-
-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathmain.cpp
1123 lines (1020 loc) · 37.4 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// airspy-fmradion - Software decoder for FM broadcast radio with RTL-SDR
//
// Copyright (C) 2013, Joris van Rantwijk.
// Copyright (C) 2015 Edouard Griffiths, F4EXB
// Copyright (C) 2018-2024 Kenji Rikitake, JJ1BDX
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with this program; if not, see http://www.gnu.org/licenses/gpl-2.0.html
#include <atomic>
#include <csignal>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <fmt/format.h>
#include <getopt.h>
#include <memory>
#include <signal.h>
#include <sys/time.h>
#include <unistd.h>
#include "AirspyHFSource.h"
#include "AirspySource.h"
#include "AmDecode.h"
#include "AudioOutput.h"
#include "DataBuffer.h"
#include "FileSource.h"
#include "FilterParameters.h"
#include "FineTuner.h"
#include "FmDecode.h"
#include "FourthConverterIQ.h"
#include "MovingAverage.h"
#include "NbfmDecode.h"
#include "RtlSdrSource.h"
#include "SoftFM.h"
#include "Utility.h"
#include "git.h"
// define this for enabling coefficient monitor functions
// #undef COEFF_MONITOR
#define AIRSPY_FMRADION_VERSION "20241208-0"
// Flag to set graceful termination
// in process_signals()
static std::atomic_bool stop_flag(false);
static void usage() {
std::string usage_string =
"Usage: airspy-fmradion [options]\n"
" -m modtype Modulation type:\n"
" - fm (default)\n"
" - nbfm\n"
" - am\n"
" - dsb\n"
" - usb\n"
" - lsb\n"
" - cw (zeroed-in pitch: 500Hz)\n"
" - wspr (USB 1500Hz +- 100Hz)\n"
" -t devtype Device type:\n"
" - rtlsdr: RTL-SDR devices\n"
" - airspy: Airspy R2\n"
" - airspyhf: Airspy HF+\n"
" - filesource: File Source\n"
" -q Quiet mode\n"
" -c config Comma separated key=value configuration pairs or just "
"key for switches\n"
" See below for valid values per device type\n"
" -d devidx Device index, 'list' to show device list (default 0)\n"
" -M Disable stereo decoding\n"
" -R filename Write audio data as raw S16_LE samples\n"
" use filename '-' to write to stdout\n"
" -F filename Write audio data as raw FLOAT_LE samples\n"
" use filename '-' to write to stdout\n"
" -W filename Write audio data to RF64/WAV S16_LE file\n"
" use filename '-' to write to stdout\n"
" (Pipe is not supported)\n"
" -G filename Write audio data to RF64/WAV FLOAT_LE file\n"
" use filename '-' to write to stdout\n"
" (Pipe is not supported)\n"
#if defined(LIBSNDFILE_MP3_ENABLED)
" -C filename Write audio data to MP3 file\n"
" of VBR -V 1 (experimental)\n"
" use filename '-' to write to stdout\n"
#endif // LIBSNDFILE_MP3_ENABLED
" -P device_num Play audio via PortAudio device index number\n"
" use string '-' to specify the default PortAudio "
"device\n"
" -T filename Write pulse-per-second timestamps\n"
" use filename '-' to write to stdout\n"
" -X Shift pilot phase (for Quadrature Multipath Monitor)\n"
" (-X is ignored under mono mode (-M))\n"
" -U Set deemphasis to 75 microseconds (default: 50)\n"
" -f filtername Filter type:\n"
" For FM:\n"
" - wide: same as default\n"
" - default: none after conversion\n"
" - medium: +-156kHz\n"
" - narrow: +-121kHz\n"
" For AM:\n"
" - wide: +-9kHz\n"
" - default: +-6kHz\n"
" - medium: +-4.5kHz\n"
" - narrow: +-3kHz\n"
" For NBFM:\n"
" - wide: +-20kHz, with +-17kHz deviation\n"
" - default: +-10kHz\n"
" - medium: +-8kHz\n"
" - narrow: +-6.25kHz\n"
" -l dB Set IF squelch level to minus given value of dB\n"
" -E stages Enable multipath filter for FM\n"
" (For stable reception only:\n"
" turn off if reception becomes unstable)\n"
" -r ppm Set IF offset in ppm (range: +-1000000ppm)\n"
" (This option affects output pitch and timing:\n"
" use for the output timing compensation only!)\n"
"\n"
"Configuration options for RTL-SDR devices\n"
" freq=<int> Frequency of radio station in Hz (default 100000000)\n"
