forked from IntelPython/BlackScholes_bench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbs_erf_numba_vec.py
42 lines (30 loc) · 977 Bytes
/
bs_erf_numba_vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# Copyright (C) 2017-2018 Intel Corporation
#
# SPDX-License-Identifier: MIT
import base_bs_erf
import numba as nb
from math import log, sqrt, exp, erf
def black_scholes_numba_opt(price, strike, t, mr, sig_sig_two):
P = price
S = strike
T = t
a = log(P / S)
b = T * mr
z = T * sig_sig_two
c = 0.25 * z
y = 1./sqrt(z)
w1 = (a - b + c) * y
w2 = (a - b - c) * y
d1 = 0.5 + 0.5 * erf(w1)
d2 = 0.5 + 0.5 * erf(w2)
Se = exp(b) * S
r = P * d1 - Se * d2
return complex(r, r - P + Se)
black_scholes_numba_opt_vec = nb.vectorize(nopython=True, fastmath=False)(black_scholes_numba_opt)
@nb.njit
def black_scholes(nopt, price, strike, t, rate, vol):
sig_sig_two = vol*vol*2
mr = -rate
black_scholes_numba_opt_vec(price, strike, t, mr, sig_sig_two)
if __name__ == '__main__':
base_bs_erf.run("Numba@vec-par", black_scholes, pass_args=False)