-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathlinpack_c.html
612 lines (576 loc) · 18 KB
/
linpack_c.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
<html>
<head>
<title>
LINPACK_C - Linear Algebra Library - Single Precision Complex
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
LINPACK_C <br> Linear Algebra Library <br> Single Precision Complex
</h1>
<hr>
<p>
<b>LINPACK_C</b>
is a MATLAB library which
solves systems of linear equations for a variety
of matrix types and storage modes,
by Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart.
</p>
<p>
MATLAB already provides a wide set of linear equation solvers.
This (partial) set of <b>LINPACK</b> routines is provided just for
testing and comparison.
</p>
<p>
<b>LINPACK</b> has officially been superseded by the LAPACK library. The LAPACK
library uses more modern algorithms and code structure. However,
the LAPACK library can be extraordinarily complex; what is done
in a single <b>LINPACK</b> routine may correspond to 10 or 20 utility
routines in LAPACK. This is fine if you treat LAPACK as a black
box. But if you wish to learn how the algorithm works, or
to adapt it, or to convert the code to another language, this
is a real drawback. This is one reason I still keep a copy
of <b>LINPACK</b> around.
</p>
<p>
Versions of <b>LINPACK</b> in various arithmetic precisions are available
through <a href = "http://www.netlib.org/">the NETLIB web site</a>.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this web page
are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>LINPACK_C</b> is available in
<a href = "../../cpp_src/linpack_c/linpack_c.html">a C++ version</a> and
<a href = "../../f77_src/linpack_c/linpack_c.html">a FORTRAN77 version</a> and
<a href = "../../f_src/linpack_c/linpack_c.html">a FORTRAN90 version</a> and
<a href = "../../m_src/linpack_c/linpack_c.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../m_src/blas1_c/blas1_c.html">
BLAS1_C</a>,
a MATLAB library which
contains basic linear algebra routines for vector-vector operations,
using single precision complex arithmetic.
</p>
<p>
<a href = "../../f_src/lapack_examples/lapack_examples.html">
LAPACK_EXAMPLES</a>,
a FORTRAN90 program which
demonstrates the use of the LAPACK linear algebra library.
</p>
<p>
<a href = "../../m_src/linpack_d/linpack_d.html">
LINPACK_D</a>,
a MATLAB library which
solves linear systems using double precision real arithmetic;
</p>
<p>
<a href = "../../m_src/linpack_s/linpack_s.html">
LINPACK_S</a>,
a MATLAB library which
solves linear systems using single precision real arithmetic;
</p>
<p>
<a href = "../../m_src/linpack_z/linpack_z.html">
LINPACK_Z</a>,
a MATLAB library which
solves linear systems using double precision complex arithmetic;
</p>
<p>
<a href = "../../m_src/linplus/linplus.html">
LINPLUS</a>,
a MATLAB library which
carries out simple manipulations of matrices in a variety of formats.
</p>
<p>
<a href = "../../m_src/templates/templates.html">
TEMPLATES</a>,
a MATLAB library which
carries out simple versions of various iterative solvers.
</p>
<p>
<a href = "../../m_src/test_mat/test_mat.html">
TEST_MAT</a>,
a MATLAB library which
defines test matrices.
</p>
<p>
<a href = "../../m_src/test_matrix/test_matrix.html">
TEST_MATRIX</a>,
a MATLAB library which
contains a collection of test matrices
by Nick Higham.
</p>
<h3 align = "center">
Author:
</h3>
<p>
Original FORTRAN77 version by Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart.
MATLAB version by John Burkardt.
</p>
<h3 align = "center">
Reference:
</h3>
<p>
<ol>
<li>
Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart,<br>
LINPACK User's Guide,<br>
SIAM, 1979,<br>
ISBN13: 978-0-898711-72-1,<br>
LC: QA214.L56.
</li>
<li>
Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,<br>
Algorithm 539,
Basic Linear Algebra Subprograms for Fortran Usage,<br>
ACM Transactions on Mathematical Software,<br>
Volume 5, Number 3, September 1979, pages 308-323.
</li>
</ol>
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "cabs1.m">cabs1.m</a>,
returns the L1 norm of a complex number.
