forked from wyharveychen/CloserLookFewShot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbackbone.py
1219 lines (1017 loc) · 50 KB
/
backbone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# This code is modified from https://github.com/facebookresearch/low-shot-shrink-hallucinate
import torch
from torch.autograd import Variable
import torch.nn as nn
import math
import numpy as np
import torch.nn.functional as F
from torch.nn.utils.weight_norm import WeightNorm
from my_utils import *
import logging
# to reconstruct image back
torch.autograd.set_detect_anomaly(True)
def img_standardize(img, normalize_param = dict(mean= [0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225])):
img = img + 1 # DO NOT DO in-place modification
img = img / 2 # DO NOT DO in-place modification
means = normalize_param['mean']
stds = normalize_param['std']
for channel in range(3):
# here do the in-place operation but its okay because here is already not original images
img[:,channel,:,:] = img[:,channel,:,:] - means[channel]#.sub(normalize_param['mean'][channel])
img[:,channel,:,:] = img[:,channel,:,:] / stds[channel]#.div(normalize_param['std'][channel])
return img
def init_layer(L):
# Initialization using fan-in
if isinstance(L, nn.Conv2d):
n = L.kernel_size[0]*L.kernel_size[1]*L.out_channels
L.weight.data.normal_(0,math.sqrt(2.0/float(n)))
elif isinstance(L, nn.BatchNorm2d):
L.weight.data.fill_(1)
L.bias.data.fill_(0)
class distLinear(nn.Module):
def __init__(self, indim, outdim):
super(distLinear, self).__init__()
self.L = nn.Linear( indim, outdim, bias = False)
self.class_wise_learnable_norm = True #See the issue#4&8 in the github
if self.class_wise_learnable_norm:
WeightNorm.apply(self.L, 'weight', dim=0) #split the weight update component to direction and norm
if outdim <=200:
self.scale_factor = 2; #a fixed scale factor to scale the output of cos value into a reasonably large input for softmax, for to reproduce the result of CUB with ResNet10, use 4. see the issue#31 in the github
else:
self.scale_factor = 10; #in omniglot, a larger scale factor is required to handle >1000 output classes.
def forward(self, x):
x_norm = torch.norm(x, p=2, dim =1).unsqueeze(1).expand_as(x)
x_normalized = x.div(x_norm+ 0.00001)
if not self.class_wise_learnable_norm:
L_norm = torch.norm(self.L.weight.data, p=2, dim =1).unsqueeze(1).expand_as(self.L.weight.data)
self.L.weight.data = self.L.weight.data.div(L_norm + 0.00001)
cos_dist = self.L(x_normalized) #matrix product by forward function, but when using WeightNorm, this also multiply the cosine distance by a class-wise learnable norm, see the issue#4&8 in the github
scores = self.scale_factor* (cos_dist)
return scores
class Flatten(nn.Module):
def __init__(self):
super(Flatten, self).__init__()
def forward(self, x):
return x.view(x.size(0), -1)
class Linear_fw(nn.Linear): #used in MAML to forward input with fast weight
def __init__(self, in_features, out_features):
super(Linear_fw, self).__init__(in_features, out_features)
self.weight.fast = None #Lazy hack to add fast weight link
self.bias.fast = None
def forward(self, x):
if self.weight.fast is not None and self.bias.fast is not None:
out = F.linear(x, self.weight.fast, self.bias.fast) #weight.fast (fast weight) is the temporaily adapted weight
else:
out = super(Linear_fw, self).forward(x)
return out
class Conv2d_fw(nn.Conv2d): #used in MAML to forward input with fast weight
def __init__(self, in_channels, out_channels, kernel_size, stride=1,padding=0, bias = True):
super(Conv2d_fw, self).__init__(in_channels, out_channels, kernel_size, stride=stride, padding=padding, bias=bias)
self.weight.fast = None
if not self.bias is None:
self.bias.fast = None
def forward(self, x):
if self.bias is None:
if self.weight.fast is not None:
out = F.conv2d(x, self.weight.fast, None, stride= self.stride, padding=self.padding)
else:
out = super(Conv2d_fw, self).forward(x)
else:
if self.weight.fast is not None and self.bias.fast is not None:
out = F.conv2d(x, self.weight.fast, self.bias.fast, stride= self.stride, padding=self.padding)
else:
out = super(Conv2d_fw, self).forward(x)
return out
class BatchNorm2d_fw(nn.BatchNorm2d): #used in MAML to forward input with fast weight
def __init__(self, num_features, gpu_id): # TODO: initialize gpu_id in MAML
super(BatchNorm2d_fw, self).__init__(num_features)
self.weight.fast = None
self.bias.fast = None
if gpu_id:
self.device = torch.device('cuda:'+str(gpu_id))
else:
self.device = None
def forward(self, x):
# running_mean = torch.zeros(x.data.size()[1]).cuda()
# running_var = torch.ones(x.data.size()[1]).cuda()
if self.device is None:
running_mean = to_device(torch.zeros(x.data.size()[1]))
running_var = to_device(torch.ones(x.data.size()[1]))
else:
running_mean = torch.zeros(x.data.size()[1]).to(self.device)
running_var = torch.ones(x.data.size()[1]).to(self.device)
if self.weight.fast is not None and self.bias.fast is not None:
out = F.batch_norm(x, running_mean, running_var, self.weight.fast, self.bias.fast, training = True, momentum = 1)
