-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy path20130508-LowRankLagged.tex
419 lines (378 loc) · 15.7 KB
/
20130508-LowRankLagged.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
% \documentclass[handout]{beamer}
\documentclass{beamer}
\mode<presentation>
{
\usetheme{default}
\usefonttheme[onlymath]{serif}
% \usetheme{Singapore}
% \usetheme{Warsaw}
% \usetheme{Malmoe}
% \useinnertheme{circles}
% \useoutertheme{infolines}
% \useinnertheme{rounded}
\setbeamercovered{transparent=10}
}
\usepackage[english]{babel}
\usepackage[latin1]{inputenc}
\usepackage{alltt,listings,multirow,ulem,siunitx}
\usepackage[absolute,overlay]{textpos}
\TPGrid{1}{1}
\usepackage{pdfpages}
\usepackage{multimedia}
\usepackage{multicol}
\newcommand\hmmax{0}
\newcommand\bmmax{0}
\usepackage{bm}
\usepackage{comment}
% font definitions, try \usepackage{ae} instead of the following
% three lines if you don't like this look
\usepackage{mathptmx}
\usepackage[scaled=.90]{helvet}
% \usepackage{courier}
\usepackage[T1]{fontenc}
\usepackage{tikz}
\usetikzlibrary{decorations.pathreplacing}
\usetikzlibrary{shadows,arrows,shapes.misc,shapes.arrows,shapes.multipart,arrows,decorations.pathmorphing,backgrounds,positioning,fit,petri,calc,shadows,chains,matrix}
% \usepackage{pgfpages}
% \pgfpagesuselayout{4 on 1}[a4paper,landscape,border shrink=5mm]
\usepackage{JedMacros}
\newcommand{\timeR}{t_{\mathrm{R}}}
\newcommand{\timeW}{t_{\mathrm{W}}}
\newcommand{\mglevel}{\ensuremath{\ell}}
\newcommand{\mglevelcp}{\ensuremath{\mglevel_{\mathrm{cp}}}}
\newcommand{\mglevelcoarse}{\ensuremath{\mglevel_{\mathrm{coarse}}}}
\newcommand{\mglevelfine}{\ensuremath{\mglevel_{\mathrm{fine}}}}
%solution and residual
\newcommand{\vx}{\ensuremath{x}}
\newcommand{\vc}{\ensuremath{\hat{x}}}
\newcommand{\vr}{\ensuremath{r}}
\newcommand{\vb}{\ensuremath{b}}
\renewcommand{\vs}{\mathbf{s}}
\newcommand{\vz}{\mathbf{z}}
% \newcommand{\vy}{\mathbf{y}}
\newcommand{\vu}{\mathbf{u}}
\newcommand{\vw}{\mathbf{w}}
% %\newcommand{\vf}{\mathbf{f}}
\newcommand{\vF}{\mathbf{F}}
\newcommand{\vG}{\mathbf{G}}
\newcommand{\vJ}{\mathbf{J}}
% \newcommand{\vM}{\mathbf{M}}
% \newcommand{\vY}{\mathbf{Y}}
\newcommand{\vI}{\mathbf{I}}
% \newcommand{\vE}{\mathbf{E}}
\title{Low-rank Quasi-Newton Updates for Robust Jacobian Lagging in Newton Methods}
\author{{\bf Jed Brown} and Peter Brune}
% - Use the \inst command only if there are several affiliations.
% - Keep it simple, no one is interested in your street address.
\institute
{
{Mathematics and Computer Science Division, Argonne National Laboratory}
}
\date{ANS M\&C, 2013-05-08}
% This is only inserted into the PDF information catalog. Can be left
% out.
