-
Notifications
You must be signed in to change notification settings - Fork 48
/
assemble_data.py
209 lines (163 loc) · 6.54 KB
/
assemble_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
from collections import defaultdict
import glob
import hashlib
import os
import random
import requests
import shutil
import sys
import time
import cv2
from skimage import io
# Mapping: (class, Name, groups)
STYLE_MAPPING = [
(0, 'Bokeh', ['1543486@N25']),
(1, 'Bright', ['799643@N24']),
(2, 'Depth_of_Field', ['75418467@N00', '407825@N20']),
(3, 'Detailed', ['1670588@N24', '1131378@N23']),
(4, 'Ethereal', ['907784@N22']),
(5, 'Geometric_Composition', ['46353124@N00']),
(6, 'Hazy', ['38694591@N00']),
(7, 'HDR', ['99275357@N00']),
(8, 'Horror', ['29561404@N00']),
(9, 'Long_Exposure', ['52240257802@N01']),
(10, 'Macro', ['52241335207@N01']),
(11, 'Melancholy', ['70495179@N00']),
(12, 'Minimal', ['42097308@N00']),
(13, 'Noir', ['42109523@N00']),
(14, 'Romantic', ['54284561@N00']),
(15, 'Serene', ['1081625@N25']),
(16, 'Pastel', ['1055565@N24', '1371818@N25']),
(17, 'Sunny', ['1242213@N23']),
(18, 'Texture', ['70176273@N00']),
(19, 'Vintage', ['1222306@N25', "1176551@N24"]),
]
def main():
if len(sys.argv) != 5:
print('Usage: python assemble_data.py image_path train_file test_file images_per_style')
return
image_path = os.path.abspath(sys.argv[1])
train_file = sys.argv[2]
test_file = sys.argv[3]
images_per_style = int(sys.argv[4])
url_file = os.path.join(os.path.dirname(__file__), 'flickr_style_url.txt')
img_info_file = os.path.join(os.path.dirname(__file__), 'flickr_style_img_info.txt')
collect_image_style_url(url_file, images_per_style)
fetch_images(url_file, img_info_file, image_path)
generate_train_test_dataset(img_info_file, train_file, test_file, train_ratio=0.8)
def collect_image_style_url(url_file, photos_per_style):
if os.path.exists(url_file):
print('[Skip] Url file exists: {}'.format(url_file))
return
with open(url_file, 'w') as f:
for class_id, style, groups in STYLE_MAPPING:
print('Get_photos_for_style: {}'.format(style))
urls = get_image_url_from_group(groups, photos_per_style)
for url in urls:
print('{} {}'.format(url, class_id), file=f)
print('[Done] Url file saves to: {}'.format(url_file))
def get_image_url_from_group(groups, num_images):
params = {
'api_key': "d31c7cb60c57aa7483c5c80919df5371",
'per_page': 500, # 500 is the maximum allowed
'content_type': 1, # only photos
}
image_urls = []
for page in range(10):
params['page'] = page
for group in groups:
params['group_id'] = group
url = ('https://api.flickr.com/services/rest/?'
'method=flickr.photos.search&format=json&nojsoncallback=1'
'&api_key={api_key}&content_type={content_type}'
'&group_id={group_id}&page={page}&per_page={per_page}')
url = url.format(**params)
# Make the request and ensure it succeeds.
try:
page_data = requests.get(url).json()
except:
print(requests.get(url))
raise
if page_data['stat'] != 'ok':
raise Exception("Something is wrong: API returned {}".format(page_data['stat']))
for photo_item in page_data['photos']['photo']:
image_urls.append(_get_image_url(photo_item))
if len(image_urls) >= num_images:
return image_urls[:num_images]
raise Exception('Not enough images, only find {}'.format(len(image_urls)))
def _get_image_url(photo_item, size_flag=''):
"""
size_flag: string ['']
See http://www.flickr.com/services/api/misc.urls.html for options.
'': 500 px on longest side
'_m': 240px on longest side
"""
url = "http://farm{farm}.staticflickr.com/{server}/{id}_{secret}{size}.jpg"
return url.format(size=size_flag, **photo_item)
def fetch_images(url_file, img_info_file, image_folder):
if os.path.exists(img_info_file):
print('[Skip] Image info file exists: {}'.format(img_info_file))
return
os.makedirs(image_folder, exist_ok=True)
with open(url_file, 'r') as f:
lines = [line.strip() for line in f]
image_info = []
for line in lines:
url, class_id = line.strip().split()
image_name = _get_image_name(url, class_id)
image_file = os.path.join(image_folder, image_name)
# Download and verify
if not os.path.exists(image_file):
res = download_image(url, image_file)
res = verify_image(image_file)
if not res:
print('[FAILURE] {}'.format(url))
else:
image_info.append((image_file, class_id))
print('[SUCCESS] {}'.format(url))
with open(img_info_file, 'w') as f:
for image_file, class_id in image_info:
print('{} {}'.format(image_file, class_id), file=f)
print('Success: {}, Failure: {}'.format(len(image_info), len(lines) - len(image_info)))
print('[Done] Image info file saves to: {}'.format(img_info_file))
def _get_image_name(url, class_id):
return '{}_{}.jpg'.format(hashlib.sha1(url.encode()).hexdigest(), class_id)
def download_image(url, file):
try:
if os.path.exists(file):
return True
r = requests.get(url, stream=True)
if r.status_code == 200:
with open(file, 'wb') as f:
r.raw.decode_content = True
shutil.copyfileobj(r.raw, f)
return True
else:
return False
except KeyboardInterrupt:
raise Exception() # multiprocessing doesn't catch keyboard exceptions
except:
return False
def verify_image(img_file):
try:
img = io.imread(img_file)
except:
return False
return True
def generate_train_test_dataset(img_info_file, train_file, test_file, train_ratio=0.8):
class_to_images = defaultdict(list)
with open(img_info_file, 'r') as f:
lines = [line.strip() for line in f]
random.seed(1211)
random.shuffle(lines)
train_size = int(len(lines) * train_ratio)
with open(train_file, 'w') as f:
for line in lines[:train_size]:
print(line, file=f)
with open(test_file, 'w') as f:
for line in lines[train_size:]:
print(line, file=f)
print('[Done] Test file (size={}) saves to: {}'.format(train_size, train_file))
print('[Done] Train file (size={}) saves to: {}'.format(len(lines) - train_size, test_file))
if __name__ == '__main__':
main()