#batch_norm momentum hack: follow hack of Kate Rakelly in pytorch-maml/src/layers.py
else:
out = F.batch_norm(x, running_mean, running_var, self.weight, self.bias, training = True, momentum = 1)
return out
class MyDropout(nn.Module):
def __init__(self, n_features, p, inplace: bool = False):
'''
Args:
n_features (int): number of channels or features
p (float): dropout probability (1-p = keep_prob)
inplace (bool): haven't implement yet
'''
super(MyDropout, self).__init__()
if p < 0 or p > 1:
raise ValueError("dropout probability has to be between 0 and 1, " "but got {}".format(p))
self.n_features = n_features
self.p = p # 1-p = keep_prob
def get_random_mask(self, n_samples, fix_num_drop=False):
# get mask Tensor without grad, return shape: (n_samples, n_features)
# p is dropout prob (not keep_prob)
n_features = self.n_features
if fix_num_drop:
# TODO: fix_n_drop
mask = None
else:
mask = torch.Tensor(n_samples,n_features).uniform_(0,1)>self.p
mask = Variable(mask.type(torch.cuda.FloatTensor), requires_grad=False)
return mask
def get_reshaped_random_mask(self, x): # different between dropout and dropout2d
# So that we have `(n_samples, n_features)` numbers of Bernoulli(1-p) samples
n_samples = x.shape[0]
mask = self.get_random_mask(n_samples)
# no need to reshape for normal dropout, only dropout2d need extra reshape
return mask
def forward(self, x):
n_features = self.n_features # also equals x.shape[1] as well as dropout2d case
if not self.training: # eval() mode
return x
else: # if train() mode
mask = self.get_reshaped_random_mask(x) # shape: (n_samples, n_features), dropout2d shape: (N,C,H,W)
return torch.mul(mask,x) * 1/(1-self.p) # inverse dropout
class CustomDropout(MyDropout):
def __init__(self, n_features, p, inplace: bool = False):
'''
Args:
n_features (int): number of channels or features
p (float): dropout probability (1-p = keep_prob)
inplace (bool): haven't implement yet
'''
super(CustomDropout, self).__init__(n_features=n_features, p=p, inplace=inplace)
self.eval_mask = None # only used when sampling subnet, shape: (1, n_features)
def get_reshaped_eval_mask(self, x): # different between dropout and dropout2d
n_samples = x.shape[0]
mask = self.eval_mask # shape: (1, n_features)
mask = mask.repeat(n_samples,1) # shape: (n_samples, n_features)
return mask
def forward(self, x):
# n_samples = x.shape[0]
n_features = self.n_features # also equals x.shape[1] as well as dropout2d case
if not self.training: # eval() mode
if self.eval_mask is not None:
mask = self.get_reshaped_eval_mask(x) # shape: (n_samples, n_features), dropout2d shape: (N,C,H,W)
return torch.mul(mask,x) * 1/(1-self.p) # inverse dropout for eval() mode
else: # if self.eval_mask is None
return x
else: # if train() mode
mask = self.get_reshaped_random_mask(x) # shape: (n_samples, n_features), dropout2d shape: (N,C,H,W)
# Multiply output by multiplier as described in the paper [1]
return torch.mul(mask,x) * 1/(1-self.p) # inverse dropout
def set_random_eval_mask(self): # this is the same for ALL examples
random_mask = self.get_random_mask(n_samples=1)
self.eval_mask = random_mask
def get_mask_comb(self):
# dropout_p generally equals to self.p
mask_comb = []
n_comb = int(1//self.p) # e.g. 1//0.33 = 3
n_drop_features = int(self.n_features*self.p) # e.g. 20*0.33 = 6
remain_feature_ids = list(range(self.n_features))
for i in range(n_comb):
sampled_feature_ids = np.random.choice(remain_feature_ids, size=n_drop_features, replace=False)
# print('sampled_feature_ids:', sampled_feature_ids)
mask_np = np.ones((1, self.n_features))
mask_np[0][sampled_feature_ids] = 0
# print('mask_np:', mask_np)
mask = torch.Tensor(mask_np)
mask = Variable(mask.type(torch.cuda.FloatTensor), requires_grad=False)
# print('mask:', mask)
mask_comb.append(mask)
for idx in sampled_feature_ids:
remain_feature_ids.remove(idx)
return mask_comb
def reset_eval():
self.eval_mask = None
self.eval()
class MyDropout2D(MyDropout):
def __init__(self, n_features, p, inplace: bool = False):
'''
Args:
n_features (int): number of channels or features
p (float): dropout probability (1-p = keep_prob)
inplace (bool): haven't implement yet
'''
super(MyDropout2D, self).__init__(n_features=n_features, p=p, inplace=inplace)
def get_reshaped_random_mask(self, x): # different between dropout and dropout2d
# So that we have `(n_samples, n_features)` numbers of Bernoulli(1-p) samples
n_samples = x.shape[0]
c = x.shape[1] # also is n_features
h = x.shape[2]
w = x.shape[3]
mask = self.get_random_mask(n_samples) # (N, C)
mask = mask.view(n_samples,c,1,1) # (N, C, 1, 1)
mask = mask.repeat(1,1,h,w) # (N, C, H, W)
return mask
class CustomDropout2D(MyDropout2D, CustomDropout):
def __init__(self, n_features, p, inplace: bool = False):
'''
Args:
n_features (int): number of channels or features
p (float): dropout probability (1-p = keep_prob)
inplace (bool): haven't implement yet
'''
# these 2 lines might have some problems that call __init__() of MyDropout twice, to avoid the problem, maybe we could just call CustomDropout.__init__()???