</li>
<li>
<a href = "cchdc.m">cchdc.m</a>,
computes the Cholesky decomposition of a positive definite matrix;
</li>
<li>
<a href = "cchdd.m">cchdd.m</a>,
downdates a Cholesky decomposition of a positive definite matrix;
</li>
<li>
<a href = "cchex.m">cchex.m</a>,
updates a Cholesky decomposition of a positive definite matrix;
</li>
<li>
<a href = "cchud.m">cchud.m</a>,
updates a Cholesky decomposition of a positive definite matrix;
</li>
<li>
<a href = "cdotc.m">cdotc.m</a>,
computes the conjugated dot product of two vectors.
</li>
<li>
<a href = "cgbco.m">cgbco.m</a>,
factors a band matrix and estimates its condition.
</li>
<li>
<a href = "cgbdi.m">cgbdi.m</a>,
computes the determinant of a band matrix factored by CGBCO or CGBFA.
</li>
<li>
<a href = "cgbfa.m">cgbfa.m</a>,
factors a complex band matrix by elimination.
</li>
<li>
<a href = "cgbsl.m">cgbsl.m</a>,
solves a complex band system factored by CGBCO or CGBFA.
</li>
<li>
<a href = "cgeco.m">cgeco.m</a>,
factors a complex matrix and estimates its condition.
</li>
<li>
<a href = "cgedi.m">cgedi.m</a>,
computes the determinant and inverse of a matrix.
</li>
<li>
<a href = "cgefa.m">cgefa.m</a>,
factors a complex matrix by Gaussian elimination.
</li>
<li>
<a href = "cgesl.m">cgesl.m</a>,
solves a complex system factored by CGECO or CGEFA.
</li>
<li>
<a href = "cgtsl.m">cgtsl.m</a>,
solves a complex tridiagonal system.
</li>
<li>
<a href = "chico.m">chico.m</a>,
factors a Hermitian matrix and estimates its condition.
</li>
<li>
<a href = "chidi.m">chidi.m</a>,
computes inverse, determinant and interia of a Hermitian matrix.
</li>
<li>
<a href = "chifa.m">chifa.m</a>,
factors a Hermitian matrix by Gaussian elimination.
</li>
<li>
<a href = "chisl.m">chisl.m</a>,
solves a linear system factored by CHIFA or CHICO.
</li>
<li>
<a href = "chpco.m">chpco.m</a>,
factors a Hermitian packed matrix and estimates its condition.
</li>
<li>
<a href = "chpdi.m">chpdi.m</a>,
computes inverse, determinant and interia of a Hermitian packed matrix.
</li>
<li>
<a href = "chpfa.m">chpfa.m</a>,
factors a Hermitian packed matrix by Gaussian elimination.
</li>
<li>
<a href = "chpsl.m">chpsl.m</a>,
solves a linear system factored by CHPFA or CHPCO.
</li>
<li>
<a href = "cpbco.m">cpbco.m</a>,
factors a Hermitian positive definite band matrix
and estimates its condition.
</li>
<li>
<a href = "cpbdi.m">cpbdi.m</a>,
computes inverse, determinant and interia of a
Hermitian positive definite band matrix.
</li>
<li>
<a href = "cpbfa.m">cpbfa.m</a>,
factors a Hermitian positive definite band matrix
by Gaussian elimination.
</li>
<li>
<a href = "cpbsl.m">cpbsl.m</a>,
solves a linear system factored by CPBFA or CPBCO.
</li>
<li>
<a href = "cpoco.m">cpoco.m</a>,
factors a Hermitian positive definite matrix
and estimates its condition.
</li>
<li>
<a href = "cpodi.m">cpodi.m</a>,
computes inverse, determinant and interia of a
Hermitian positive definite matrix.
</li>
<li>
<a href = "cpofa.m">cpofa.m</a>,
factors a Hermitian positive definite matrix
by Gaussian elimination.
</li>
<li>
<a href = "cposl.m">cposl.m</a>,
solves a linear system factored by CPOFA or CPOCO.
</li>
<li>
<a href = "cppco.m">cppco.m</a>,
factors a Hermitian positive definite packed matrix
and estimates its condition.
</li>
<li>
<a href = "cppdi.m">cppdi.m</a>,
computes inverse, determinant and interia of a
Hermitian positive definite packed matrix.