\subject{Talks}
% If you have a file called "university-logo-filename.xxx", where xxx
% is a graphic format that can be processed by latex or pdflatex,
% resp., then you can add a logo as follows:
% \pgfdeclareimage[height=0.5cm]{university-logo}{university-logo-filename}
% \logo{\pgfuseimage{university-logo}}
% Delete this, if you do not want the table of contents to pop up at
% the beginning of each subsection:
% \AtBeginSubsection[]
% {
% \begin{frame}<beamer>
% \frametitle{Outline}
% \tableofcontents[currentsection,currentsubsection]
% \end{frame}
% }
\AtBeginSection[]
{
\begin{frame}<beamer>
\frametitle{Outline}
\tableofcontents[currentsection]
\end{frame}
}
% If you wish to uncover everything in a step-wise fashion, uncomment
% the following command:
% \beamerdefaultoverlayspecification{<+->}
\begin{document}
\lstset{language=C}
\normalem
\begin{frame}
\titlepage
\end{frame}
\input{slides/WhatMakesNonlinearAlgebraicProblemDifficult.tex}
\input{slides/WhyGlobalLinearization.tex}
\begin{frame}{Inexact Newton methods}
\begin{textblock}{0.18}[1,0](0.99,0)
\includegraphics[width=\textwidth]{figures/Newton}
\end{textblock}
\begin{itemize}
\item Standard form of a nonlinear system
\[ \vF(\vu) = 0 \]
\item Iteration
\begin{align*}
\text{Solve:} & \qquad \vJ(\vu) \vw = -\vF(\vu) \qquad (\text{Krylov}) \\
\text{Update:} & \qquad \vu^+ \gets \vu + \lambda \vw
\end{align*}
\item Quadratically convergent near root: $\abs{\vu^{n+1}-\vu^*} \in \bigO\Big(\abs{\vu^n-\vu^*}^2\Big)$
\item Picard is the same operation with a different $\vJ(\vu)$
\end{itemize}
% \begin{example}[Nonlinear Poisson]
% \begin{align*}
% \vF(\vu)=0 \quad &\sim\quad -\div\big[ (1+\vu^2) \grad \vu \big] - f = 0 \\
% \vJ(\vu)\vw \quad &\sim\quad -\div\big[(1+\vu^2)\grad \vw + 2uw\grad \vu \Big]
% \end{align*}
% \end{example}
\begin{example}[$\mathfrak p$-Bratu]
Suppose $\vF(\vu)$ is a discretization of \vspace{-1em}
\[ -\nabla \cdot \big( \eta \nabla u \big) - \lambda e^u - f = 0, \qquad \eta(\gamma) = (\epsilon^2+\gamma)^{\frac{\pfrak-2}{2}}, \quad \gamma = \half \abs{\nabla u}^2 . \]
Then $\vJ(\vu)\vw$ is a discretization of \vspace{-1em}
\[ -\nabla \cdot \big[ (\eta \bm 1 + \eta' \nabla u \otimes \nabla u) \nabla w \big] - \lambda e^{u} w . \]
\end{example}
\end{frame}
\input{slides/JFNKBottlenecks.tex}
\begin{frame}{Lagging}
\begin{itemize}
\item Lag the Jacobian (Shamanskii)
\begin{itemize}
\item Solve $\vJ(\vu_{\text{old}}) \vw = - \vF(\vu)$
\item[X] Less robust: $\vw$ may not be a descent direction
\item[X] Gives up quadratic convergence, but if $\vu_{\text{old}}$ is updated every $m$ steps, terminal convergence is superlinear
\end{itemize}
\item JFNK with lagged preconditioner
\begin{itemize}
\item Approximate $\vJ_{\text{mf}}(\vu)\vw = \frac{\vF(\vu+\epsilon \vw) - \vF(\vu)}{\epsilon}$ for chosen $\epsilon$
\item Occasionally to build preconditioner $P_{\text{old}} = \mathcal{P}\big[\vJ(\vu_{\text{old}})\big]$ using assembled operator
\item Iteratively solve: $P_{\text{old}}^{-1} \vJ_{\text{mf}}(\vu) \vw = - P_{\text{old}}^{-1} \vF(\vu)$