super(CustomDropout2D, self).__init__(n_features=n_features, p=p, inplace=inplace)
CustomDropout.__init__(self, n_features=n_features, p=p, inplace=inplace)
def get_reshaped_eval_mask(self, x): # different between dropout and dropout2d
n_samples = x.shape[0]
c = x.shape[1] # also is n_features
h = x.shape[2]
w = x.shape[3]
mask = self.eval_mask # shape: (1, C)
mask = mask.repeat(n_samples,1) # shape: (N, C)
mask = mask.view(n_samples,c,1,1) # (N, C, 1, 1)
mask = mask.repeat(1,1,h,w) # (N, C, H, W)
return mask
class CustomDropoutNet:
def record_active_dropout(self):
self.active_dropout_ls = []
for module in self.modules():
if isinstance(module, CustomDropout):
if module.p != 0: # becuz not all of CustomDropout module are active
self.active_dropout_ls.append(module)
def sample_random_subnet(self):
# traverse all over the nn.Modules to get CustomDropout
has_custom_dropout = False if len(self.active_dropout_ls)==0 else True
assert has_custom_dropout, "there should be CustomDropout module to sample random subnet"
assert not self.training, "should be in eval() mode when calling function"
for module in self.active_dropout_ls:
module.set_random_eval_mask()
def reset_dropout(self):
for module in self.active_dropout_ls:
module.eval_mask = None
class CustomDropoutBlock:
def after_standard_init(self, n_features, dropout_p):
if dropout_p == 0:
self.dropout = None
else:
self.dropout = CustomDropout2D(n_features=n_features, p=dropout_p)
def after_standard_forward(self, inputs):
if self.dropout is None:
outputs = inputs
else:
outputs = self.dropout(inputs)
return outputs
# for test-time dropout
# def turn_on_dropout(self, n_features, dropout_p):
# assert self.dropout is None, 'Block.dropout should be None before turn_on_dropout()'
# self.dropout = CustomDropout2D(n_features=n_features, p=dropout_p)
def feat2gram(feat, normalize=True):
'''
feat shape: (N,C,H,W)
gram shape: (N,C,C)
'''
# input shape: (N,C,H,W)
N,C,H,W = feat.size()
feat = feat.view(N,C,H*W) # N,C,H*W
feat_t = feat.transpose(1,2) # N,H*W,C
feat_gram = torch.bmm(feat, feat_t) # batch-wise matmul -> N,C,C
if normalize:
feat_gram = feat_gram / (2*C*H*W) # would be squared in loss
return feat_gram
class MinGramDropoutNet:
'''
should implement:
self.trunk_to_gram_block (nn.Sequential): the trunk that outputs feature map
'''
def min_gram_init(self, gram_bid):
self.gram_bid = gram_bid
def get_feature_map_for_gram(self, x, dropout=True):
# TODO: dropout argument can be removed becuz already handled in self.trunk_to_gram_block
if len(x.size())==5:
# meta learning dims
N, K, C, H, W = x.size() # N-way, K-shot
x = x.view(N*K, C, H, W)
elif len(x.size())==4:
# baseline dims
N, C, H, W = x.size()
if self.indim == 1:
x = x[:,0:1,:,:]
# if dropout:
return self.trunk_to_gram_block.forward(x)
# else:
# # TODO: remove dropout from block
# raise ValueError("Haven't implement get_feature_map_for_gram() for dropout=False.")
def get_hidden_gram(self, x):
# print('self.gram_bid:', self.gram_bid)
if self.gram_bid is None:
raise ValueError('should not get_hidden_gram since self.gram_bid is None.')