</li>
<li>
<a href = "cppfa.m">cppfa.m</a>,
factors a Hermitian positive definite packed matrix
by Gaussian elimination.
</li>
<li>
<a href = "cppsl.m">cppsl.m</a>,
solves a linear system factored by CPPFA or CPPCO.
</li>
<li>
<a href = "cptsl.m">cptsl.m</a>,
solves a Hermitian positive definite tridiagonal system.
</li>
<li>
<a href = "cqrdc.m">cqrdc.m</a>,
computes the QR decomposition of a general rectangular complex matrix.
</li>
<li>
<a href = "cqrsl.m">cqrsl.m</a>,
uses the QR decomposition to solve linear systems and other tasks.
</li>
<li>
<a href = "crotg.m">crotg.m</a>,
computes a complex Givens rotation.
</li>
<li>
<a href = "csico.m">csico.m</a>,
factors a complex symmetric indefinite matrix
and estimates its condition.
</li>
<li>
<a href = "csidi.m">csidi.m</a>,
computes inverse and determinant of a
complex symmetric indefinite matrix.
</li>
<li>
<a href = "csign1.m">csign1.m</a>,
is a complex transfer-of-sign function.
</li>
<li>
<a href = "csign2.m">csign2.m</a>,
is a complex transfer-of-sign function.
</li>
<li>
<a href = "csrot.m">csrot.m</a>,
applies a complex Givens rotation.
</li>
<li>
<a href = "csvdc.m">csvdc.m</a>,
computes the singular value decomposition of a general
complex matrix.
</li>
<li>
<a href = "ctrco.m">ctrco.m</a>,
returns the condition of a complex triangular matrix.
</li>
<li>
<a href = "ctrdi.m">ctrdi.m</a>,
computes the inverse or determinant of a complex triangular matrix.
</li>
<li>
<a href = "ctrsl.m">ctrsl.m</a>,
solves a complex triangular linear system.
</li>
<li>
<a href = "i4_huge.m">i4_huge.m</a>,
returns a "huge" I4.
</li>
<li>
<a href = "icamax.m">icamax.m</a>,
indexes the complex vector element of maximum absolute value.
</li>
<li>
<a href = "r4_sign.m">r4_sign.m</a>,
returns the sign of an R4.
</li>
<li>
<a href = "scasum.m">scasum.m</a>,
takes the sum of the absolute values of a complex vector.
</li>
<li>
<a href = "scnrm2.m">scnrm2.m</a>,
computes the Euclidean norm of a complex vector.
</li>
<li>
<a href = "srotg.m">srotg.m</a>,
computes a real Givens rotation.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "linpack_c_test.m">
linpack_c_test.m</a>, calls all the tests;
</li>
<li>
<a href = "linpack_c_test_output.txt">linpack_c_test_output.txt</a>,
output from the tests.
</li>
<li>
<a href = "linpack_c_test01.m">
linpack_c_test01.m</a>, tests CCHDC;
</li>
<li>
<a href = "linpack_c_test02.m">
linpack_c_test02.m</a>, tests CCHEX;
</li>
<li>
<a href = "linpack_c_test03.m">
linpack_c_test03.m</a>, tests CCHUD;
</li>
<li>
<a href = "linpack_c_test04.m">
linpack_c_test04.m</a>, tests CGBCO;
</li>
<li>
<a href = "linpack_c_test05.m">
linpack_c_test05.m</a>, tests CGBFA and CGBSL;
</li>
<li>
<a href = "linpack_c_test06.m">
linpack_c_test06.m</a>, tests CGBFA and CGBDI;
</li>
<li>
<a href = "linpack_c_test07.m">
linpack_c_test07.m</a>, tests CGECO;
</li>
<li>
<a href = "linpack_c_test08.m">
linpack_c_test08.m</a>, tests CGEFA and CGESL;
</li>
<li>
<a href = "linpack_c_test09.m">
linpack_c_test09.m</a>, tests CGEFA and CGEDI;
</li>
<li>
<a href = "linpack_c_test10.m">
