-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_depth.py
276 lines (221 loc) · 10.8 KB
/
train_depth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import torch
import torch.optim as optim
from tensorboardX import SummaryWriter
import numpy as np
import os
import argparse
import time, datetime
import matplotlib; matplotlib.use('Agg')
from src import config, data
from src.checkpoints import CheckpointIO, write_ply
from collections import defaultdict
import shutil
from tqdm import tqdm
import igl
# Arguments
parser = argparse.ArgumentParser(
description='Train DepthNet model.'
)
parser.add_argument('config', type=str, help='Path to config file.')
parser.add_argument('--exit-after', type=int, default=-1,
help='Checkpoint and exit after specified number of seconds'
'with exit code 2.')
args = parser.parse_args()
cfg = config.load_config(args.config, 'configs/default.yaml')
device = torch.device("cuda:{}".format(cfg['training']['gpu']))
print("Training on gpu %d" % cfg['training']['gpu'])
# Set t0
t0 = time.time()
# Shorthands
out_dir = cfg['training']['out_dir']
batch_size = cfg['training']['batch_size']
backup_every = cfg['training']['backup_every']
exit_after = args.exit_after
model_selection_metric = cfg['training']['model_selection_metric']
if cfg['training']['model_selection_mode'] == 'maximize':
model_selection_sign = 1
elif cfg['training']['model_selection_mode'] == 'minimize':
model_selection_sign = -1
else:
raise ValueError('model_selection_mode must be '
'either maximize or minimize.')
# Output directory
if not os.path.exists(out_dir): os.makedirs(out_dir)
shutil.copyfile(args.config, os.path.join(out_dir, 'config.yaml'))
# Dataset
train_dataset = config.get_dataset('train', cfg)
train_name_list = train_dataset.models
val_dataset = config.get_dataset('val', cfg, return_idx=True)
vis_name_list = val_dataset.models
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=batch_size, num_workers=cfg['training']['n_workers'], shuffle=True,
collate_fn=data.collate_remove_none,
worker_init_fn=data.worker_init_fn)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=1, num_workers=cfg['training']['n_workers_val'], shuffle=False,
collate_fn=data.collate_remove_none,
worker_init_fn=data.worker_init_fn)
# For visualizations
vis_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=1, shuffle=False,
collate_fn=data.collate_remove_none,
worker_init_fn=data.worker_init_fn)
model_counter = defaultdict(int)
data_vis_list = []
# Build a data dictionary for visualization
iterator = iter(vis_loader)
for i in range(len(vis_loader)):
data_vis = next(iterator)
vis_name = vis_name_list[i]['model']
if cfg['generation']['vis_all']:
idx = data_vis['idx'].item()
model_dict = val_dataset.get_model_dict(idx)
category_id = model_dict.get('category', 'n/a')
category_name = val_dataset.metadata[category_id].get('name', 'n/a')
category_name = category_name.split(',')[0]
if category_name == 'n/a':
category_name = category_id
c_it = model_counter[category_id]
data_vis_list.append({'category': category_name, 'it': c_it, 'data': data_vis, 'name': vis_name})
model_counter[category_id] += 1
else:
vis_split = cfg['generation']['vis_split']
if i % vis_split == 0:
idx = data_vis['idx'].item()
model_dict = val_dataset.get_model_dict(idx)
category_id = model_dict.get('category', 'n/a')
category_name = val_dataset.metadata[category_id].get('name', 'n/a')
category_name = category_name.split(',')[0]
if category_name == 'n/a':
category_name = category_id
c_it = model_counter[category_id]
data_vis_list.append({'category': category_name, 'it': c_it, 'data': data_vis, 'name': vis_name})
model_counter[category_id] += 1
vis_loader_test = torch.utils.data.DataLoader(
val_dataset, batch_size=4, shuffle=False, num_workers=cfg['training']['n_workers_val'],
collate_fn=data.collate_remove_none,
worker_init_fn=data.worker_init_fn)
# Model
model = config.get_model(cfg, device=device, dataset=train_dataset)
# Generator
generator = config.get_generator(model, cfg, device=device)
# Intialize training
if cfg['training']['opt'] == "Adam":
optimizer = optim.Adam(model.parameters(), lr=cfg['training']['lr'])
if cfg['training']['opt'] == "SGD":
optimizer = optim.SGD(model.parameters(), lr=cfg['training']['lr'], momentum=0.9)
trainer = config.get_trainer(model, optimizer, cfg, device=device)
checkpoint_io = CheckpointIO(out_dir, model=model, optimizer=optimizer)
try:
load_dict = checkpoint_io.load(cfg['test']['model_file'], device=device)
except FileNotFoundError:
load_dict = dict()
epoch_it = load_dict.get('epoch_it', 0)
it = load_dict.get('it', 0)
metric_val_best = load_dict.get(
'loss_val_best', -model_selection_sign * np.inf)