" valid values: 10M to 2.2G (working range depends on "
"device)\n"
" srate=<int> IF sample rate in Hz (default 1152000)\n"
" (valid ranges: [900001, 3200000]))\n"
" gain=<float> Set LNA gain in dB, or 'auto',\n"
" or 'list' to just get a list of valid values (default "
"auto)\n"
" blklen=<int> Set audio buffer size in seconds (default RTL-SDR "
"default)\n"
" agc Enable RTL AGC mode (default disabled)\n"
" antbias Enable antenna bias (default disabled)\n"
"\n"
"Configuration options for Airspy devices:\n"
" freq=<int> Frequency of radio station in Hz (default 100000000)\n"
" valid values: 24M to 1.8G\n"
" srate=<int> IF sample rate in Hz. Depends on Airspy firmware and "
"libairspy support\n"
" Airspy firmware and library must support dynamic "
"sample rate query. (default 10000000)\n"
" lgain=<int> LNA gain in dB. 'list' to just get a list of valid "
"values: (default 8)\n"
" mgain=<int> Mixer gain in dB. 'list' to just get a list of valid "
"values: (default 8)\n"
" vgain=<int> VGA gain in dB. 'list' to just get a list of valid "
"values: (default 8)\n"
" antbias Enable antenna bias (default disabled)\n"
" lagc Enable LNA AGC (default disabled)\n"
" magc Enable mixer AGC (default disabled)\n"
"\n"
"Configuration options for Airspy HF devices:\n"
" freq=<int> Frequency of radio station in Hz (default 100000000)\n"
" valid values: 192k to 31M, and 60M to 260M\n"
" srate=<int> IF sample rate in Hz.\n"
" Depends on Airspy HF firmware and libairspyhf support\n"
" Airspy HF firmware and library must support dynamic\n"
" sample rate query. (default 384000)\n"
" hf_att=<int> HF attenuation level and AGC control\n"
" 0: enable AGC, no attenuation\n"
" 1 ~ 8: disable AGC, apply attenuation of value * 6dB\n"
"\n"
"Configuration options for (experimental) FileSource devices:\n"
" freq=<int> Frequency of radio station in Hz\n"
" srate=<int> IF sample rate in Hz.\n"
" filename=<string> Source file name.\n"
" Supported encodings: FLOAT, S24_LE, S16_LE\n"
" zero_offset Set if the source file is in zero offset,\n"
" which requires Fs/4 IF shifting.\n"
" blklen=<int> Set block length in samples.\n"
" raw Set if the file is raw binary.\n"
" format=<string> Set the file format for the raw binary file.\n"
" (formats: U8_LE, S8_LE, S16_LE, S24_LE, FLOAT)\n"
"\n";
fmt::print(stderr, "{}", usage_string);
}
static void badarg(const char *label) {
usage();
fmt::println(stderr, "ERROR: Invalid argument for {}", label);
exit(1);
}
static bool get_device(std::vector<std::string> &devnames, DevType devtype,
Source **srcsdr, int devidx) {
// Get device names.
switch (devtype) {
case DevType::RTLSDR:
RtlSdrSource::get_device_names(devnames);
break;
case DevType::Airspy:
AirspySource::get_device_names(devnames);
break;
case DevType::AirspyHF:
AirspyHFSource::get_device_names(devnames);
break;
case DevType::FileSource:
FileSource::get_device_names(devnames);
break;
}
if (devidx < 0 || (unsigned int)devidx >= devnames.size()) {
if (devidx != -1) {
fmt::println(stderr, "ERROR: invalid device index {}", devidx);
}
fmt::println(stderr, "Found {} devices:", (unsigned int)devnames.size());
for (unsigned int i = 0; i < devnames.size(); i++) {
fmt::println(stderr, "{:2}: {}", i, devnames[i]);
}
return false;
}
fmt::println(stderr, "using device {}: {}", devidx, devnames[devidx]);
// Open receiver devices.
switch (devtype) {
case DevType::RTLSDR:
*srcsdr = new RtlSdrSource(devidx);
break;
case DevType::Airspy:
*srcsdr = new AirspySource(devidx);
break;
case DevType::AirspyHF:
*srcsdr = new AirspyHFSource(devidx);
break;
case DevType::FileSource:
*srcsdr = new FileSource(devidx);
break;
}
return true;
}
// Signal masks to let these signals handled by a dedicated thread.
static sigset_t old_signalmask, signalmask;
// Signal handling thread code, started from main().
