forked from rosinality/stylegan2-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathaudio_model.py
133 lines (117 loc) · 4.81 KB
/
audio_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import torch
import torch.nn as nn
import librosa
import numpy as np
class ConvNorm(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, padding):
super(ConvNorm, self).__init__()
self.conv_norm = nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, padding=padding),
nn.BatchNorm1d(out_channels),
nn.ReLU(inplace=True),
)
def forward(self, x):
return self.conv_norm(x)
class HParams:
def __init__(self):
self.conv_size = 128
self.out_size = 512
self.kernel_size = 5
self.drop_out = 0.2
self.average_pool = True
class DeepCNN(nn.Module):
def __init__(self, hparams):
super(DeepCNN, self).__init__()
self.out_size = hparams.out_size
padding_size = int((hparams.kernel_size-1)/2)
self.conv_module = nn.Sequential(
ConvNorm(48, hparams.conv_size, hparams.kernel_size, padding_size),
nn.MaxPool1d(4),
ConvNorm(hparams.conv_size, hparams.conv_size, hparams.kernel_size, padding_size),
nn.MaxPool1d(4),
ConvNorm(hparams.conv_size, hparams.conv_size, hparams.kernel_size, padding_size),
nn.MaxPool1d(4),
ConvNorm(hparams.conv_size, hparams.conv_size, hparams.kernel_size, padding_size),
nn.MaxPool1d(4),
ConvNorm(hparams.conv_size, hparams.conv_size, hparams.kernel_size, padding_size),
)
if hparams.average_pool:
self.last_pool = nn.AvgPool1d(7)
else:
self.last_pool = nn.MaxPool1d(7)
self.linear = nn.Sequential(
nn.Linear(hparams.conv_size, hparams.conv_size),
nn.ReLU(),
nn.Dropout(hparams.drop_out),
nn.Linear(hparams.conv_size, hparams.out_size))
def forward(self, mel):
out = self.conv_module(mel)
out = self.last_pool(out)
out = out.squeeze(2)
# out.transpose_(1,2)
# out = self.attention(out)
out = self.linear(out)
return out
def fwd_wo_pool(self, mel):
out = self.conv_module(mel)
out = out.permute(0,2,1)
return self.linear(out)
class MelClassifier(nn.Module):
def __init__(self, hparams):
super(MelClassifier, self).__init__()
self.conv_module = DeepCNN(hparams)
# self.linear = nn.Linear(hparams.out_size, 30)
def forward(self, mel):
out = self.conv_module(mel)
# out.transpose_(1,2)
# out = self.attention(out)
out = torch.sigmoid(out)
return out
class SiameseNet(nn.Module):
def __init__(self, hparams):
super(SiameseNet, self).__init__()
self.cnn = DeepCNN(hparams)
self.out_size = hparams.out_size
self.conv_size = hparams.conv_size
# self.similarity_fn = torch.nn.CosineSimilarity(1, eps=1e-6)
def forward(self, anchor, positive_sample, negative_sample):
negative_sample = negative_sample.view(-1, 48, 1876)
concatenated = torch.cat((anchor, positive_sample, negative_sample), 0)
out = self.cnn(concatenated)
anchor_rep = out[:anchor.shape[0],:]
pos_rep = out[anchor.shape[0]:-negative_sample.shape[0],:]
neg_rep = out[-negative_sample.shape[0]:,:]
return anchor_rep, pos_rep, neg_rep
def inference(self, input_mel):
return self.cnn(input_mel)
def inference_with_audio(self, input_audio, input_sr=44100, target_sr=16000):
if input_sr != target_sr:
input_audio = np.copy(input_audio)
input_audio = librosa.core.resample(input_audio, input_sr, target_sr)
mel = librosa.feature.melspectrogram(y=input_audio, sr=16000, n_fft=512, hop_length=256, n_mels=48)
return self.inference(torch.Tensor(mel).to('cuda'))
def infer_mid_level(self, input_mel, max_pool=True):
layers = self.cnn.conv_module
x = input_mel
for layer in layers[:7]:
x = layer(x)
if max_pool:
return torch.nn.functional.max_pool1d(x, x.shape[-1])
else:
return x
class TransferNet(nn.Module):
def __init__(self, in_dim, out_dim, neck_dim=100):
super(TransferNet, self).__init__()
self.transfer = nn.Sequential(
nn.Linear(in_dim, out_dim),
# nn.Linear(out_dim, out_dim)
# nn.ReLU(),
# nn.Linear(out_dim, out_dim),
# nn.Linear(in_dim, neck_dim),
# nn.Linear(neck_dim, out_dim)
)
self.bias = nn.Parameter(torch.zeros(out_dim), requires_grad=False)
self.std = nn.Parameter(torch.zeros(out_dim),requires_grad=False)
def forward(self, audio_embedding):
# return self.transfer(audio_embedding)
return nn.functional.tanh(self.transfer(audio_embedding)) * 2 * self.std + self.bias