elif self.gram_bid == 'after_dropout':
feat = self.get_feature_map_for_gram(x, dropout=True)
elif self.gram_bid == 'before_dropout':
feat = self.get_feature_map_for_gram(x, dropout=False)
gram = feat2gram(feat)
return gram
# class GramBlock:
# '''
# Attributes:
# self.should_out_gram (bool)
# '''
# def after_standard_init(self, should_out_gram):
# self.should_out_gram = should_out_gram
# def additional_forward(self, inputs):
# if self.should_out_gram:
# pass
# else:
# outputs = inputs
# return outputs
# Simple Conv Block
class ConvBlock(nn.Module):
maml = False #Default
def __init__(self, indim, outdim, pool = True, padding = 1, dropout_p=0.):
super(ConvBlock, self).__init__()
self.indim = indim
self.outdim = outdim
if self.maml:
self.C = Conv2d_fw(indim, outdim, 3, padding = padding)
self.BN = BatchNorm2d_fw(outdim)
else:
self.C = nn.Conv2d(indim, outdim, 3, padding= padding)
self.BN = nn.BatchNorm2d(outdim)
self.relu = nn.ReLU(inplace=True)
self.parametrized_layers = [self.C, self.BN, self.relu]
if pool:
self.pool = nn.MaxPool2d(2)
self.parametrized_layers.append(self.pool)
# if dropout_p != 0:
# self.dropout = CustomDropout2D(n_features=outdim, p=dropout_p)
# self.parametrized_layers.append(self.dropout)
for layer in self.parametrized_layers:
init_layer(layer)
self.trunk = nn.Sequential(*self.parametrized_layers)
# for CustomDropout
CustomDropoutBlock.after_standard_init(self, n_features=outdim, dropout_p=dropout_p)
def forward(self,x):
out = self.trunk(x)
out = CustomDropoutBlock.after_standard_forward(self, out)
return out
class LambdaLayer(nn.Module):
# to do some hack in ResNet
def __init__(self, lambd):
super(LambdaLayer, self).__init__()
self.lambd = lambd
def forward(self, x):
return self.lambd(x)
# Simple ResNet Block
class SimpleBlock(nn.Module):
maml = False #Default
def __init__(self, indim, outdim, half_res, dropout_p=0): # half_res means output size would be half
super(SimpleBlock, self).__init__()
self.indim = indim
self.outdim = outdim
if self.maml: # no need check this so far
self.C1 = Conv2d_fw(indim, outdim, kernel_size=3, stride=2 if half_res else 1, padding=1, bias=False)
self.BN1 = BatchNorm2d_fw(outdim)
self.C2 = Conv2d_fw(outdim, outdim, kernel_size=3, padding=1,bias=False)
self.BN2 = BatchNorm2d_fw(outdim)
else:
self.C1 = nn.Conv2d(indim, outdim, kernel_size=3, stride=2 if half_res else 1, padding=1, bias=False) # ResNet18:
self.BN1 = nn.BatchNorm2d(outdim)
self.C2 = nn.Conv2d(outdim, outdim, kernel_size=3, padding=1,bias=False)
self.BN2 = nn.BatchNorm2d(outdim)
self.relu1 = nn.ReLU(inplace=True)
self.relu2 = nn.ReLU(inplace=True)
self.parametrized_layers = [self.C1, self.C2, self.BN1, self.BN2]
# to do the trunk for min_gram, should be in true order
self.layers_wo_shortcut = [ # no shortcut, no activation
self.C1, self.BN1, self.relu1,
self.C2, self.BN2
]
self.trunk_wo_shortcut = nn.Sequential(*self.layers_wo_shortcut)
self.half_res = half_res # half_res means output size would be half
# setting shortcut. need a 1x1 convolution if in_dim!=out_dim
if indim!=outdim:
if self.maml:
self.shortcut = Conv2d_fw(indim, outdim, 1, 2 if half_res else 1, bias=False)
self.BNshortcut = BatchNorm2d_fw(outdim)
else:
self.shortcut = nn.Conv2d(indim, outdim, 1, 2 if half_res else 1, bias=False)
self.BNshortcut = nn.BatchNorm2d(outdim)
self.parametrized_layers.append(self.shortcut)
self.parametrized_layers.append(self.BNshortcut)
self.shortcut_type = '1x1'
else:
self.shortcut_type = 'identity'
# self.dropout = None
# if dropout_p != 0:
# self.dropout = CustomDropout2D(n_features=outdim, p=dropout_p)
# # self.parametrized_layers.append(self.dropout)
for layer in self.parametrized_layers:
init_layer(layer)
# for CustomDropout
CustomDropoutBlock.after_standard_init(self, n_features=outdim, dropout_p=dropout_p)
# for minimizing Gram
self.trunk = LambdaLayer(self.trunk_forward) # hack to simulate original block (without dropout)
def trunk_forward(self, x):
# a hack to simulate trunk behavior in ConvNetS
out = self.trunk_wo_shortcut(x)
short_out = x if self.shortcut_type == 'identity' else self.BNshortcut(self.shortcut(x))
out = out + short_out
out = self.relu2(out)
return out
def forward(self, x):
# out = self.C1(x)
# out = self.BN1(out)
# out = self.relu1(out)
# out = self.C2(out)
# out = self.BN2(out)
# out = self.trunk_wo_shortcut(x)
# short_out = x if self.shortcut_type == 'identity' else self.BNshortcut(self.shortcut(x))
# out = out + short_out
# out = self.relu2(out)
out = self.trunk(x)