// See APUE 3rd Figure 12.16.
static void *process_signals(void *arg) {
int err, signum;
for (;;) {
// wait for a signal
err = sigwait(&signalmask, &signum);
if (err != 0) {
fmt::println(stderr, "ERROR: sigwait failed, ({})", strerror(err));
exit(1);
}
switch (signum) {
case SIGINT:
case SIGQUIT:
case SIGTERM:
stop_flag.store(true);
psignal(signum, "\nStopping by getting signal");
break;
default:
psignal(signum, "\nERROR: unexpected signal");
exit(1);
}
}
}
// Main program.
int main(int argc, char **argv) {
int devidx = 0;
int pcmrate = FmDecoder::sample_rate_pcm;
bool stereo = true;
OutputMode outmode = OutputMode::RAW_INT16;
std::string filename("-");
int portaudiodev = -1;
bool quietmode = false;
std::string ppsfilename;
FILE *ppsfile = nullptr;
bool enable_squelch = false;
double squelch_level_db = 150.0;
bool pilot_shift = false;
bool deemphasis_na = false;
int multipathfilter_stages = 0;
bool ifrate_offset_enable = false;
double ifrate_offset_ppm = 0;
std::string config_str;
std::string devtype_str;
DevType devtype;
std::string modtype_str("fm");
ModType modtype = ModType::FM;
std::string filtertype_str("default");
FilterType filtertype = FilterType::Default;
std::vector<std::string> devnames;
Source *srcsdr = 0;
int err;
pthread_t sigmask_thread_id;
// Perform signal mask on SIGINT, SIGQUIT, and SIGTERM.
// See APUE 3rd Figure 12.16.
sigemptyset(&signalmask);
sigaddset(&signalmask, SIGINT);
sigaddset(&signalmask, SIGQUIT);
sigaddset(&signalmask, SIGTERM);
if ((err = pthread_sigmask(SIG_BLOCK, &signalmask, &old_signalmask)) != 0) {
fmt::println(stderr, "ERROR: can not mask signals ({})", strerror(err));
exit(1);
}
// Start thread to catch the masked signals.
err = pthread_create(&sigmask_thread_id, NULL, process_signals, 0);
if (err != 0) {
fmt::println(stderr,
"ERROR: unable to create pthread of process_signals({})",
strerror(err));
exit(1);
}
// Print starting messages.
fmt::println(stderr, "airspy-fmradion Version {}", AIRSPY_FMRADION_VERSION);
fmt::print(stderr, "Software FM/AM radio for ");
fmt::println(stderr, "Airspy R2, Airspy HF+, and RTL-SDR");
if (git::IsPopulated()) {
fmt::print(stderr, "Git Commit SHA1: {:.{}}", git::CommitSHA1().data(),
static_cast<int>(git::CommitSHA1().length()));
if (git::AnyUncommittedChanges()) {
fmt::print(stderr, " with uncommitted changes");
}
fmt::println(stderr, "");
fmt::println(stderr, "Git branch: {:.{}}", git::Branch().data(),
static_cast<int>(git::Branch().length()));
} else {
fmt::println(stderr, "Git commit unknown");
}
fmt::println(stderr, "VOLK Version = {}.{}.{}", VOLK_VERSION_MAJOR,
VOLK_VERSION_MINOR, VOLK_VERSION_MAINT);
#if defined(LIBSNDFILE_MP3_ENABLED)
fmt::println(stderr, "libsndfile MP3 support enabled");
#endif // LIBSNDFILE_MP3_ENABLED
const struct option longopts[] = {
{"modtype", optional_argument, nullptr, 'm'},
{"devtype", optional_argument, nullptr, 't'},
{"quiet", required_argument, nullptr, 'q'},
{"config", optional_argument, nullptr, 'c'},
{"dev", required_argument, nullptr, 'd'},
{"mono", no_argument, nullptr, 'M'},
{"raw", required_argument, nullptr, 'R'},
{"float", required_argument, nullptr, 'F'},
{"wav", required_argument, nullptr, 'W'},
{"wavfloat", required_argument, nullptr, 'G'},
{"play", optional_argument, nullptr, 'P'},
{"pps", required_argument, nullptr, 'T'},
{"pilotshift", no_argument, nullptr, 'X'},
{"usa", no_argument, nullptr, 'U'},
{"filtertype", optional_argument, nullptr, 'f'},
{"squelch", required_argument, nullptr, 'l'},
{"multipathfilter", required_argument, nullptr, 'E'},