\item Same robust nonlinear convergence of standard Newton
\item[X] Residual $\vF$ is evaluated in every Krylov iteration
\item[X] Number of Krylov iterations increases when $P_{\text{old}}$ becomes stale
\item[X] Finite differencing noisy for ill-conditioned problems, sensitive to $\epsilon$
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Line Search: a scalar example}
Minimize: $f(x) = x^2 - \exp(-4 (x-2)^2)$, gradient $\vF(x) = \partial f/\partial x$
\includegraphics<1>[width=0.5\textwidth]{figures/LineSearch/SimpleExample}
\includegraphics<2>[width=0.5\textwidth]{figures/LineSearch/SimpleReformulatedOptimization}
\uncover{\includegraphics[width=0.5\textwidth]{figures/LineSearch/SimpleGradient}}
\begin{itemize} \vspace{-1ex}
\item Minimization problem with a unique minimum
\item What if we can't evaluate ``objective'' functional? \\
Root-finding problem with unique solution, but with singular points
\item<2> $\hat f(x) = \norm{\vF(x)}^2$ \alert{Minimization problem with multiple minima}
\end{itemize}
\end{frame}
\begin{frame}{Line Search}
\begin{itemize}
\item Backtracking: search in the 2-norm of the residual
\begin{itemize}
\item Find $\lambda$ such that $\norm{\vF(\vu + \lambda \vw)} < \norm{\vF(\vu)}$
\item Shorten using polynomial fit of recently-evaluated $\lambda$
\item Richardson (gradient descent) fails for a non-convex minimization problem
\item Requires no extra function evaluations if $\lambda=1$ provides sufficient decrease
\end{itemize}
\item Critical point line search: locally consistent with minimization problem
\begin{itemize}
\item Start with descent direction: $\vw^T \vF(\vu) < 0$
\item Find $\lambda$ such that $\vw^T \vF(\vu + \lambda \vw) = 0$ (use secant method in $\lambda$)
\item Satisfies the second Wolfe condition
\item Requires two residual evaluations in best case
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Quasi-Newton: Low-rank updates to $\vJ(\vu_{\text{old}})^{-1}$}
\begin{equation*}
\tilde \vJ_i(\vu_{\text{old}}) \vw = - \vF(\vu)
\end{equation*}
\begin{itemize}
\item $\vs_i = \vu_i - \vu_{i-1}$, \quad $z_i = \vF(\vu_i) - \vF(\vu_{i-1})$, \quad $\vJ_0^{-1} = \mathcal{P}\big[\vJ(\vu_{\text{old}})\big]^{-1}$
\end{itemize}
\begin{description}
\item[Broyden] Rank-1 update to the inverse Jacobian
\begin{equation*}
\tilde{\vJ}_{i}^{-1} = (\vI + \frac{(\vs_{i}-\tilde{\vJ}^{-1}_{i-1}\vz_{i}\vs_{i}^{\top})}{\vs_{i}^\top \tilde{\vJ}^{-1}_{i-1}\vz_{i}})
\tilde{\vJ}^{-1}_{i-1}.\
\end{equation*}
\item[BFGS] Broyden-Fletcher-Goldfarb-Shanno, a symmetric rank-2 update
\begin{equation*}
\tilde{\vJ}_{i}^{-1} = (\vI - \frac{\vs_{i} \vz_{i}^{\top}}{\vs_{i}^\top \vz_{i}})
\tilde{\vJ}^{-1}_{i-1}
(\vI - \frac{\vz_{i} \vs_{i}^{\top}}{\vs_{i}^{\top} \vz_{i}}) + \frac{\vs_{i}\vs_{i}^{\top}}{\vs_{i}^{\top}\vz_{i}},
\end{equation*}
\begin{itemize}
\item For linear problems: equivalent convergence rate to conjugate gradients
\end{itemize}
\end{description}
\end{frame}
\begin{frame}{Quasi-Newton was born in the optimization world}
\begin{itemize}
\item Broyden's method is nearly 50 years old.