out = CustomDropoutBlock.after_standard_forward(self, out)
# if self.dropout != None:
# out = self.dropout(out)
return out
# Bottleneck block
class BottleneckBlock(nn.Module): # utilized by ResNet50, ResNet101
maml = False #Default
def __init__(self, indim, outdim, half_res):
super(BottleneckBlock, self).__init__()
bottleneckdim = int(outdim/4)
self.indim = indim
self.outdim = outdim
if self.maml:
self.C1 = Conv2d_fw(indim, bottleneckdim, kernel_size=1, bias=False)
self.BN1 = BatchNorm2d_fw(bottleneckdim)
self.C2 = Conv2d_fw(bottleneckdim, bottleneckdim, kernel_size=3, stride=2 if half_res else 1,padding=1)
self.BN2 = BatchNorm2d_fw(bottleneckdim)
self.C3 = Conv2d_fw(bottleneckdim, outdim, kernel_size=1, bias=False)
self.BN3 = BatchNorm2d_fw(outdim)
else:
self.C1 = nn.Conv2d(indim, bottleneckdim, kernel_size=1, bias=False)
self.BN1 = nn.BatchNorm2d(bottleneckdim)
self.C2 = nn.Conv2d(bottleneckdim, bottleneckdim, kernel_size=3, stride=2 if half_res else 1,padding=1)
self.BN2 = nn.BatchNorm2d(bottleneckdim)
self.C3 = nn.Conv2d(bottleneckdim, outdim, kernel_size=1, bias=False)
self.BN3 = nn.BatchNorm2d(outdim)
self.relu = nn.ReLU()
self.parametrized_layers = [self.C1, self.BN1, self.C2, self.BN2, self.C3, self.BN3]
self.half_res = half_res
# if the input number of channels is not equal to the output, then need a 1x1 convolution
if indim!=outdim:
if self.maml:
self.shortcut = Conv2d_fw(indim, outdim, 1, stride=2 if half_res else 1, bias=False)
else:
self.shortcut = nn.Conv2d(indim, outdim, 1, stride=2 if half_res else 1, bias=False)
self.parametrized_layers.append(self.shortcut)
self.shortcut_type = '1x1'
else:
self.shortcut_type = 'identity'
for layer in self.parametrized_layers:
init_layer(layer)
def forward(self, x):
short_out = x if self.shortcut_type == 'identity' else self.shortcut(x)
out = self.C1(x)
out = self.BN1(out)
out = self.relu(out)
out = self.C2(out)
out = self.BN2(out)
out = self.relu(out)
out = self.C3(out)
out = self.BN3(out)
out = out + short_out
out = self.relu(out)
return out
class ConvNet(nn.Module, CustomDropoutNet, MinGramDropoutNet):
def __init__(self, depth, flatten = True, dropout_p=0., dropout_block_id=3, more_to_drop=None, gram_bid = None): # CUB/miniImgnet Conv input = 84*84*3
# def __init__(self, depth, flatten = True, dropout_p=0., dropout_block_id=3, more_to_drop=None): # CUB/miniImgnet Conv input = 84*84*3
super(ConvNet,self).__init__()
trunk = []
###################### rewrite ######################
for i in range(depth):
'''input = 1*28*28 (see self.forward)
TODO: compute the dimension, modify the decoder
-> [64*28*28 -> 64*14*14]
-> [64*14*14 -> 64*7*7]
-> [64*7*7 -> 64*3*3]
-> [64*3*3 -> 64*1*1]
'''
# BUGFIX for more_to_drop
indim = 3 if i == 0 else outdim
outdim = 64
# CustomDropout
dropout_cond = (dropout_block_id==-1) or (i==dropout_block_id) # whether this layer should dropout
block_dropout_p = dropout_p if dropout_cond else 0.
# more_to_drop
if more_to_drop=='double' and dropout_cond:
outdim = outdim*2
# for Gram Matrix block
if gram_bid is None:
gram_cond = False
else:
gm_bid = dropout_block_id if 'dropout' in gram_bid else gram_bid
gram_cond = i==gm_bid # whether this block should output Gram Matrix
#only pooling for first 4 layers
B = ConvBlock(indim, outdim, pool = ( i <4 ), dropout_p=block_dropout_p)
trunk.append(B)
# for Gram Matrix block
if gram_cond: # currently assume only 1 block should output Gram matrix
gram_trunk = trunk.copy()
target_block = gram_trunk.pop() # remove & get last one
target_block_b4_dropout = target_block.trunk
gram_trunk.append(target_block_b4_dropout)
self.trunk_to_gram_block = nn.Sequential(*gram_trunk)
if flatten:
trunk.append(Flatten())
self.trunk = nn.Sequential(*trunk)
# BUGFIX for more_to_drop
self.final_feat_dim = outdim
# for CustomDropout
self.record_active_dropout()
# Gram matrix
self.indim = 3 # BUGFIX for get_feature_map_for_gram
self.min_gram_init(gram_bid)
def forward(self,x):
out = self.trunk(x)
return out
class ConvNetNopool(nn.Module, CustomDropoutNet): #Relation net use a 4 layer conv with pooling in only first two layers, else no pooling
def __init__(self, depth, flatten = True, dropout_p=0., dropout_block_id=3, more_to_drop=None, gram_bid = None, output_dim = 64):
super(ConvNetNopool,self).__init__()
trunk = []
self.outdim = output_dim
for i in range(depth):
indim = 3 if i == 0 else outdim
outdim = self.outdim
dropout_cond = (dropout_block_id==-1) or (i==dropout_block_id) # whether this layer should dropout
block_dropout_p = dropout_p if dropout_cond else 0.