{"ifrateppm", optional_argument, nullptr, 'r'},
#if defined(LIBSNDFILE_MP3_ENABLED)
{"mp3fmaudio", required_argument, nullptr, 'C'},
#endif // LIBSNDFILE_MP3_ENABLED
{nullptr, no_argument, nullptr, 0}};
int c, longindex;
#if defined(LIBSNDFILE_MP3_ENABLED)
const char *optstring = "m:t:c:d:MR:F:W:G:f:l:P:T:qXUE:r:C:";
#else // !LIBSNDFILE_MP3_ENABLED
const char *optstring = "m:t:c:d:MR:F:W:G:f:l:P:T:qXUE:r:";
#endif // LIBSNDFILE_MP3_ENABLED
while ((c = getopt_long(argc, argv, optstring, longopts, &longindex)) >= 0) {
switch (c) {
case 'm':
modtype_str.assign(optarg);
break;
case 't':
devtype_str.assign(optarg);
break;
case 'c':
config_str.assign(optarg);
break;
case 'd':
if (!Utility::parse_int(optarg, devidx)) {
devidx = -1;
}
break;
case 'M':
stereo = false;
break;
case 'R':
outmode = OutputMode::RAW_INT16;
filename = optarg;
break;
case 'F':
outmode = OutputMode::RAW_FLOAT32;
filename = optarg;
break;
case 'W':
outmode = OutputMode::WAV_INT16;
filename = optarg;
break;
case 'G':
outmode = OutputMode::WAV_FLOAT32;
filename = optarg;
break;
case 'f':
filtertype_str.assign(optarg);
break;
case 'l':
if (!Utility::parse_dbl(optarg, squelch_level_db) ||
squelch_level_db < 0) {
badarg("-l");
}
enable_squelch = true;
break;
case 'P':
outmode = OutputMode::PORTAUDIO;
if (0 == strncmp(optarg, "-", 1)) {
portaudiodev = -1;
} else if (!Utility::parse_int(optarg, portaudiodev) ||
portaudiodev < 0) {
badarg("-P");
}
break;
case 'T':
ppsfilename = optarg;
break;
case 'q':
quietmode = true;
break;
case 'X':
pilot_shift = true;
break;
case 'U':
deemphasis_na = true;
break;
case 'E':
if (!Utility::parse_int(optarg, multipathfilter_stages) ||
multipathfilter_stages < 1) {
badarg("-E");
}
break;
case 'r':
ifrate_offset_enable = true;
if (!Utility::parse_dbl(optarg, ifrate_offset_ppm) ||
std::fabs(ifrate_offset_ppm) > 1000000.0) {
badarg("-r");
}
break;
#if defined(LIBSNDFILE_MP3_ENABLED)
case 'C':
outmode = OutputMode::MP3_FMAUDIO;
filename = optarg;
break;
#endif // LIBSNDFILE_MP3_ENABLED
default:
usage();
fmt::println(stderr, "ERROR: Invalid command line options");
exit(1);
}
}
if (optind < argc) {
usage();
fmt::println(stderr, "ERROR: Unexpected command line options");
exit(1);
}
double squelch_level;
if (enable_squelch) {
squelch_level = pow(10.0, -(squelch_level_db / 20.0));
} else {
squelch_level = 0;
}
if (strcasecmp(devtype_str.c_str(), "rtlsdr") == 0) {
devtype = DevType::RTLSDR;
} else if (strcasecmp(devtype_str.c_str(), "airspy") == 0) {
devtype = DevType::Airspy;
} else if (strcasecmp(devtype_str.c_str(), "airspyhf") == 0) {
devtype = DevType::AirspyHF;
} else if (strcasecmp(devtype_str.c_str(), "filesource") == 0) {
devtype = DevType::FileSource;
} else {
fmt::println(
stderr,
"ERROR: wrong device type (-t option) must be one of the following:");
fmt::println(stderr, " rtlsdr, airspy, airspyhf, filesource");
exit(1);
}
if (strcasecmp(modtype_str.c_str(), "fm") == 0) {
modtype = ModType::FM;
} else if (strcasecmp(modtype_str.c_str(), "nbfm") == 0) {
modtype = ModType::NBFM;
stereo = false;
} else if (strcasecmp(modtype_str.c_str(), "am") == 0) {
modtype = ModType::AM;
stereo = false;
} else if (strcasecmp(modtype_str.c_str(), "dsb") == 0) {
modtype = ModType::DSB;
stereo = false;
} else if (strcasecmp(modtype_str.c_str(), "usb") == 0) {
modtype = ModType::USB;
stereo = false;
} else if (strcasecmp(modtype_str.c_str(), "lsb") == 0) {
modtype = ModType::LSB;
stereo = false;
} else if (strcasecmp(modtype_str.c_str(), "cw") == 0) {
