-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMAR_prepNetwork_03.22.2020_JB.py
164 lines (123 loc) · 5.32 KB
/
MAR_prepNetwork_03.22.2020_JB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#!/usr/bin/env python
# coding: utf-8
# last updated: 03.22.2020 by Johanna Belanger
#
# ## Morocco Accessibility Model Part 1: Prep Network
#
# ### Baseline model: This model measures travel time from villages in Tinghir Province, Morocco, to 3 key services of interest: health services, markets (commune centres), and schools. Travel mode is driving*.
#
# #### Walking will be modeled for villages over 5km from a road. This function is not currently in the model.
#
# Phases:
#
# - 1 | import and clean MAR network
# - 2 | snap origins and destinations to network (x3 for each facility)
# - 3 | run OD matrix to calculate driving travel time from each O to D. output is one value per each OD pair.
# - 4 | export each set of travel times to .csv and validate in QGIS
# - 5 | * Walking time model - create road features for areas over 5km from the network Graph
# - 6 | * Create Graph of walking time and add to driving Graph.
# - 7 | * Re-run steps 1-4 with new Graph object
# - 8 | * Join origins and destinations names columns to OD matrix and export output. Current functionality not available in gostnets.
#
# - *** phase has not been implemented
# In[ ]:
# configure script
import geopandas as gpd
import pandas as pd
import os, sys, time
# set file path of GOSTnets scripts
sys.path.append(os.path.join(r'/Users/jobelanger/GOSTnets-master/GOSTnets'))
import GOSTnets as gn
import networkx as nx
import osmnx as ox
from shapely.ops import unary_union
from shapely.wkt import loads
from shapely.geometry import LineString, MultiLineString, Point
import load_osm as losm
# set file path and load osm.pbf
pth = r'/Users/jobelanger/GOSTnets-master/morocco'
dataPth = r'/Users/jobelanger/GOSTnets-master/morocco/data'
outPth = r'/Users/jobelanger/GOSTnets-master/morocco/outputs'
# osm pbf last downloaded on: [insert date]
fil = r'morocco-latest.osm.pbf'
f = os.path.join(pth, 'data', fil)
mar = losm.OSM_to_network(f)
aoi = r'/Users/jobelanger/GOSTnets-master/mar/tinghirP.shp'
shp = gpd.read_file(os.path.join(dataPth, aoi))
print(shp)
shp_poly = shp.geometry.iloc[0]
# Check that the shape looks right
print(shp_poly)
# create G from tinghir roads within AOI
G = ox.graph_from_polygon(bound, network_type='drive')
# save the roads object as a pickle
gn.save(G, 'mar_unclean', './', pickle=True, nodes=False, edges=True)
# ## Step 2: Clean network and export as "clean" networkx Graph object.
# set the EPSG code for Morocco (MAR).
UTMZs = {'MAR':32629}
# do not adjust. OSM natively comes in ESPG 4326.
WGS = {'init':'epsg:4326'}
# this process can clean multiple networks at once in a loop style
countries = ['MAR']
# adjust to your input filepath:
base_pth = os.path.join(os.path.dirname(os.getcwd()), r'/Users/jobelanger/GOSTnets-master/morocco')
data_pth = os.path.join(base_pth, 'outputs')
for country in countries:
print('\n--- processing for: %s ---\n' % country)
print('start: %s\n' % time.ctime())
print('Outputs can be found at: %s\n' % (data_pth))
UTM = {'init': 'epsg:%d' % UTMZs[country]}
G = nx.read_gpickle(os.path.join(data_pth, 'mar_unclean.pickle'))
G = gn.clean_network(G, data_pth, country, UTM, WGS, 0.5, verbose = False)
nx.write_gpickle(G, os.path.join(data_pth, 'mar_clean.pickle'))
print('\nend: %s' % time.ctime())
print('\n--- processing complete for: %s ---' % country)
print(G)
# ### find the largest subgraph of the network graph.
# network analysis will only work correctly on graphs that are fully connected, otherwise there will be error.
# find largest sub graph of your Graph.
print('G before:')
print(G.size())
G_before = G.size()
largest = max(nx.strongly_connected_components(G), key=len)
G = nx.induced_subgraph(G, largest).copy()
print('G after:')
print(G.size())
G_after = G.size()
# calculate the percent of the network that is completed.
# analysis will only work correctly on graphs that are connected.
G_diff = (G_before - G_after)
G_diffPerc = (G_diff/G_before) * 100
G_percent = 100 - G_diffPerc
print(G_diff)
print(G_diffPerc)
print(G_percent)
# save the largest subgraph
gn.save(G, 'G_largest', './', pickle=True, nodes=False, edges=True)
# ### convert your network graph (default measurement in length) to a graph mesured in time.
#
# uses the gostnets convert_network_to_time function and takes a speed dictionary and road colmn attribute as inputs.
speedDict = {
'residential': 30, # kmph
'primary': 60, # kmph
'primary_link':55,
'trunk': 40,
'trunk_link':35,
'secondary': 50, # kmph
'secondary_link':45,
'tertiary':40,
'tertiary_link': 35,
'unclassified':30,
'road':20,
'crossing':20,
'living_street':10
}
# convert network to time in minutes. use factor of 1000 to convert from km to meters
G_time = gn.convert_network_to_time(G,
distance_tag = 'length',
road_col = 'infra_type',
speed_dict = speedDict,
factor = 1000)
# save G_time object as pickle
gn.save(G_time, 'G_time', './', pickle=True, nodes=False, edges=True)
# ### now move on to the next script to run the OD matrices: "MAR_OD_03.22.2020_JB"