# B = ConvBlock(indim, outdim, pool = ( i in [0,1] ), padding = 0 if i in[0,1] else 1 ) #only first two layer has pooling and no padding
B = ConvBlock(indim, outdim, pool = (i in [0,1]), padding = 0 if i in[0,1] else 1, dropout_p=block_dropout_p) #only first two layer has pooling and no padding
trunk.append(B)
self.trunk = nn.Sequential(*trunk)
self.final_feat_dim = [self.outdim,19,19]
# for CustomDropout
self.record_active_dropout()
self.indim = 3
def forward(self,x):
out = self.trunk(x)
return out
class ConvNetSNopool(nn.Module, CustomDropoutNet): #Relation net use a 4 layer conv with pooling in only first two layers, else no pooling. For omniglot, only 1 input channel, output dim is [64,5,5]
def __init__(self, depth, flatten = True, dropout_p=0., dropout_block_id=3, more_to_drop=None, gram_bid = None, output_dim = 64):
'''
Args:
dropout_block_id: could be {0|1|2|3}
'''
super(ConvNetSNopool,self).__init__()
trunk = []
self.outdim = output_dim
for i in range(depth):
indim = 1 if i == 0 else outdim
outdim = self.outdim
# CustomDropout
dropout_cond = (dropout_block_id==-1) or (i==dropout_block_id) # whether this layer should dropout
block_dropout_p = dropout_p if dropout_cond else 0.
# B = ConvBlock(indim, outdim, pool = ( i in [0,1] ), padding = 0 if i in[0,1] else 1 ) #only first two layer has pooling and no padding
B = ConvBlock(indim, outdim, pool = (i in [0,1]), padding = 0 if i in[0,1] else 1, dropout_p=block_dropout_p) #only first two layer has pooling and no padding
trunk.append(B)
self.trunk = nn.Sequential(*trunk)
self.final_feat_dim = [self.outdim,5,5]
# for CustomDropout
self.record_active_dropout()
self.indim = 1
def forward(self,x):
out = x[:,0:1,:,:] #only use the first dimension
out = self.trunk(out)
return out
class ConvNetS(nn.Module, CustomDropoutNet, MinGramDropoutNet): #For omniglot, only 1 input channel, output dim is 64
def __init__(self, depth, flatten = True, dropout_p=0., dropout_block_id=3, more_to_drop=None, gram_bid = None, output_dim = 64):
'''
Args:
dropout_block_id: could be {0|1|2|3}
more_to_drop: could be {None|'double'}
gram_bid (str|int): which block (index) should output Gram Matrix, follows dropout_bid if 'dropout'
'''
super(ConvNetS,self).__init__()
trunk = []
self.outdim = output_dim
# TODO: trunk.append only select 1 channel
for i in range(depth):
'''input = 1*28*28 (see self.forward)
TODO: compute the dimension, modify the decoder
-> [64*28*28 -> 64*14*14]
-> [64*14*14 -> 64*7*7]
-> [64*7*7 -> 64*3*3]
-> [64*3*3 -> 64*1*1]
'''
# BUGFIX for more_to_drop
indim = 1 if i == 0 else outdim
outdim = self.outdim
# CustomDropout
dropout_cond = (dropout_block_id==-1) or (i==dropout_block_id) # whether this layer should dropout
block_dropout_p = dropout_p if dropout_cond else 0.
# more_to_drop
if more_to_drop=='double' and dropout_cond:
outdim = outdim*2
# for Gram Matrix block
if gram_bid is None:
gram_cond = False
else:
gm_bid = dropout_block_id if 'dropout' in gram_bid else gram_bid
gram_cond = i==gm_bid # whether this block should output Gram Matrix
#only pooling for first 4 layers
# B = ConvBlock(indim, outdim, pool = ( i <4 ))
B = ConvBlock(indim, outdim, pool = ( i <4 ), dropout_p=block_dropout_p)
trunk.append(B)
# for Gram Matrix block
if gram_cond: # currently assume only 1 block should output Gram matrix
gram_trunk = trunk.copy()
target_block = gram_trunk.pop() # remove & get last one
target_block_b4_dropout = target_block.trunk
gram_trunk.append(target_block_b4_dropout)
self.trunk_to_gram_block = nn.Sequential(*gram_trunk)
if flatten:
trunk.append(Flatten())
self.trunk = nn.Sequential(*trunk)
# BUGFIX for more_to_drop
self.final_feat_dim = outdim
# for CustomDropout
self.record_active_dropout()
# Gram matrix
self.indim = 1 # BUGFIX for get_feature_map_for_gram
self.min_gram_init(gram_bid)
def forward(self,x):
out = x[:,0:1,:,:] #only use the first dimension (OOOOOMMMMMGGGG finally i see this NOW
out = self.trunk(out)
return out
class ResNet(nn.Module, CustomDropoutNet, MinGramDropoutNet):
maml = False #Default
def __init__(self,block,list_of_num_blocks, list_of_out_dims, flatten = True,
dropout_p=0, dropout_block_id=3, more_to_drop=None, gram_sid=None): # not flatten only RelationNet?
