forked from lyc102/ifem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgetfemmatrix.m
210 lines (207 loc) · 7.43 KB
/
getfemmatrix.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
function [eqn,T] = getfemmatrix(mesh,pde,fem,var)
%% GETFEMMATRIX generate matrices based on finite element method
%
% [eqn,T] = getfemmatrix(mesh,pde,fem,pdedata) returns an eqn structure for
% matrix equations and T structure for the underlying mesh.
%
% Input arguments
%
%
% mesh.shpae: 'square', 'Lshape', 'circle', 'lake'
% mesh.type: 'uniform', 'adaptive'
% mesh.size: default is 1e5
%
% ---------- symmetric and positive definite systems -------------------
% pde fem var
% 'Poisson' 'P1','P2','P3' 'jump': jump diffusion
% 'osc': oscillate diffusion
% 'Maxwell' 'ND0'
%
% ---------- saddle point system -------------------
% pde fem var
% 'Stokes' 'P2P0','P2P1','CRP0','P1BP1'
% 'isoP2P0','isoP2P1'
% 'RTP0','BDMP0'
% 'Darcy' 'RT0','BDM1' 'jump': random jump diffusion
% 'anisotropic': tensor
% 'Biharmonic' 'P1','P2','P3'
%
%
% See also for examples
%
% comparesolvers
%
% Copyright (C) Long Chen. See COPYRIGHT.txt for details.
%% Mesh
if isfield(mesh,'node') && isfield(mesh,'elem')
node = mesh.node;
elem = mesh.elem;
end
if ~isfield(mesh,'size')
mesh.size = 1e5; % default size is 100,000
end
if ~isfield(mesh,'shape')
mesh.shape = 'square';
end
if ~isfield(mesh,'type')
mesh.type = 'uniform';
end
% estimate n0 and refinement level
L = floor(log2(mesh.size)/2);
n = ceil(sqrt(mesh.size/4^L)); % number of nodes in one direction
% types of meshes
if strcmp(mesh.type,'adaptive')
switch lower(mesh.shape)
case 'square'
load('squareadaptivemesh','node','elem');
case 'lshape'
load('Lshapeadaptivemesh','node','elem');
case 'circle'
load('circleadaptivemesh','node','elem');
case 'lake'
load('lakemesh','node','elem');
end
else
switch lower(mesh.shape)
case 'square'
[node,elem] = squaremesh([0 1 0 1], 1/n);
case 'lshape'
[node,elem] = squaremesh([-1,1,-1,1],2/n);
[node,elem] = delmesh(node,elem,'x>0 & y<0');
case 'circle'
[node,elem] = circlemesh(0,0,1,3/n);
case 'lake'
load('lakemesh','node','elem');
end
end
bdFlag = setboundary(node,elem,'Dirichlet');
showmesh(node,elem);
%% FEM
option.solver = 'none';
switch upper(pde)
%% Poisson equation
case 'POISSON'
if ~exist('pdedata','var')
Poissonpde = sincosdata;
else
switch lower(var)
case 'jump'
Poissonpde = Kelloggdata;
case 'osc'
Poissonpde = oscdiffdata;
end
end
switch upper(fem)
case 'P1'
for k = 1:L
[node,elem,bdFlag] = uniformrefine(node,elem,bdFlag);
end
[soln,eqn,info] = Poisson(node,elem,bdFlag,Poissonpde,option);
case 'P2'
for k = 1:L-1
[node,elem,bdFlag] = uniformrefine(node,elem,bdFlag);
end
[soln,eqn,info] = PoissonP2(node,elem,bdFlag,Poissonpde,option);
case 'P3'
for k = 1:L-2
[node,elem,bdFlag] = uniformrefine(node,elem,bdFlag);
end
[soln,eqn,info] = PoissonP3(node,elem,bdFlag,Poissonpde,option);
end
%% Stokes equation: saddle point system
case 'STOKES'
if ~exist('pdedata','var')
Stokespde = Stokesdata0;
else
switch lower(var)
case 'jump'
Stokespde = Stokesdata0; % to add an interface one
end
end
for k = 1:L-1
[node,elem,bdFlag] = uniformrefine(node,elem,bdFlag);
end
switch upper(fem)
% all elements lead to system with similar sizes
case 'P2P1'
[soln,eqn,info] = StokesP2P1(node,elem,bdFlag,Stokespde,option);
case 'P2P0'
[soln,eqn,info] = StokesP2P0(node,elem,bdFlag,Stokespde,option);
case 'ISOP2P1'
[soln,eqn,info] = StokesisoP2P1(node,elem,bdFlag,Stokespde,option);
case 'ISOP2P0'
[soln,eqn,info] = StokesisoP2P0(node,elem,bdFlag,Stokespde,option);
case 'CRP0'
[soln,eqn,info] = StokesCRP0(node,elem,bdFlag,Stokespde,option);
case 'CRP1'
[soln,eqn,info] = StokesCRP1(node,elem,bdFlag,Stokespde,option);
case 'P1BP1'
[soln,eqn,info] = StokesP1bP1(node,elem,bdFlag,Stokespde,option);
case 'RTP0'
[soln,eqn,info] = StokesRT0(node,elem,bdFlag,Stokespde,option);
case 'BDMP0'
[soln,eqn,info] = StokesBDM1B(node,elem,bdFlag,Stokespde,option);
end
%% Darcy equation: saddle point system
case 'DARCY'
if ~exist('pdedata','var')
Darcypde = Darcydata1; % 'isotropic'
else
switch lower(var)
case 'jump'
Darcypde = Darcydata3;
case 'anisotropic'
Darcypde = Darcydata2;
end
end
switch upper(fem)
case 'RT0'
[p,u,eqn,info] = DarcyRT0(node,elem,bdFlag,Darcypde,option);
% case 'BDM1'
% [p,u,eqn,info] = DarcyBDM1(node,elem,bdFlag,pde,option);
end
%% Maxwell equation
case 'MAXWELL'
if ~exist('pdedata','var')
Maxwelldata = eddycurrentdata1;
else
Maxwelldata = eddycurrentdata1; % add more cases
end
for k = 1:L-1
[node,elem,bdFlag] = uniformrefine(node,elem,bdFlag);
end
switch upper(fem)
case 'ND0'
[u,edge,eqn] = eddycurrent(node,elem,bdFlag,Maxwelldata,option);
% case 'BDM1'
% [p,u,eqn,info] = DarcyBDM1(node,elem,bdFlag,pde,option);
end
%% Biharmonic equation: saddle point system
case 'BIHARMONIC'
if ~exist('pdedata','var')
Biharmonicpde = biharmonicdata;
else
Biharmonicpde = biharmonicdata; % more cases
end
switch upper(fem)
case 'P1'
for k = 1:L
[node,elem,bdFlag] = uniformrefine(node,elem,bdFlag);
end
[soln,eqn,info] = biharmonicP1(node,elem,bdFlag,Biharmonicpde,option);
case 'P2'
for k = 1:L-1
[node,elem,bdFlag] = uniformrefine(node,elem,bdFlag);
end
[soln,eqn,info] = biharmonicP2(node,elem,bdFlag,Biharmonicpde,option);
case 'P3'
for k = 1:L-2
[node,elem,bdFlag] = uniformrefine(node,elem,bdFlag);
end
[soln,eqn,info] = biharmonicP3(node,elem,bdFlag,Biharmonicpde,option);
end
% case 'HODGELAP'
% case 'HELMHOLTZ'
end
%% Output the triangulation
T = struct('node',node,'elem',elem,'bdFlag',bdFlag);