if metric_val_best == np.inf or metric_val_best == -np.inf:
metric_val_best = -model_selection_sign * np.inf
print('Current best validation metric (%s): %.8f'
% (model_selection_metric, metric_val_best))
logger = SummaryWriter(os.path.join(out_dir, 'logs'))
# Shorthands
print_every = cfg['training']['print_every']
checkpoint_every = cfg['training']['checkpoint_every']
validate_every = cfg['training']['validate_every']
visualize_every = cfg['training']['visualize_every']
# Print model
nparameters = sum(p.numel() for p in model.parameters())
print('Total number of parameters: %d' % nparameters)
print('output path: ', cfg['training']['out_dir'])
vf_dict = dict()
for model_name in train_name_list:
obj_name = model_name['model'][:-5]
if obj_name not in vf_dict.keys():
mesh_path = os.path.join("./data/VTacO_mesh/mesh_obj", obj_name+".off")
if not os.path.exists(mesh_path):
mesh_path = os.path.join("./data/VTacO_mesh/mesh_obj", obj_name+".obj")
v, f = igl.read_triangle_mesh(mesh_path)
vf_obj = dict()
vf_obj['v'] = v.astype(np.float32)
vf_obj['f'] = f
vf_dict[obj_name] = vf_obj
while True:
epoch_it += 1
for batch in train_loader:
it += 1
if cfg['model']['train_tactile'] == False:
if cfg['model']['with_contact'] == False:
loss, loss_mano, loss_pc = trainer.train_step(batch, vf_dict)
else:
loss, loss_mano, loss_pc, loss_contact = trainer.train_step(batch, vf_dict)
logger.add_scalar('train/loss_contact', loss_contact, it)
logger.add_scalar('train/loss_mano', loss_mano, it)
else:
loss, loss_depth, loss_digit = trainer.train_step(batch, vf_dict)
logger.add_scalar('train/loss', loss, it)
# Print output
if print_every > 0 and (it % print_every) == 0:
t = datetime.datetime.now()
if cfg['model']['train_tactile'] == False:
if cfg['model']['with_contact'] == False:
print('[Epoch %02d] it=%03d, loss=%.4f, loss_mano=%.4f, loss_pc=%.5f, time: %.2fs, %02d:%02d'
% (epoch_it, it, loss, loss_mano, loss_pc, time.time() - t0, t.hour, t.minute))
else:
print('[Epoch %02d] it=%03d, loss=%.4f, loss_c=%.4f, loss_mano=%.4f, loss_pc=%.5f, time: %.2fs, %02d:%02d'
% (epoch_it, it, loss, loss_contact, loss_mano, loss_pc, time.time() - t0, t.hour, t.minute))
else:
if cfg['model']['encoder_hand']:
print('[Epoch %02d] it=%03d, loss=%.4f, loss_d=%.5f, loss_cam=%.5f, time: %.2fs, %02d:%02d'
% (epoch_it, it, loss, loss_depth, loss_digit, time.time() - t0, t.hour, t.minute))
else:
print('[Epoch %02d] it=%03d, loss=%.4f, loss_d=%.5f, time: %.2fs, %02d:%02d'
% (epoch_it, it, loss, loss_depth, time.time() - t0, t.hour, t.minute))
# Run validation
if validate_every > 0 and (it % validate_every) == 0:
eval_dict = trainer.evaluate(val_loader, vf_dict)
metric_val = eval_dict[model_selection_metric]
print('Validation metric (%s): %.4f'
% (model_selection_metric, metric_val))
if 'chamfer_distance' in eval_dict.keys():
print('Validation metric (%s): %.6f'
% ("chamfer_distance", eval_dict['chamfer_distance']))
for k, v in eval_dict.items():
logger.add_scalar('val/%s' % k, v, it)
if model_selection_sign * (metric_val - metric_val_best) > 0:
metric_val_best = metric_val
print('New best model (loss %.4f)' % (metric_val_best))
checkpoint_io.save('model_best.pt', epoch_it=epoch_it, it=it,
loss_val_best=metric_val_best)
# Save checkpoint
if (checkpoint_every > 0 and (it % checkpoint_every) == 0):
print('Saving checkpoint')
checkpoint_io.save('model.pt', epoch_it=epoch_it, it=it,
loss_val_best=metric_val_best)
# Backup if necessary
if (backup_every > 0 and (it % backup_every) == 0):
print('Backup checkpoint')
checkpoint_io.save('model_%d.pt' % it, epoch_it=epoch_it, it=it,
loss_val_best=metric_val_best)
# Visualize output
if visualize_every > 0 and (it % visualize_every) == 0:
print('Visualizing...')
if cfg['model']['train_tactile'] == False:
for data_vis in tqdm(data_vis_list):
mesh_hand = generator.generate_hand_mesh(data_vis['data'])
mesh_obj = generator.generate_obj_mesh_wnf(data_vis['data'])
mesh_hand.export(os.path.join(out_dir, 'vis', '{}_{}_{}_hand.off'.format(it, data_vis['category'], data_vis['it']+1)))
mesh_obj.export(os.path.join(out_dir, 'vis', '{}_{}_{}_obj.off'.format(it, data_vis['category'], data_vis['it']+1)))
else:
for batch in tqdm(vis_loader_test):
pred_pc_l, pred_name_l = generator.generate_tactile_pc(batch)
for idx_pc in range(5):
save_path_pc = os.path.join(out_dir, 'vis', '{}_{}_{}.ply'.format(it, pred_name_l[0], idx_pc+1))
write_ply(save_path_pc, pred_pc_l[0, idx_pc])
print("Finish visualizing!")
# Exit if necessary
if exit_after > 0 and (time.time() - t0) >= exit_after:
print('Time limit reached. Exiting.')
checkpoint_io.save('model.pt', epoch_it=epoch_it, it=it,
loss_val_best=metric_val_best)
exit(3)