'''
gram_sid is actually "gram_stage_id" in ResNet
'''
# list_of_num_blocks specifies number of blocks in each stage
# list_of_out_dims specifies number of output channel for each stage
super(ResNet,self).__init__() # input 224*224
assert len(list_of_num_blocks)==4, 'Can have only four stages'
if self.maml:
conv1 = Conv2d_fw(3, 64, kernel_size=7, stride=2, padding=3,
bias=False) # 64*112*112 (1)
bn1 = BatchNorm2d_fw(64)
else:
conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False) # 64*112*112 (1)
bn1 = nn.BatchNorm2d(64)
relu = nn.ReLU()
pool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # 64*56*56 (1)
init_layer(conv1)
init_layer(bn1)
trunk = [conv1, bn1, relu, pool1]
indim = 64
for i in range(4): # 4 stages
for j in range(list_of_num_blocks[i]): # every stage is 2 for ResNet18
''' for ResNet 18:
list_of_num_blocks = [2, 2, 2, 2], so num_layer is 2 for every stage
block = SimpleBlock
list_of_out_dims = [64, 128, 256, 512]
SimpleBlock():
conv1(indim, outdim, kernel=3, stride=2 if half_res else 1, pad=1)
bn1()
conv2(outdim, outdim, kernel=3, stride=1, pad=1)
bn2()
if indim != outdim:
shortcut_layer = conv12(indim, outdim, kernel=1, stride=2 if half_res else 1)
else:
shortcut_layer = identity
block 0-0: half_res=False, (k=3, s=1, p=1) + (k=3, s=1, p=1), 64*56*56
block 0-1: half_res=False, 64*56*56
block 1-0: half_res=True, (k=3, s=2, p=1) + (k=3, s=1, p=1), 128*28*28 (1)
block 1-1: half_res=False, 128*28*28
block 2-0: half_res=True, 256*14*14 (1)
block 2-1: half_res=False, 256*14*14
block 3-0: half_res=True, 512*7*7 (1)
block 3-1: half_res=False, 512*7*7
'''
half_res = (i>=1) and (j==0) # only stage 2 and 3's first block?
# for CustomDropout
is_last_block_of_stage = j==list_of_num_blocks[i]-1
is_dropout_stage = (dropout_block_id==-1) or (i==dropout_block_id) # whether this layer should dropout
dropout_cond = is_dropout_stage and is_last_block_of_stage # whether this layer should dropout
block_dropout_p = dropout_p if dropout_cond else 0.
# more_to_drop
if more_to_drop=='double' and dropout_cond:
list_of_out_dims[i] = list_of_out_dims[i]*2 +1 # BUGFIX: +1 to avoid indim==outdim then affect 'half_res'
# for Gram Matrix
if gram_sid is None:
gram_cond = False
else:
gm_sid = dropout_block_id if 'dropout' in gram_sid else gram_sid
gram_cond = i==gm_sid # whether this block should output Gram Matrix
B = block(indim, list_of_out_dims[i], half_res, dropout_p=block_dropout_p)
# B = block(indim, list_of_out_dims[i], half_res)
trunk.append(B)
indim = list_of_out_dims[i]
# for Gram Matrix block
if gram_cond and is_last_block_of_stage:
gram_trunk = trunk.copy()
target_block = gram_trunk.pop() # remove & get last one
target_block_b4_dropout = target_block.trunk
gram_trunk.append(target_block_b4_dropout)
self.trunk_to_gram_block = nn.Sequential(*gram_trunk)
if flatten:
avgpool = nn.AvgPool2d(7) # 512*1*1
trunk.append(avgpool)
trunk.append(Flatten()) # 512 for ResNet18
self.final_feat_dim = indim
else:
self.final_feat_dim = [ indim, 7, 7] # 512*7*7 for ResNet18 (RelationNet?)
