-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcont.hs
94 lines (71 loc) · 2.73 KB
/
cont.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import IO
import Monad
import System
import Char
--import Control.Monad.Cont
newtype Cont r a = Cont { runCont :: ((a -> r) -> r) }
-- r is the final result type of the whole computation
instance Monad (Cont r) where
return a = Cont $ \k -> k a
-- i.e. return a = \k -> k a
(Cont c) >>= f = Cont $ \k -> c (\a -> runCont (f a) k)
-- i.e. c >>= f = \k -> c (\a -> f a k)
instance Functor (Cont r) where
fmap f = \c -> Cont (\k -> runCont c (k . f))
class (Monad m) => MonadCont m where
callCC :: ((a -> m b) -> m a) -> m a
instance MonadCont (Cont r) where
callCC f = Cont $ \k -> runCont (f (\a -> Cont $ \_ -> k a)) k
fun :: Int -> String
fun n = (`runCont` id) $ do
str <- callCC $ \exit1 -> do
-- define "exit1"
when (n < 10) (exit1 (show n))
let ns = map digitToInt (show (n `div` 2))
n' <- callCC $ \exit2 -> do
-- define "exit2"
when ((length ns) < 3) (exit2 (length ns))
when ((length ns) < 5) (exit2 n)
when ((length ns) < 7) $ do let ns' = map intToDigit (reverse ns)
exit1 (dropWhile (=='0') ns')
--escape 2 levels
return $ sum ns
return $ "(ns = " ++ (show ns) ++ ") " ++ (show n')
return $ "Answer: " ++ str
add :: Int -> Int -> Int
add x y = x + y
square :: Int -> Int
square x = x * x
--A simple module, no continuations
-- We assume some primitives add and square for the example:
pythagoras :: Int -> Int -> Int
pythagoras x y = add (square x) (square y)
--A simple module, using continuations
-- We assume CPS versions of the add and square primitives,
-- (note: the actual definitions of add'cps and square'cps are not
-- in CPS form, they just have the correct type)
add'cps :: Int -> Int -> (Int -> r) -> r
add'cps x y k = k (add x y)
square'cps :: Int -> (Int -> r) -> r
square'cps x k = k (square x)
pythagoras'cps :: Int -> Int -> (Int -> r) -> r
pythagoras'cps x y k =
square'cps x $ \x'squared ->
square'cps y $ \y'squared ->
add'cps x'squared y'squared $ \sum'of'squares ->
k sum'of'squares
add'cont :: Int -> Int -> Cont r Int
add'cont x y = return (add x y)
square'cont :: Int -> Cont r Int
square'cont x = return (square x)
pythagoras'cont :: Int -> Int -> Cont r Int
pythagoras'cont x y =
do x'squared <- square'cont x
y'squared <- square'cont y
sum'of'squares <- add'cont x'squared y'squared
return sum'of'squares
-- *Main> runCont (pythagoras'cont 3 4) print
-- 25
addThree'cont :: Int -> Cont r Int
addThree'cont x = return (x + 3)
example = runCont (square'cont 4 >>= addThree'cont) print