linpack_c_test10.m</a>, tests CGTSL;
</li>
<li>
<a href = "linpack_c_test11.m">
linpack_c_test11.m</a>, tests CHICO;
</li>
<li>
<a href = "linpack_c_test12.m">
linpack_c_test12.m</a>, tests CHIFA and CHISL;
</li>
<li>
<a href = "linpack_c_test13.m">
linpack_c_test13.m</a>, tests CHIFA and CHIDI;
</li>
<li>
<a href = "linpack_c_test14.m">
linpack_c_test14.m</a>, tests CHPCO;
</li>
<li>
<a href = "linpack_c_test15.m">
linpack_c_test15.m</a>, tests CHPFA and CHPSL;
</li>
<li>
<a href = "linpack_c_test16.m">
linpack_c_test16.m</a>, tests CHPFA and CHPDI;
</li>
<li>
<a href = "linpack_c_test17.m">
linpack_c_test17.m</a>, tests CPBCO;
</li>
<li>
<a href = "linpack_c_test18.m">
linpack_c_test18.m</a>, tests CPBFA and CPBSL;
</li>
<li>
<a href = "linpack_c_test19.m">
linpack_c_test19.m</a>, tests CPBFA and CPBDI;
</li>
<li>
<a href = "linpack_c_test20.m">
linpack_c_test20.m</a>, tests CPOCO;
</li>
<li>
<a href = "linpack_c_test21.m">
linpack_c_test21.m</a>, tests CPOFA and CPOSL;
</li>
<li>
<a href = "linpack_c_test22.m">
linpack_c_test22.m</a>, tests CPOFA and CPODI;
</li>
<li>
<a href = "linpack_c_test23.m">
linpack_c_test23.m</a>, tests CPPCO;
</li>
<li>
<a href = "linpack_c_test24.m">
linpack_c_test24.m</a>, tests CPPFA and CPPSL;
</li>
<li>
<a href = "linpack_c_test25.m">
linpack_c_test25.m</a>, tests CPPFA and CPPDI;
</li>
<li>
<a href = "linpack_c_test26.m">
linpack_c_test26.m</a>, tests CPTSL;
</li>
<li>
<a href = "linpack_c_test27.m">
linpack_c_test27.m</a>, tests CQRDC and CQRSL;
</li>
<li>
<a href = "linpack_c_test28.m">
linpack_c_test28.m</a>, tests CSICO;
</li>
<li>
<a href = "linpack_c_test29.m">
linpack_c_test29.m</a>, tests CSIFA and CSISL;
</li>
<li>
<a href = "linpack_c_test30.m">
linpack_c_test30.m</a>, tests CSIFA and CSIDI;
</li>
<li>
<a href = "linpack_c_test31.m">
linpack_c_test31.m</a>, tests CSPCO;
</li>
<li>
<a href = "linpack_c_test32.m">
linpack_c_test32.m</a>, tests CSPFA and CSPSL;
</li>
<li>
<a href = "linpack_c_test33.m">
linpack_c_test33.m</a>, tests CSPFA and CSPDI;
</li>
<li>
<a href = "linpack_c_test34.m">
linpack_c_test34.m</a>, tests CSVDC;
</li>
<li>
<a href = "linpack_c_test345.m">
linpack_c_test345.m</a>, tests CSVDC;
</li>
<li>
<a href = "linpack_c_test35.m">
linpack_c_test35.m</a>, tests CTRCO;
</li>
<li>
<a href = "linpack_c_test36.m">
linpack_c_test36.m</a>, tests CTRDI;
</li>
<li>
<a href = "linpack_c_test37.m">
linpack_c_test37.m</a>, tests CTRSL;
</li>
<li>
<a href = "c4_uniform_01.m">c4_uniform_01.m</a>,
returns a unit pseudorandom C4.
</li>
<li>
<a href = "c4mat_uniform_01.m">c4mat_uniform_01.m</a>,
returns a unit pseudorandom C4MAT.
</li>
<li>
<a href = "c4vec_uniform_01.m">c4vec_uniform_01.m</a>,
returns a unit pseudorandom C4VEC.
</li>
<li>
<a href = "r4_uniform_01.m">r4_uniform_01.m</a>,
returns a unit pseudorandom R4.
</li>
<li>
<a href = "timestamp.m">timestamp.m</a>,
prints the current YMDHMS date as a timestamp.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../m_src.html">
the MATLAB source codes</a>.
</p>
<hr>
<i>
Last revised on 04 January 2011.
</i>
<!-- John Burkardt -->
</body>
</html>