-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsubplots_demo.py
191 lines (157 loc) · 6.36 KB
/
subplots_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
"""
=================================================
Creating multiple subplots using ``plt.subplots``
=================================================
`.pyplot.subplots` creates a figure and a grid of subplots with a single call,
while providing reasonable control over how the individual plots are created.
For more advanced use cases you can use `.GridSpec` for a more general subplot
layout or `.Figure.add_subplot` for adding subplots at arbitrary locations
within the figure.
"""
# sphinx_gallery_thumbnail_number = 11
import matplotlib.pyplot as plt
import numpy as np
# Some example data to display
x = np.linspace(0, 2 * np.pi, 400)
y = np.sin(x ** 2)
###############################################################################
# A figure with just one subplot
# """"""""""""""""""""""""""""""
#
# ``subplots()`` without arguments returns a `.Figure` and a single
# `~.axes.Axes`.
#
# This is actually the simplest and recommended way of creating a single
# Figure and Axes.
fig, ax = plt.subplots()
ax.plot(x, y)
ax.set_title('A single plot')
###############################################################################
# Stacking subplots in one direction
# """"""""""""""""""""""""""""""""""
#
# The first two optional arguments of `.pyplot.subplots` define the number of
# rows and columns of the subplot grid.
#
# When stacking in one direction only, the returned `axs` is a 1D numpy array
# containing the list of created Axes.
fig, axs = plt.subplots(2)
fig.suptitle('Vertically stacked subplots')
axs[0].plot(x, y)
axs[1].plot(x, -y)
###############################################################################
# If you are creating just a few Axes, it's handy to unpack them immediately to
# dedicated variables for each Axes. That way, we can use ``ax1`` instead of
# the more verbose ``axs[0]``.
fig, (ax1, ax2) = plt.subplots(2)
fig.suptitle('Vertically stacked subplots')
ax1.plot(x, y)
ax2.plot(x, -y)
###############################################################################
# To obtain side-by-side subplots, pass parameters ``1, 2`` for one row and two
# columns.
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.suptitle('Horizontally stacked subplots')
ax1.plot(x, y)
ax2.plot(x, -y)
###############################################################################
# Stacking subplots in two directions
# """""""""""""""""""""""""""""""""""
#
# When stacking in two directions, the returned `axs` is a 2D numpy array.
#
# If you have to set parameters for each subplot it's handy to iterate over
# all subplots in a 2D grid using ``for ax in axs.flat:``.
fig, axs = plt.subplots(2, 2)
axs[0, 0].plot(x, y)
axs[0, 0].set_title('Axis [0,0]')
axs[0, 1].plot(x, y, 'tab:orange')
axs[0, 1].set_title('Axis [0,1]')
axs[1, 0].plot(x, -y, 'tab:green')
axs[1, 0].set_title('Axis [1,0]')
axs[1, 1].plot(x, -y, 'tab:red')
axs[1, 1].set_title('Axis [1,1]')
for ax in axs.flat:
ax.set(xlabel='x-label', ylabel='y-label')
# Hide x labels and tick labels for top plots and y ticks for right plots.
for ax in axs.flat:
ax.label_outer()
###############################################################################
# You can use tuple-unpacking also in 2D to assign all subplots to dedicated
# variables:
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
fig.suptitle('Sharing x per column, y per row')
ax1.plot(x, y)
ax2.plot(x, y**2, 'tab:orange')
ax3.plot(x, -y, 'tab:green')
ax4.plot(x, -y**2, 'tab:red')
for ax in fig.get_axes():
ax.label_outer()
###############################################################################
# Sharing axes
# """"""""""""
#
# By default, each Axes is scaled individually. Thus, if the ranges are
# different the tick values of the subplots do not align.
fig, (ax1, ax2) = plt.subplots(2)
fig.suptitle('Axes values are scaled individually by default')
ax1.plot(x, y)
ax2.plot(x + 1, -y)
###############################################################################
# You can use *sharex* or *sharey* to align the horizontal or vertical axis.
fig, (ax1, ax2) = plt.subplots(2, sharex=True)
fig.suptitle('Aligning x-axis using sharex')
ax1.plot(x, y)
ax2.plot(x + 1, -y)
###############################################################################
# Setting *sharex* or *sharey* to ``True`` enables global sharing across the
# whole grid, i.e. also the y-axes of vertically stacked subplots have the
# same scale when using ``sharey=True``.
fig, axs = plt.subplots(3, sharex=True, sharey=True)
fig.suptitle('Sharing both axes')
axs[0].plot(x, y ** 2)
axs[1].plot(x, 0.3 * y, 'o')
axs[2].plot(x, y, '+')
###############################################################################
# For subplots that are sharing axes one set of tick labels is enough. Tick
# labels of inner Axes are automatically removed by *sharex* and *sharey*.
# Still there remains an unused empty space between the subplots.
#
# The parameter *gridspec_kw* of `.pyplot.subplots` controls the grid
# properties (see also `.GridSpec`). For example, we can reduce the height
# between vertical subplots using ``gridspec_kw={'hspace': 0}``.
#
# `.label_outer` is a handy method to remove labels and ticks from subplots
# that are not at the edge of the grid.
fig, axs = plt.subplots(3, sharex=True, sharey=True, gridspec_kw={'hspace': 0})
fig.suptitle('Sharing both axes')
axs[0].plot(x, y ** 2)
axs[1].plot(x, 0.3 * y, 'o')
axs[2].plot(x, y, '+')
# Hide x labels and tick labels for all but bottom plot.
for ax in axs:
ax.label_outer()
###############################################################################
# Apart from ``True`` and ``False``, both *sharex* and *sharey* accept the
# values 'row' and 'col' to share the values only per row or column.
fig, axs = plt.subplots(2, 2, sharex='col', sharey='row',
gridspec_kw={'hspace': 0, 'wspace': 0})
(ax1, ax2), (ax3, ax4) = axs
fig.suptitle('Sharing x per column, y per row')
ax1.plot(x, y)
ax2.plot(x, y**2, 'tab:orange')
ax3.plot(x + 1, -y, 'tab:green')
ax4.plot(x + 2, -y**2, 'tab:red')
for ax in axs.flat:
ax.label_outer()
###############################################################################
# Polar axes
# """"""""""
#
# The parameter *subplot_kw* of `.pyplot.subplots` controls the subplot
# properties (see also `.Figure.add_subplot`). In particular, this can be used
# to create a grid of polar Axes.
fig, (ax1, ax2) = plt.subplots(1, 2, subplot_kw=dict(projection='polar'))
ax1.plot(x, y)
ax2.plot(x, y ** 2)
plt.show()