self.trunk = nn.Sequential(*trunk)
# for CustomDropout
self.record_active_dropout()
# Gram matrix
self.indim = 3 # BUGFIX for get_feature_map_for_gram
self.min_gram_init(gram_sid)
def forward(self,x):
out = self.trunk(x)
return out
# def Conv4():
# return ConvNet(4)
def Conv4(dropout_p=0., dropout_block_id=3, more_to_drop=None, gram_bid=None):
# def Conv4(dropout_p=0., dropout_block_id=3, more_to_drop=None):
# return ConvNet(4,dropout_p=dropout_p, dropout_block_id=dropout_block_id, more_to_drop=more_to_drop)
return ConvNet(
4, dropout_p=dropout_p, dropout_block_id=dropout_block_id,
more_to_drop=more_to_drop,
gram_bid=gram_bid)
def Conv4NP(dropout_p=0., dropout_block_id=3, more_to_drop=None, gram_bid=None):
return ConvNetNopool(
4, dropout_p=dropout_p, dropout_block_id=dropout_block_id,
more_to_drop=more_to_drop,
gram_bid=gram_bid)
# def Conv4S():
# return ConvNetS(4)
def Conv4SNP(dropout_p=0., dropout_block_id=3, more_to_drop=None, gram_bid=None):
return ConvNetSNopool(
4, dropout_p=dropout_p, dropout_block_id=dropout_block_id,
more_to_drop=more_to_drop,
gram_bid=gram_bid)
def Conv4SNPThin2(dropout_p=0., dropout_block_id=3, more_to_drop=None, gram_bid=None):
return ConvNetSNopool(
4, dropout_p=dropout_p, dropout_block_id=dropout_block_id,
more_to_drop=more_to_drop,
gram_bid=gram_bid, output_dim=32)
def Conv4SNPThin4(dropout_p=0., dropout_block_id=3, more_to_drop=None, gram_bid=None):
return ConvNetSNopool(
4, dropout_p=dropout_p, dropout_block_id=dropout_block_id,
more_to_drop=more_to_drop,
gram_bid=gram_bid, output_dim=16)
def Conv4S(dropout_p=0., dropout_block_id=3, more_to_drop=None, gram_bid=None):
return ConvNetS(
4, dropout_p=dropout_p, dropout_block_id=dropout_block_id,
more_to_drop=more_to_drop,
gram_bid=gram_bid)
def Conv4SFat2(dropout_p=0., dropout_block_id=3, more_to_drop=None, gram_bid=None):
return ConvNetS(
4, dropout_p=dropout_p, dropout_block_id=dropout_block_id,
more_to_drop=more_to_drop,
gram_bid=gram_bid, output_dim=128)
def Conv4SThin2(dropout_p=0., dropout_block_id=3, more_to_drop=None, gram_bid=None):
return ConvNetS(
4, dropout_p=dropout_p, dropout_block_id=dropout_block_id,
more_to_drop=more_to_drop,
gram_bid=gram_bid, output_dim=32)
def Conv4SThin4(dropout_p=0., dropout_block_id=3, more_to_drop=None, gram_bid=None):
return ConvNetS(
4, dropout_p=dropout_p, dropout_block_id=dropout_block_id,
more_to_drop=more_to_drop,
gram_bid=gram_bid, output_dim=16)
def Conv4SThin8(dropout_p=0., dropout_block_id=3, more_to_drop=None, gram_bid=None):
return ConvNetS(
4, dropout_p=dropout_p, dropout_block_id=dropout_block_id,
more_to_drop=more_to_drop,
gram_bid=gram_bid, output_dim=8)
def ResNet18(flatten = True, dropout_p=0, dropout_block_id=3, more_to_drop=None, gram_bid=None):
return ResNet(SimpleBlock, [2,2,2,2],[64,128,256,512], flatten,
dropout_p=dropout_p, dropout_block_id=dropout_block_id,
more_to_drop=more_to_drop, gram_sid=gram_bid)
def ResNet18Fat2(flatten = True, dropout_p=0, dropout_block_id=3, more_to_drop=None, gram_bid=None):
return ResNet(SimpleBlock, [2,2,2,2],[128,256,512,1024], flatten,
# return ResNet(SimpleBlock, [2,2,2,2],[96,192,384,768], flatten,
dropout_p=dropout_p, dropout_block_id=dropout_block_id,
more_to_drop=more_to_drop, gram_sid=gram_bid)
def ResNet18Thin2(flatten = True, dropout_p=0, dropout_block_id=3, more_to_drop=None, gram_bid=None):
return ResNet(SimpleBlock, [2,2,2,2],[32,64,128,256], flatten,
dropout_p=dropout_p, dropout_block_id=dropout_block_id,
more_to_drop=more_to_drop, gram_sid=gram_bid)
def ResNet18Thin4(flatten = True, dropout_p=0, dropout_block_id=3, more_to_drop=None, gram_bid=None):
return ResNet(SimpleBlock, [2,2,2,2],[16,32,64,128], flatten,
dropout_p=dropout_p, dropout_block_id=dropout_block_id,
more_to_drop=more_to_drop, gram_sid=gram_bid)
def ResNet10(flatten=True, dropout_p=0, dropout_block_id=3, more_to_drop=None, gram_bid=None):
# WTF i dunno why SimpleBlock cost less memory
return ResNet(SimpleBlock, [1,1,1,1],[64,128,256,512], flatten,
dropout_p=dropout_p, dropout_block_id=dropout_block_id,
more_to_drop=more_to_drop, gram_sid=gram_bid)
# return ResNet(BottleneckBlock, [1,1,1,1],[64,128,256,512], flatten)
def Conv6():
return ConvNet(6)
def Conv6NP():
return ConvNetNopool(6)
class DeConvNet(nn.Module): # for AE, input: flattened 64*5*5
def __init__(self):
super(DeConvNet, self).__init__() # BUGFIX: not sure if correct (padding, output_padding, Tanh())
self.decoder = nn.Sequential( # input: b, 64, 5, 5
nn.ConvTranspose2d(64, 64, kernel_size=2, stride=2), # b, 64, 10, 10
nn.ConvTranspose2d(64, 64, kernel_size=3, stride=1, padding=1), # b, 64, 10, 10
nn.ReLU(inplace=True),
nn.ConvTranspose2d(64, 64, kernel_size=2, stride=2, output_padding=(1,1)), # b, 64, 21, 21
nn.ConvTranspose2d(64, 64, kernel_size=3, stride=1, padding=1), # b, 64, 21, 21
nn.ReLU(inplace=True),
nn.ConvTranspose2d(64, 64, kernel_size=2, stride=2), # b, 64, 42, 42