-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathpoisson_serial.html
190 lines (158 loc) · 5.29 KB
/
poisson_serial.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
<html>
<head>
<title>
POISSON_SERIAL - A Program for the Poisson Equation in a Rectangle
</title>
</head>
<body bgcolor="#EEEEEE" link="#CC0000" alink="#FF3300" vlink="#000055">
<h1 align = "center">
POISSON_SERIAL <br> A Program for the Poisson Equation in a Rectangle
</h1>
<hr>
<p>
<b>POISSON_SERIAL</b>
is a MATLAB program which
computes an approximate solution to the Poisson equation in a rectangular region.
</p>
<p>
The version of Poisson's equation being solved here is
<pre>
- ( d/dx d/dx + d/dy d/dy ) U(x,y) = F(x,y)
</pre>
over the rectangle 0 <= X <= 1, 0 <= Y <= 1, with exact solution
<pre>
U(x,y) = sin ( pi * x * y )
</pre>
so that
<pre>
F(x,y) = pi^2 * ( x^2 + y^2 ) * sin ( pi * x * y )
</pre>
and with Dirichlet boundary conditions along the lines x = 0, x = 1,
y = 0 and y = 1. (The boundary conditions will actually be zero in
this case, but we write up the problem as though we didn't know that,
which makes it easy to change the problem later.)
</p>
<p>
We compute an approximate solution by discretizing the geometry,
assuming that DX = DY, and approximating the Poisson operator by
<pre>
( U(i-1,j) + U(i+1,j) + U(i,j-1) + U(i,j+1) - 4*U(i,j) ) / dx /dy
</pre>
Along with the boundary conditions at the boundary nodes, we have
a linear system for U. We can apply the Jacobi iteration to estimate
the solution to the linear system.
</p>
<p>
<b>POISSON_SERIAL</b> is intended as a starting point for the implementation of a
parallel version, using, for instance, MPI.
</p>
<h3 align = "center">
Licensing:
</h3>
<p>
The computer code and data files described and made available on this
web page are distributed under
<a href = "../../txt/gnu_lgpl.txt">the GNU LGPL license.</a>
</p>
<h3 align = "center">
Languages:
</h3>
<p>
<b>POISSON_SERIAL</b> is available in
<a href = "../../c_src/poisson_serial/poisson_serial.html">a C version</a> and
<a href = "../../cpp_src/poisson_serial/poisson_serial.html">a C++ version</a> and
<a href = "../../f77_src/poisson_serial/poisson_serial.html">a FORTRAN77 version</a> and
<a href = "../../f_src/poisson_serial/poisson_serial.html">a FORTRAN90 version</a> and
<a href = "../../m_src/poisson_serial/poisson_serial.html">a MATLAB version</a>.
</p>
<h3 align = "center">
Related Data and Programs:
</h3>
<p>
<a href = "../../m_src/fem2d_poisson_rectangle/fem2d_poisson_rectangle.html">
FEM2D_POISSON_RECTANGLE</a>,
a MATLAB program which
solves the 2D Poisson equation on a rectangle,
using the finite element method,
and piecewise quadratic triangular elements.
</p>
<p>
<a href = "../../m_src/fft_serial/fft_serial.html">
FFT_SERIAL</a>,
a MATLAB program which
demonstrates the computation of a Fast Fourier Transform,
and is intended as a starting point for implementing a parallel version.
</p>
<p>
<a href = "../../m_src/fire_serial/fire_serial.html">
FIRE_SERIAL</a>,
a MATLAB program which
simulates a forest fire over a rectangular array of trees,
starting at a single random location. It is intended as a starting
point for the development of a parallel version.
</p>
<p>
<a href = "../../m_src/heated_plate/heated_plate.html">
HEATED_PLATE</a>,
a MATLAB program which
solves the steady (time independent) heat equation in a 2D
rectangular region, and is intended as
a starting point for implementing a parallel version.
</p>
<p>
<a href = "../../m_src/matlab_parallel/matlab_parallel.html">
MATLAB_PARALLEL</a>,
examples which illustrate parallel programming using MATLAB's
Parallel Computing Toolbox.
</p>
<p>
<a href = "../../m_src/md/md.html">
MD</a>,
a MATLAB program which
carries out a molecular dynamics simulation, and is intended as
a starting point for implementing a parallel version.
</p>
<p>
<a href = "../../m_src/quad_serial/quad_serial.html">
QUAD_SERIAL</a>,
a MATLAB program which
approximates an integral using a quadrature rule,
and is intended as a starting point for parallelization exercises.
</p>
<h3 align = "center">
Source Code:
</h3>
<p>
<ul>
<li>
<a href = "poisson_serial.m">poisson_serial.m</a>, the source code.
</li>
<li>
<a href = "poisson_serial_output.txt">poisson_serial_output.txt</a>,
the output file.
</li>
</ul>
</p>
<h3 align = "center">
Examples and Tests:
</h3>
<p>
<ul>
<li>
<a href = "poisson_serial_output.txt">poisson_serial_output.txt</a>,
the output file.
</li>
</ul>
</p>
<p>
You can go up one level to <a href = "../m_src.html">
the MATLAB source codes</a>.
</p>
<hr>
<i>
Last revised on 25 October 2011.
</i>
<!-- John Burkardt -->
</body>
<!-- Initial HTML skeleton created by HTMLINDEX. -->
</html>