modtype = ModType::CW;
stereo = false;
} else if (strcasecmp(modtype_str.c_str(), "wspr") == 0) {
modtype = ModType::WSPR;
stereo = false;
} else {
fmt::println(stderr, "Modulation type string unsuppored");
exit(1);
}
if (strcasecmp(filtertype_str.c_str(), "default") == 0) {
filtertype = FilterType::Default;
} else if (strcasecmp(filtertype_str.c_str(), "medium") == 0) {
filtertype = FilterType::Medium;
} else if (strcasecmp(filtertype_str.c_str(), "narrow") == 0) {
filtertype = FilterType::Narrow;
} else if (strcasecmp(filtertype_str.c_str(), "wide") == 0) {
filtertype = FilterType::Wide;
} else {
fmt::println(stderr, "Filter type string unsuppored");
exit(1);
}
// Open PPS file.
if (!ppsfilename.empty()) {
if (ppsfilename == "-") {
fmt::println(stderr, "writing pulse-per-second markers to stdout");
ppsfile = stdout;
} else {
fmt::println(stderr, "writing pulse-per-second markers to '{}'",
ppsfilename);
ppsfile = fopen(ppsfilename.c_str(), "w");
if (ppsfile == nullptr) {
fmt::println(stderr, "ERROR: can not open '{}' ({})", ppsfilename,
strerror(errno));
exit(1);
}
}
switch (modtype) {
case ModType::FM:
fmt::println(ppsfile, "# pps_index sample_index unix_time if_level");
break;
case ModType::NBFM:
case ModType::AM:
case ModType::DSB:
case ModType::USB:
case ModType::LSB:
case ModType::CW:
case ModType::WSPR:
fmt::println(ppsfile, "# block unix_time if_level");
break;
}
fflush(ppsfile);
}
// Prepare output writer.
std::unique_ptr<AudioOutput> audio_output;
// Set output device first, then print the configuration to stderr.
switch (outmode) {
case OutputMode::RAW_INT16:
audio_output.reset(
new SndfileOutput(filename, pcmrate, stereo,
SF_FORMAT_RAW | SF_FORMAT_PCM_16 | SF_ENDIAN_LITTLE));
fmt::println(
stderr,
"writing raw 16-bit integer little-endian audio samples to '{}'",
filename);
break;
case OutputMode::RAW_FLOAT32:
audio_output.reset(
new SndfileOutput(filename, pcmrate, stereo,
SF_FORMAT_RAW | SF_FORMAT_FLOAT | SF_ENDIAN_LITTLE));
fmt::println(stderr,
"writing raw 32-bit float little-endian audio samples to '{}'",
filename);
break;
case OutputMode::WAV_INT16:
audio_output.reset(new SndfileOutput(filename, pcmrate, stereo,
SF_FORMAT_RF64 | SF_FORMAT_PCM_16 |
SF_ENDIAN_LITTLE));
fmt::println(stderr, "writing RF64/WAV int16 audio samples to '{}'",
filename);
break;
case OutputMode::WAV_FLOAT32:
audio_output.reset(
new SndfileOutput(filename, pcmrate, stereo,
SF_FORMAT_RF64 | SF_FORMAT_FLOAT | SF_ENDIAN_LITTLE));
fmt::println(stderr, "writing RF64/WAV float32 audio samples to '{}'",
filename);
break;
case OutputMode::PORTAUDIO:
audio_output.reset(new PortAudioOutput(portaudiodev, pcmrate, stereo));
if (portaudiodev == -1) {
fmt::print(stderr, "playing audio to PortAudio default device: ");
} else {
fmt::print(stderr,
"playing audio to PortAudio device {}: ", portaudiodev);
}
fmt::println(stderr, "name '{}'", audio_output->get_device_name());
break;
#if defined(LIBSNDFILE_MP3_ENABLED)
case OutputMode::MP3_FMAUDIO:
audio_output.reset(new SndfileOutput(
filename, pcmrate, stereo, SF_FORMAT_MPEG | SF_FORMAT_MPEG_LAYER_III));
fmt::println(stderr, "writing MP3 FM-broadcast audio samples to '{}'",
filename);
break;
#endif // LIBSNDFILE_MP3_ENABLED
}
if (!(*audio_output)) {
fmt::println(stderr, "ERROR: AudioOutput: {}", audio_output->error());
exit(1);
}
if (!get_device(devnames, devtype, &srcsdr, devidx)) {
exit(1);
}
if (!(*srcsdr)) {
fmt::println(stderr, "ERROR source: {}", srcsdr->error());
delete srcsdr;
exit(1);
}
// Configure device and start streaming.