\item Hessian information is often not available in optimization
\begin{itemize}
\item $J_0$ is very simple (diagonal, often the identity)
\item Quasi-Newton is used to build a better approximation
\item Restart occasionally to limit memory usage
\item More like integral operators ``compact plus identity'', only a few bad directions
\end{itemize}
\item We start with the ``best'' $\vJ_0^{-1} = \mathcal{P}\big[\vJ(\vu)\big]^{-1}$ (from Newton)
\begin{itemize}
\item Moderately expensive, but we're used to paying for it
\item Quasi-Newton used to counteract $\vJ_i^{-1}$ deteriorating in accuracy
\item Restart to ``refresh'' our approximation
\end{itemize}
\end{itemize}
\end{frame}
\input{slides/THI/Equations.tex}
\begin{frame}{Hydrostatic ice flow}
\begin{itemize}
\item Geometric multigrid
\item Rediscretized coarse operators
\item Block Jacobi/incomplete Cholesky smoother (for anisotropy)
\end{itemize}
\end{frame}
\begin{frame}{Numerical results: Hydrostatic ice flow}
\begin{tabular}{llll llll}
\toprule
Method & Lag & LS & Linear Solve & Its. & $F(u)$ & Jacobian & $P^{-1}$ \\
\midrule
LBFGS & 3 & cp & \texttt{preonly} & 15 & 31 & 4 & 15 \\
LBFGS & 3 & cp & \num{1e-05} & 10 & 21 & 3 & 68 \\
LBFGS & 6 & cp & \texttt{preonly} & 16 & 33 & 3 & 16 \\
LBFGS & 6 & cp & \num{1e-05} & 15 & 31 & 3 & 100 \\[1ex]
\only<1>{
Broyden & 3 & cp & \texttt{preonly} & 14 & 29 & 4 & 14 \\
Broyden & 3 & cp & \num{1e-05} & 12 & 25 & 3 & 76 \\
Broyden & 6 & cp & \texttt{preonly} & 18 & 37 & 3 & 18 \\
Broyden & 6 & cp & \num{1e-05} & 15 & 31 & 3 & 88 \\
}
\only<2>{
Newton & 0 & bt & \texttt{preonly} & 23 & 31 & 23 & 23 \\
Newton & 0 & bt & \num{1e-05} & 12 & 21 & 12 & 66 \\
Newton & 0 & cp & \texttt{preonly} & 14 & 29 & 14 & 14 \\
Newton & 0 & cp & \num{1e-05} & 6 & 13 & 6 & 38 \\
% Newton & 1 & bt & \texttt{preonly} & --- & --- & --- & --- \\
Newton & 1 & bt & \num{1e-05} & --- & --- & --- & --- \\
Newton & 1 & cp & \texttt{preonly} & 14 & 29 & 7 & 14 \\
Newton & 1 & cp & \num{1e-05} & 9 & 19 & 5 & 59 \\
Newton & 3 & cp & \texttt{preonly} & 15 & 31 & 4 & 15 \\
Newton & 3 & cp & \num{1e-05} & 12 & 25 & 3 & 74 \\
Newton & 6 & cp & \texttt{preonly} & 18 & 37 & 3 & 18 \\
Newton & 6 & cp & \num{1e-05} & 15 & 31 & 3 & 87
}
\only<3>{
JFNK & 0 & cp & \texttt{preonly} & 14 & 43 & 14 & 14 \\
JFNK & 0 & cp & \num{1e-05} & 6 & 83 & 6 & 38 \\
JFNK & 1 & cp & \texttt{preonly} & 15 & 46 & 8 & 15 \\
JFNK & 1 & cp & \num{1e-05} & 6 & 101 & 3 & 47 \\
JFNK & 3 & cp & \texttt{preonly} & 16 & 49 & 4 & 16 \\
JFNK & 3 & cp & \num{1e-05} & 6 & 155 & 2 & 74
}
\end{tabular}
\end{frame}
\begin{frame}{Large-deformation elasticity}
Find displacement vector $\uu$ such that $\nabla \cdot \Pi = 0$, where
\begin{align*}
F & = I - \nabla \uu & & \text{Deformation gradient} \\
E & = (F^T F - I)/2 & & \text{Green-Lagrange tensor} \\
S & = \lambda (\trace E) I + 2\mu E & & \text{Second Piola-Kirchoff tensor} \\
\Pi & = F \cdot S & & \text{First Piola-Kirchoff tensor}
\end{align*}
\begin{textblock}{0.45}[1,1](0.99,0.99)
\includegraphics[width=\textwidth]{figures/elast-b4q5}
\end{textblock}
\begin{itemize}
\item Manufactured solution
\item Discretize with $Q_3$ elements
\item Precondition with BoomerAMG
\end{itemize}
\end{frame}
\begin{frame}{Numerical results: Elasticity}
\begin{tabular}{llll llll}
