-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcustomized.py
62 lines (44 loc) · 2.32 KB
/
customized.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
from PIL import Image
import torch.nn as nn
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
from timm.models.vision_transformer import resize_pos_embed
from clip.clip import _convert_image_to_rgb
from .standard import CLIPRN101, CLIPViTB32
__all__ = ["CLIPRN101_448", "CLIPViTB32_448"]
transform = Compose([
Resize((448, 448), interpolation=Image.BICUBIC),
CenterCrop((448, 448)),
_convert_image_to_rgb,
ToTensor(),
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])
class CLIPRN101_448(CLIPRN101):
def __init__(self, args, src_list, dst_list):
super(CLIPRN101_448, self).__init__(args, src_list, dst_list)
# larger resolution
self.transform = transform
# resize CNN visual.attnpool.positional_embedding for larger resolution
num_patches = 196
pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, self.model.visual.attnpool.positional_embedding.size(-1), device=self.device),)
resized_pos_embed_weight = resize_pos_embed(self.model.visual.attnpool.positional_embedding.unsqueeze(0), pos_embed)
pos_embed = nn.Parameter(resized_pos_embed_weight.squeeze(0),)
self.model.visual.attnpool.positional_embedding = pos_embed
# downsample feature map
self.pool2d = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
class CLIPViTB32_448(CLIPViTB32):
def __init__(self, args, src_list, dst_list):
super(CLIPViTB32_448, self).__init__(args, src_list, dst_list)
# larger resolution
self.transform = transform
# resize ViT visual.positional_embedding for larger resolution
num_patches = 196
pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, self.model.visual.positional_embedding.size(-1), device=self.device),)
resized_pos_embed_weight = resize_pos_embed(self.model.visual.positional_embedding.unsqueeze(0), pos_embed)
pos_embed = nn.Parameter(resized_pos_embed_weight.squeeze(0),)
self.model.visual.positional_embedding = pos_embed
# downsample feature map
self.pool2d = nn.AvgPool2d(kernel_size=(2, 2), stride=2)