if (!srcsdr->configure(config_str)) {
fmt::println(stderr, "ERROR: configuration: {}", srcsdr->error());
delete srcsdr;
exit(1);
}
double freq = srcsdr->get_configured_frequency();
fmt::print(stderr, "tuned for {:.7g} [MHz]", freq * 1.0e-6);
double tuner_freq = srcsdr->get_frequency();
if (tuner_freq != freq) {
fmt::print(stderr, ", device tuned for {:.7g} [MHz]", tuner_freq * 1.0e-6);
}
fmt::println(stderr, "");
double ifrate = srcsdr->get_sample_rate();
unsigned int if_blocksize;
bool enable_fs_fourth_downconverter = !(srcsdr->is_low_if());
bool enable_downsampling = true;
double if_decimation_ratio = 1.0;
double fm_target_rate = FmDecoder::sample_rate_if;
double am_target_rate = AmDecoder::internal_rate_pcm;
double nbfm_target_rate = NbfmDecoder::internal_rate_pcm;
// Configure blocksize.
switch (devtype) {
case DevType::Airspy:
if_blocksize = 65536;
break;
case DevType::AirspyHF:
// Common settings.
if_blocksize = 2048;
break;
case DevType::RTLSDR:
if_blocksize = 16384;
break;
case DevType::FileSource:
if_blocksize = 2048;
break;
}
// Status refresh rate.
// TODO: ~0.1sec / display (should be tuned)
unsigned int stat_rate =
(unsigned int)((double)ifrate / (double)if_blocksize / 9.0);
fmt::println(stderr, "stat_rate = {}", stat_rate);
// IF rate compensation if requested.
if (ifrate_offset_enable) {
ifrate *= 1.0 + (ifrate_offset_ppm / 1000000.0);
}
// Configure if_decimation_ratio.
switch (modtype) {
case ModType::FM:
if_decimation_ratio = ifrate / fm_target_rate;
break;
case ModType::NBFM:
if_decimation_ratio = ifrate / nbfm_target_rate;
break;
case ModType::AM:
case ModType::DSB:
case ModType::USB:
case ModType::LSB:
case ModType::CW:
case ModType::WSPR:
if_decimation_ratio = ifrate / am_target_rate;
break;
}
// Show decoding modulation type.
fmt::println(stderr, "Decoding modulation type: {}", modtype_str);
if (enable_squelch) {
fmt::println(stderr, "IF Squelch level: {:.9g} [dB]",
20 * log10(squelch_level));
}
double demodulator_rate = ifrate / if_decimation_ratio;
double total_decimation_ratio = ifrate / pcmrate;
double audio_decimation_ratio = demodulator_rate / pcmrate;
// Display ifrate compensation if applicable.
if (ifrate_offset_enable) {
fmt::println(stderr, "IF sample rate shifted by: {:.9g} [ppm]",
ifrate_offset_ppm);
}
// Display filter configuration.
fmt::print(stderr, "IF sample rate: {:.9g} [Hz], ", ifrate);
fmt::println(stderr, "IF decimation: / {:.9g}", if_decimation_ratio);
fmt::print(stderr, "Demodulator rate: {:.8g} [Hz], ", demodulator_rate);
fmt::println(stderr, "audio decimation: / {:.9g}", audio_decimation_ratio);
srcsdr->print_specific_parms();
// Create source data queue.
