-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathfurigana.py
executable file
·173 lines (140 loc) · 6.44 KB
/
furigana.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#!/usr/bin/python
# vim: set ts=2 expandtab:
"""
Module: furigana.py
Desc: Estimate furigana in segmented raw manga scans
Author: John O'Neil
Email: [email protected]
DATE: Sunday, Sept 1st 2013
Furigana is a major difficutly in running OCR
on low resolution manga scans. This scipt attempts
to estimate furigana sections of given (pre segmented)
text areas.
"""
import numpy as np
import math
import cv2
import sys
import scipy.ndimage
from imageio import imsave
import run_length_smoothing as rls
import ocr
import argparse
import os
import connected_components as cc
import clean_page as clean
import arg
import defaults
def binary_mask(mask):
return np.array(mask!=0,'B')
def cc_center(component):
x_center = component[1].start+(component[1].stop-component[1].start)/2
y_center = component[0].start+(component[0].stop-component[0].start)/2
return (x_center, y_center)
def is_in_component(row, col, component):
return (row >= component[0].start and row <= component[0].stop
and col >= component[1].start and col <= component[1].stop)
def cc_width(component):
return component[1].stop-component[1].start
def intersects_other_component(row, col, component, components):
for c in components:
if c is component: continue
if is_in_component(row, col, c):return c
return None
def find_cc_to_left(component, components, max_dist=20):
(c_col, c_row) = cc_center(component)
left_col = c_col-int(max_dist)
if left_col<0:left_col=0
for col in reversed(range(int(left_col),int(c_col))):
c = intersects_other_component(c_row, col, component, components)
if c is not None:
#print 'got hit from center ' + str(c_col) + ','+str(c_row) + 'at ' + str(col) + ',' + str(c_row)
return c
return None
def estimate_furigana(img, segmentation):
(w,h)=img.shape[:2]
if arg.boolean_value('verbose'):
print('Estimateding furigana in ' + str(h) + 'x' + str(w) + ' image.')
text_areas = segmentation
#form binary image from grayscale
binary_threshold = arg.integer_value('binary_threshold',default_value=defaults.BINARY_THRESHOLD)
if arg.boolean_value('verbose'):
print('binarizing images with threshold value of ' + str(binary_threshold))
binary = clean.binarize(img,threshold=binary_threshold)
binary_average_size = cc.average_size(binary)
if arg.boolean_value('verbose'):
print('average cc size for binaryized grayscale image is ' + str(binary_average_size))
#apply mask and return images
text_mask = binary_mask(text_areas)
cleaned = cv2.bitwise_not(text_mask*binary)
cleaned_average_size = cc.average_size(cleaned)
if arg.boolean_value('verbose'):
print('average cc size for cleaned, binaryized grayscale image is ' + str(cleaned_average_size))
columns = scipy.ndimage.filters.gaussian_filter(cleaned,(defaults.FURIGANA_VERTICAL_SIGMA_MULTIPLIER*binary_average_size,defaults.FURIGANA_HORIZONTAL_SIGMA_MULTIPLIER*binary_average_size))
columns = clean.binarize(columns,threshold=defaults.FURIGANA_BINARY_THRESHOLD)
furigana = columns*text_mask
#go through the columns in each text area, and:
#1) Estimate the standard column width (it should be similar to the average connected component width)
#2) Separate out those columns which are significantly thinner (>75%) than the standard width
boxes = cc.get_connected_components(furigana)
furigana_lines = []
non_furigana_lines = []
lines_general = []
for box in boxes:
line_width = cc_width(box)
line_to_left = find_cc_to_left(box, boxes, max_dist=line_width*defaults.FURIGANA_DISTANCE_MULTIPLIER)
if line_to_left is None:
non_furigana_lines.append(box)
continue
left_line_width = cc_width(line_to_left)
if line_width < left_line_width * defaults.FURIGANA_WIDTH_THRESHOLD:
furigana_lines.append(box)
else:
non_furigana_lines.append(box)
furigana_mask = np.zeros(furigana.shape)
for f in furigana_lines:
furigana_mask[f[0].start:f[0].stop,f[1].start:f[1].stop]=255
#furigana_mask[f]=1
furigana = furigana_mask #furigana * furigana_mask
if arg.boolean_value('debug'):
furigana = 0.25*(columns*text_mask) + 0.25*img + 0.5*furigana
return furigana
def estimate_furigana_from_files(filename, segmentation_filename):
img = cv2.imread(filename)
gray = clean.grayscale(img)
seg = cv2.imread(segmentation_filename)
segmentation = seg[:,:,2]
return estimate_furigana(gray, segmentation)
def main():
parser = arg.parser
parser = argparse.ArgumentParser(description='Estimate areas of furigana in segmented raw manga scan.')
parser.add_argument('infile', help='Input (color) raw Manga scan image to clean.')
parser.add_argument('segmentation_file', help='Input 3 channel segmentation of input image, with text areas in R channel.')
parser.add_argument('-o','--output', dest='outfile', help='Output (color) cleaned raw manga scan image.')
#parser.add_argument('-m','--mask', dest='mask', default=None, help='Output (binary) mask for non-graphical regions.')
#parser.add_argument('-b','--binary', dest='binary', default=None, help='Binarized version of input file.')
parser.add_argument('-v','--verbose', help='Verbose operation. Print status messages during processing', action="store_true")
parser.add_argument('--display', help='Display output using OPENCV api and block program exit.', action="store_true")
parser.add_argument('-d','--debug', help='Overlay input image into output.', action="store_true")
#parser.add_argument('--sigma', help='Std Dev of gaussian preprocesing filter.',type=float,default=None)
#parser.add_argument('--segment_threshold', help='Threshold for nonzero pixels to separete vert/horiz text lines.',type=int,default=1)
arg.value = parser.parse_args()
infile = arg.string_value('infile')
segmentation_file = arg.string_value('segmentation_file')
outfile = arg.string_value('outfile',default_value=infile + '.furigana.png')
if not os.path.isfile(infile) or not os.path.isfile(segmentation_file):
print('Please provide a regular existing input file. Use -h option for help.')
sys.exit(-1)
if arg.boolean_value('verbose'):
print('\tProcessing file ' + infile)
print('\tWith segmentation file ' + segmentation_file)
print('\tAnd generating output ' + outfile)
furigana = estimate_furigana_from_files(infile, segmentation_file)
imsave(outfile,furigana)
if arg.boolean_value('display'):
cv2.imshow('Furigana', furigana)
if cv2.waitKey(0) == 27:
cv2.destroyAllWindows()
cv2.destroyAllWindows()
if __name__ == '__main__':
main()