forked from IntelPython/BlackScholes_bench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbs_erf_naive.py
38 lines (27 loc) · 822 Bytes
/
bs_erf_naive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# Copyright (C) 2017-2018 Intel Corporation
#
# SPDX-License-Identifier: MIT
import base_bs_erf
from math import log, sqrt, exp, erf
import numpy as np
invsqrt = lambda x: 1.0/sqrt(x)
def black_scholes ( nopt, price, strike, t, rate, vol, call, put ):
mr = -rate
sig_sig_two = vol * vol * 2
for i in range(nopt):
P = float( price [i] )
S = strike [i]
T = t [i]
a = log(P / S)
b = T * mr
z = T * sig_sig_two
c = 0.25 * z
y = invsqrt(z)
w1 = (a - b + c) * y
w2 = (a - b - c) * y
d1 = 0.5 + 0.5 * erf(w1)
d2 = 0.5 + 0.5 * erf(w2)
Se = exp(b) * S
call [i] = P * d1 - Se * d2
put [i] = call [i] - P + Se
base_bs_erf.run("Naive-loop", black_scholes, 4, 8, nparr=False, pass_args=True)