-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathANN
72 lines (56 loc) · 2.12 KB
/
ANN
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# -*- coding: utf-8 -*-
"""
Spyder Editor
This is a temporary script file.
"""
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('Churn_Modelling.csv')
X = dataset.iloc[:, 3:13].values
y = dataset.iloc[:, 13].values
# Encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X_1 = LabelEncoder()
X[:, 1] = labelencoder_X_1.fit_transform(X[:, 1])
labelencoder_X_2 = LabelEncoder()
X[:, 2] = labelencoder_X_2.fit_transform(X[:, 2])
onehotencoder = OneHotEncoder(categorical_features = [1])
X = onehotencoder.fit_transform(X).toarray()
X = X[:, 1:]
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# Part 2 - Now let's make the ANN!
# Importing the Keras libraries and packages
import keras
from keras.models import Sequential
from keras.layers import Dense
#initializin ann
classifier = Sequential()
## Adding the input layer and the first hidden layer
classifier.add(Dense(output_dim= 6, init='uniform', activation= 'relu', input_dim = 11 ))
#adding second hidden layer
classifier.add(Dense(output_dim= 6, init='uniform', activation= 'relu'))
#adding output layer
classifier.add(Dense(output_dim= 1, init='uniform', activation= 'sigmoid'))
#compiling ann
classifier.compile(optimizer= 'adam', loss= 'binary_crossentropy', metrics=['accuracy'])
#fitting ann to the training set
classifier.fit(X_train, y_train, batch_size =10, nb_epoch= 100 )
# Predicting the Test set results
y_pred = classifier.predict(X_test)
y_pred= (y_pred> 0.5)
#homework
new_prediction= classifier.predict(sc.transform(np.array([[0.0, 0, 600, 1, 40, 3, 60000, 2, 1, 1, 50000]])))
new_prediction= (new_prediction> 0.5)
# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)