\toprule
Method & Lag & LS & Linear Solve & Its. & $F(u)$ & Jacobian & $P^{-1}$ \\
\midrule
LBFGS & 3 & cp & \texttt{preonly} & 18 & 37 & 5 & 18 \\
LBFGS & 3 & cp & \num{1e-05} & 21 & 43 & 6 & 173 \\
LBFGS & 6 & cp & \texttt{preonly} & 24 & 49 & 4 & 24 \\
LBFGS & 6 & cp & \num{1e-05} & 30 & 61 & 5 & 266 \\[1ex]
\only<1>{
Newton & 0 & bt & \texttt{preonly} & 13 & 14 & 13 & 13 \\
Newton & 0 & bt & \num{1e-05} & 10 & 11 & 10 & 77 \\
Newton & 0 & cp & \texttt{preonly} & 11 & 23 & 11 & 11 \\
Newton & 0 & cp & \num{1e-05} & 8 & 17 & 8 & 60 \\
Newton & 1 & bt & \texttt{preonly} & 16 & 21 & 8 & 16 \\
Newton & 1 & bt & \num{1e-05} & 17 & 23 & 9 & 128 \\
Newton & 1 & cp & \texttt{preonly} & 15 & 31 & 8 & 15 \\
Newton & 1 & cp & \num{1e-05} & 13 & 27 & 7 & 103 \\
Newton & 3 & cp & \texttt{preonly} & 23 & 47 & 6 & 23 \\
Newton & 3 & cp & \num{1e-05} & 22 & 45 & 6 & 179 \\
Newton & 6 & cp & \texttt{preonly} & 36 & 73 & 6 & 36 \\
Newton & 6 & cp & \num{1e-05} & 35 & 71 & 5 & 294
}
\only<2>{
JFNK & 0 & cp & \texttt{preonly} & 11 & 23 & 11 & 11 \\
JFNK & 0 & cp & \num{1e-05} & 8 & 69 & 8 & 60 \\
JFNK & 1 & cp & \texttt{preonly} & 15 & 31 & 8 & 15 \\
JFNK & 1 & cp & \num{1e-05} & 7 & 2835 & 4 & 2827 \\
JFNK & 3 & cp & \texttt{preonly} & 23 & 47 & 6 & 23 \\
JFNK & 3 & cp & \num{1e-05} & 7 & 3143 & 2 & 3135
}
\end{tabular}
\end{frame}
\begin{frame}{Quasi-Newton}
\begin{itemize}
\item Quasi-Newton is effective for lagging setup
\item Line search quality can make a big difference
\item Still need good preconditioner to define $\tilde \vJ_0^{-1}$
\item Usage in PETSc
\begin{itemize}
\item No code modification
\item BFGS: \texttt{-snes\_type qn -snes\_qn\_restart\_type periodic -snes\_qn\_scale\_type jacobian}
\item See \texttt{-snes\_qn\_type broyden} and \texttt{badbroyden}
\item Support in PETSc 3.3, better in 3.4 (to be released Friday)
\end{itemize}
\item Non-symmetric problems
\begin{itemize}
\item BFGS needs symmetry, Broyden and Bad Broyden do not
\item In testing, Broyden was rarely worse, but not a big win either
\end{itemize}
\item What goes wrong?
\begin{itemize}
\item Operator changes in a high-rank way (e.g., diagonal shift).
\end{itemize}
\item We plan to extend PETSc to support complementarity problems
\end{itemize}
\end{frame}
\begin{frame}{Alternative: nonlinear solver composition}
\begin{itemize}
\item Nonlinear GMRES, Anderson mixing
\begin{itemize}
\item \texttt{-snes\_type ngmres}
\end{itemize}
\item Left nonlinear preconditioning
\begin{equation*}
\vu - \vG(\vF(\vu)) = 0
\end{equation*}
\item Right nonlinear preconditioning
\begin{equation*}
\vF(\vG(\vv)) = 0, \quad \vu = \vG(\vv)
\end{equation*}
\item Defining $\vG(\cdot)$ as a lagged linear solve moves ``Krylov'' acceleration to nonlinear problem
\item General framework for nonlinear solver composition
\begin{itemize}
\item Accelerate and improve robustness of FAS multigrid
\item Nonlinear domain decomposition (ASPIN is left-preconditioned Newton)
\item \texttt{-snes\_type ngmres -snes\_npc\_side right -npc\_snes\_type fas}
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Beyond global linearization: FAS multigrid}
\includegraphics[width=\textwidth]{figures/BruneNGMRESFAS.png}
\begin{itemize}
\item Geometric coarse grids and rediscretization
\end{itemize}
\end{frame}
\end{document}