DataBuffer<IQSample> source_buffer;
// ownership will be transferred to thread therefore the unique_ptr with
// move is convenient if the pointer is to be shared with the main thread
// use shared_ptr (and no move) instead
std::unique_ptr<Source> up_srcsdr(srcsdr);
// Start reading from device in separate thread.
up_srcsdr->start(&source_buffer, &stop_flag);
// Reported by GitHub @bstalk: (!up_srcadr) doesn't work for gcc of Debian.
if (!(*up_srcsdr)) {
fmt::println(stderr, "ERROR: source: {}", up_srcsdr->error());
exit(1);
}
// Prevent aliasing at very low output sample rates.
double deemphasis = deemphasis_na ? FmDecoder::deemphasis_time_na
: FmDecoder::deemphasis_time_eu;
// Prepare Fs/4 downconverter.
FourthConverterIQ fourth_downconverter(false);
IfResampler if_resampler(ifrate, // input_rate
demodulator_rate // output_rate
);
enable_downsampling = (ifrate != demodulator_rate);
IQSampleCoeff amfilter_coeff;
bool fmfilter_enable;
IQSampleCoeff fmfilter_coeff;
IQSampleCoeff nbfmfilter_coeff;
switch (filtertype) {
case FilterType::Default:
amfilter_coeff = FilterParameters::jj1bdx_am_48khz_default;
fmfilter_enable = false;
fmfilter_coeff = FilterParameters::delay_3taps_only_iq;
nbfmfilter_coeff = FilterParameters::jj1bdx_nbfm_48khz_default;
break;
case FilterType::Medium:
amfilter_coeff = FilterParameters::jj1bdx_am_48khz_medium;
fmfilter_enable = true;
fmfilter_coeff = FilterParameters::jj1bdx_fm_384kHz_medium;
nbfmfilter_coeff = FilterParameters::jj1bdx_nbfm_48khz_medium;
break;
case FilterType::Narrow:
amfilter_coeff = FilterParameters::jj1bdx_am_48khz_narrow;
fmfilter_enable = true;
fmfilter_coeff = FilterParameters::jj1bdx_fm_384kHz_narrow;
nbfmfilter_coeff = FilterParameters::jj1bdx_nbfm_48khz_narrow;
break;
case FilterType::Wide:
amfilter_coeff = FilterParameters::jj1bdx_am_48khz_wide;
fmfilter_enable = false;
fmfilter_coeff = FilterParameters::delay_3taps_only_iq;
nbfmfilter_coeff = FilterParameters::jj1bdx_nbfm_48khz_wide;
break;
}
// Prepare AM decoder.
AmDecoder am(amfilter_coeff, // amfilter_coeff
modtype // mode
);
// Prepare FM decoder.
FmDecoder fm(fmfilter_enable, // fmfilter_enable
fmfilter_coeff, // fmfilter_coeff
stereo, // stereo
deemphasis, // deemphasis,
pilot_shift, // pilot_shift
static_cast<unsigned int>(multipathfilter_stages)
// multipath_stages
);
// Prepare narrow band FM decoder.
NbfmDecoder nbfm(nbfmfilter_coeff, // nbfmfilter_coeff
NbfmDecoder::freq_dev_normal // freq_dev
);
// Initialize moving average object for FM ppm monitoring.
switch (modtype) {
case ModType::FM:
case ModType::NBFM:
fmt::print(stderr, "audio sample rate: {} [Hz],", pcmrate);
fmt::println(stderr, " audio bandwidth: {} [Hz]",
(unsigned int)FmDecoder::bandwidth_pcm);
fmt::println(stderr, "audio totally decimated from IF by: {:.9g}",
total_decimation_ratio);
break;
case ModType::AM:
case ModType::DSB:
case ModType::USB:
case ModType::LSB:
case ModType::CW:
case ModType::WSPR:
fmt::println(stderr, "AM demodulator deemphasis: {:.9g} [µs]",
AmDecoder::deemphasis_time);
break;
}
if (modtype == ModType::FM) {
fmt::println(stderr, "FM demodulator deemphasis: {:.9g} [µs]", deemphasis);
if (multipathfilter_stages > 0) {
fmt::println(stderr, "FM IF multipath filter enabled, stages: {}",
multipathfilter_stages);
}
}
fmt::println(stderr, "Filter type: {}", filtertype_str);
// Initialize moving average object for FM ppm monitoring.
const unsigned int ppm_average_stages = 100;
MovingAverage<float> ppm_average(ppm_average_stages, 0.0f);
// Initialize moving average object for FM stereo pilot level monitoring.
