market:
min_profit_threshold: 0.02 # 2% minimum profit
max_position_size: 1000 # Max NEAR per trade
target_dexes:
- ref_finance
- jumbo
```
2. Install plugin:
```bash
near-swarm plugins install ./arbitrage-agent
```
3. Run example:
```bash
near-swarm execute arbitrage-agent --operation analyze --pair NEAR/USDC
```
Integration Patterns:
- Use environment variables for sensitive data
- Implement proper lifecycle methods
- Add comprehensive error handling
- Include detailed logging
- Cache market data efficiently
Testing:
1. Unit tests: Test arbitrage calculations
2. Integration tests: Test DEX interactions
3. End-to-end tests: Test full arbitrage flow
4. Market simulation tests
"""
import asyncio
import logging
from typing import Dict, Any, List
from near_swarm.plugins.base import AgentPlugin
from near_swarm.core.exceptions import AgentError, NEARError, LLMError
from near_swarm.core.market_data import MarketDataManager
# Configure logging
logger = logging.getLogger(__name__)
class ArbitragePlugin(AgentPlugin):
"""Plugin for identifying and executing DEX arbitrage opportunities."""
async def initialize(self) -> None:
"""Initialize plugin resources."""
try:
# Initialize LLM provider
self.llm = self.create_llm_provider(self.config.llm)
# Initialize NEAR connection
self.near = await self.create_near_connection(self.config.near)
# Initialize market data manager
self.market = MarketDataManager()
logger.info("ArbitragePlugin initialized successfully")
except Exception as e:
logger.error(f"Initialization failed: {e}")
raise AgentError(f"Failed to initialize plugin: {e}")
async def evaluate(self, context: Dict[str, Any]) -> Dict[str, Any]:
"""Process arbitrage operations."""
try:
operation = context.get("operation")
if operation == "analyze":
return await self._analyze_opportunity(context)
elif operation == "execute":
return await self._execute_arbitrage(context)
else:
raise AgentError(f"Unknown operation: {operation}")
except AgentError as e:
logger.error(f"Operation failed: {e}")
raise
except Exception as e:
logger.error(f"Unexpected error: {e}")
raise AgentError(f"Operation failed: {e}")
async def _analyze_opportunity(self, context: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze arbitrage opportunities."""
try:
# Get parameters
pair = context.get("pair")
if not pair:
raise AgentError("Missing required parameter: pair")
# Get market data
dex_prices = await self._get_dex_prices(pair)
market_context = await self._get_market_context()
# Analyze with LLM
analysis = await self._analyze_with_llm(dex_prices, market_context)
if analysis["is_opportunity"]:
logger.info(f"Found arbitrage opportunity for {pair}")
return {
"status": "opportunity_found",
"pair": pair,
"profit_potential": analysis["profit_potential"],
"recommended_action": analysis["action"],
"reasoning": analysis["reasoning"],
"risk_level": analysis["risk_level"]
}
else:
logger.info(f"No profitable opportunity for {pair}")
return {
"status": "no_opportunity",
"pair": pair,
"reason": analysis["reasoning"]
}
except Exception as e:
logger.error(f"Analysis failed: {e}")
raise AgentError(f"Failed to analyze opportunity: {e}")
async def _execute_arbitrage(self, context: Dict[str, Any]) -> Dict[str, Any]:
"""Execute arbitrage trade."""
try:
# Validate parameters
if not all(k in context for k in ["pair", "amount", "route"]):
raise AgentError("Missing required parameters")
# Execute trades
trades = []
for step in context["route"]:
result = await self.near.execute_swap(
dex=step["dex"],
pair=context["pair"],
amount=step["amount"],
direction=step["direction"]
)
trades.append(result)
return {
"status": "success",
"trades": trades,
"total_profit": sum(t["profit"] for t in trades)
}
except NEARError as e:
logger.error(f"Trade execution failed: {e}")
raise AgentError(f"Failed to execute arbitrage: {e}")
async def _get_dex_prices(self, pair: str) -> List[Dict[str, Any]]:
"""Get prices from configured DEXes."""
prices = []
for dex in self.config.market.target_dexes:
try:
price = await self.market.get_dex_price(dex, pair)
prices.append({
"dex": dex,
"price": price["price"],
"liquidity": price["liquidity"]
})
except Exception as e:
logger.warning(f"Failed to get price from {dex}: {e}")
return prices
async def _get_market_context(self) -> Dict[str, Any]:
"""Get relevant market context."""
try:
return {
"network": await self.near.get_network_stats(),
"gas_price": await self.near.get_gas_price(),
"market_volatility": await self.market.get_market_volatility()
}
except Exception as e:
logger.error(f"Failed to get market context: {e}")
raise
async def _analyze_with_llm(
self,
dex_prices: List[Dict[str, Any]],
market_context: Dict[str, Any]
) -> Dict[str, Any]:
"""Analyze opportunity using LLM."""
try:
prompt = f"""
Analyze this arbitrage opportunity:
DEX Prices:
{dex_prices}
Market Context:
{market_context}
Configuration:
- Min Profit: {self.config.market.min_profit_threshold}
- Max Position: {self.config.market.max_position_size}
Return JSON with:
- is_opportunity: boolean
- profit_potential: float
- action: string (execute/wait)
- reasoning: string
- risk_level: string (low/medium/high)
"""
return await self.llm.query(prompt)
except LLMError as e:
logger.error(f"LLM analysis failed: {e}")
raise
async def cleanup(self) -> None:
"""Clean up plugin resources."""
try:
if hasattr(self, 'near'):
await self.near.close()
if hasattr(self, 'market'):
await self.market.close()
logger.info("ArbitragePlugin cleaned up successfully")
except Exception as e:
logger.error(f"Cleanup failed: {e}")
raise AgentError(f"Failed to cleanup plugin: {e}")
async def main():
"""Run the arbitrage strategy example."""
from near_swarm.plugins import PluginLoader
try:
# Load plugin
loader = PluginLoader()
plugin = await loader.load_plugin("arbitrage-agent")
# Analyze opportunity
result = await plugin.evaluate({
"operation": "analyze",
"pair": "NEAR/USDC"
})
print("\n=== Analysis Result ===")
print(f"Status: {result['status']}")
if result['status'] == 'opportunity_found':
print(f"\nProfit Potential: {result['profit_potential']:.2%}")
print(f"Recommended Action: {result['recommended_action']}")
print(f"Risk Level: {result['risk_level']}")
print(f"\nReasoning: {result['reasoning']}")
else:
print(f"\nReason: {result['reason']}")
except AgentError as e:
print(f"\nError: {e}")
except Exception as e:
print(f"\nUnexpected error: {e}")
finally:
if 'plugin' in locals():
await loader.unload_plugin("arbitrage-agent")
if __name__ == "__main__":
asyncio.run(main())