const unsigned int pilot_level_average_stages = 10;
MovingAverage<float> pilot_level_average(pilot_level_average_stages, 0.0f);
float audio_level = 0;
double block_time = Utility::get_time();
float if_level = 0;
PilotState pilot_status = PilotState::NotDetected;
///////////////////////////////////////
// NOTE: main processing loop from here
///////////////////////////////////////
for (uint64_t block = 0; !stop_flag.load(); block++) {
// If the end has been reached at the source buffer,
// exit the main processing loop.
if (source_buffer.pull_end_reached()) {
stop_flag.store(true);
break;
}
// Pull next block from source buffer.
IQSampleVector iqsamples = source_buffer.pull();
IQSampleVector if_shifted_samples;
IQSampleVector if_downsampled_samples;
IQSampleVector if_samples;
// Initialize audio samples
SampleVector audiosamples(0);
// If no IF data is sent,
// go back and wait again
if (iqsamples.empty()) {
// go to the end of the for loop
continue;
}
double prev_block_time = block_time;
block_time = Utility::get_time();
// Fine tuning is not needed
// so long as the stability of the receiver device is
// within the range of +- 1ppm (~100Hz or less).
if (enable_fs_fourth_downconverter) {
// Fs/4 downconvering is required
// to avoid frequency zero offset
// because Airspy HF+ and RTL-SDR are Zero IF receivers
fourth_downconverter.process(iqsamples, if_shifted_samples);
} else {
if_shifted_samples = std::move(iqsamples);
}
// Downsample IF for the decoder.
if (enable_downsampling) {
if_resampler.process(if_shifted_samples, if_samples);
} else {
if_samples = std::move(if_shifted_samples);
}
// Downsample IF for the decoder.
size_t if_samples_size = if_samples.size();
bool if_exists = if_samples_size > 0;
double if_rms = 0.0;
if (!if_exists) {
// go to the end of the for loop
continue;
}
// Valid data exists in if_samples
// from here in the for loop
if (modtype == ModType::FM) {
// the minus factor is to show the ppm correction
// to make and not the one which has already been made
ppm_average.feed((fm.get_tuning_offset() / tuner_freq) * -1.0e6);
} else if (modtype == ModType::NBFM) {
ppm_average.feed((nbfm.get_tuning_offset() / tuner_freq) * -1.0e6);
}
// Add 1e-9 to log10() to prevent generating NaN
float if_level_db = 20 * log10(if_level + 1e-9);
// Decode signal from if_samples.
switch (modtype) {
case ModType::FM:
// Decode FM signal.
fm.process(if_samples, audiosamples);
if_rms = fm.get_if_rms();
break;
case ModType::NBFM:
// Decode narrow band FM signal.
nbfm.process(if_samples, audiosamples);
if_rms = nbfm.get_if_rms();
break;
case ModType::AM:
case ModType::DSB:
case ModType::USB:
case ModType::LSB:
case ModType::CW:
case ModType::WSPR:
// Decode AM/DSB/USB/LSB/CW signals.
am.process(if_samples, audiosamples);
if_rms = am.get_if_rms();
break;
}
// Measure (unsigned int)the average IF level.
if_level = 0.75 * if_level + 0.25 * if_rms;
size_t audiosamples_size = audiosamples.size();
bool audio_exists = audiosamples_size > 0;
if (!audio_exists) {
// go to the end of the for loop
continue;
}
// Valid audio data exists in audiosamples
// from here in the for loop
// Measure audio level
float audio_mean, audio_rms;
IQSampleDecodedVector audiosamples_float;
audiosamples_float.resize(audiosamples_size);
volk_64f_convert_32f(audiosamples_float.data(), audiosamples.data(),
audiosamples_size);
Utility::samples_mean_rms(audiosamples_float, audio_mean, audio_rms);
audio_level = 0.95 * audio_level + 0.05 * audio_rms;
// Set nominal audio volume (-6dB) when IF squelch is open,
// set to zero volume if the squelch is closed.
Utility::adjust_gain(audiosamples, if_rms >= squelch_level ? 0.5 : 0.0);
// Write samples to output.
audio_output->write(std::move(audiosamples));
// Show status messages for each block if not in quiet mode.
if (!quietmode) {
if ((block % stat_rate) == 0) {
// Stereo detection display
// Use a state machine here