-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathMergeSort.agda
234 lines (217 loc) · 11.3 KB
/
MergeSort.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
{-# OPTIONS --rewriting #-}
open import Examples.Sorting.Sequential.Comparable
module Examples.Sorting.Sequential.MergeSort (M : Comparable) where
open Comparable M
open import Examples.Sorting.Sequential.Core M
open import Calf costMonoid hiding (A)
open import Calf.Data.Product
open import Calf.Data.Bool
open import Calf.Data.Nat
open import Calf.Data.List using (list; []; _∷_; _∷ʳ_; [_]; length; _++_; reverse)
open import Calf.Data.Equality using (_≡_; refl)
open import Calf.Data.IsBoundedG costMonoid
open import Calf.Data.IsBounded costMonoid
open import Calf.Data.BigO costMonoid
open import Relation.Nullary
open import Relation.Nullary.Negation
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; module ≡-Reasoning)
open import Data.Sum using (inj₁; inj₂)
open import Function
open import Data.Nat as Nat using (ℕ; zero; suc; z≤n; s≤s; _+_; _*_; ⌊_/2⌋; ⌈_/2⌉)
import Data.Nat.Properties as N
open import Data.Nat.Square
open import Data.Nat.Log2
open import Examples.Sorting.Sequential.MergeSort.Split M public
open import Examples.Sorting.Sequential.MergeSort.Merge M public
sort/clocked : cmp $ Π nat λ k → Π (list A) λ l → Π (meta⁺ (⌈log₂ length l ⌉ Nat.≤ k)) λ _ → F (sort-result l)
sort/clocked zero l h = ret (l , refl , short-sorted (⌈log₂n⌉≡0⇒n≤1 (N.n≤0⇒n≡0 h)))
sort/clocked (suc k) l h =
bind (F (sort-result l)) (split l) λ ((l₁ , l₂) , length₁ , length₂ , l↭l₁++l₂) →
let
h₁ , h₂ =
let open N.≤-Reasoning in
(begin
⌈log₂ length l₁ ⌉
≡⟨ Eq.cong ⌈log₂_⌉ length₁ ⟩
⌈log₂ ⌊ length l /2⌋ ⌉
≤⟨ log₂-mono (N.⌊n/2⌋≤⌈n/2⌉ (length l)) ⟩
⌈log₂ ⌈ length l /2⌉ ⌉
≤⟨ log₂-suc (length l) h ⟩
k
∎) ,
(begin
⌈log₂ length l₂ ⌉
≡⟨ Eq.cong ⌈log₂_⌉ length₂ ⟩
⌈log₂ ⌈ length l /2⌉ ⌉
≤⟨ log₂-suc (length l) h ⟩
k
∎)
in
bind (F (sort-result l)) (sort/clocked k l₁ h₁) λ (l₁' , l₁↭l₁' , sorted-l₁') →
bind (F (sort-result l)) (sort/clocked k l₂ h₂) λ (l₂' , l₂↭l₂' , sorted-l₂') →
bind (F (sort-result l)) (merge (l₁' , l₂') (sorted-l₁' , sorted-l₂')) λ (l' , l₁'++l₂'↭l , l'-sorted) →
ret (l' , trans l↭l₁++l₂ (trans (++⁺-↭ l₁↭l₁' l₂↭l₂') l₁'++l₂'↭l) , l'-sorted)
sort/clocked/total : ∀ k l h → IsValuable (sort/clocked k l h)
sort/clocked/total zero l h u = ↓ refl
sort/clocked/total (suc k) l h u rewrite Valuable.proof (split/total l u) = ↓
let
((l₁ , l₂) , length₁ , length₂ , l↭l₁++l₂) = Valuable.value (split/total l u)
h₁ , h₂ =
let open N.≤-Reasoning in
(begin
⌈log₂ length l₁ ⌉
≡⟨ Eq.cong ⌈log₂_⌉ length₁ ⟩
⌈log₂ ⌊ length l /2⌋ ⌉
≤⟨ log₂-mono (N.⌊n/2⌋≤⌈n/2⌉ (length l)) ⟩
⌈log₂ ⌈ length l /2⌉ ⌉
≤⟨ log₂-suc (length l) h ⟩
k
∎) ,
(begin
⌈log₂ length l₂ ⌉
≡⟨ Eq.cong ⌈log₂_⌉ length₂ ⟩
⌈log₂ ⌈ length l /2⌉ ⌉
≤⟨ log₂-suc (length l) h ⟩
k
∎)
(l₁' , l₁↭l₁' , sorted-l₁') = Valuable.value (sort/clocked/total k l₁ h₁ u)
(l₂' , l₂↭l₂' , sorted-l₂') = Valuable.value (sort/clocked/total k l₂ h₂ u)
in
let open ≡-Reasoning in
begin
( bind (F (sort-result l)) (sort/clocked k l₁ h₁) λ (l₁' , l₁↭l₁' , sorted-l₁') →
bind (F (sort-result l)) (sort/clocked k l₂ h₂) λ (l₂' , l₂↭l₂' , sorted-l₂') →
bind (F (sort-result l)) (merge (l₁' , l₂') (sorted-l₁' , sorted-l₂')) λ (l' , l₁'++l₂'↭l , l'-sorted) →
ret (l' , trans l↭l₁++l₂ (trans (++⁺-↭ l₁↭l₁' l₂↭l₂') l₁'++l₂'↭l) , l'-sorted)
)
≡⟨
Eq.cong
(λ e →
bind (F (sort-result l)) e λ (l₁' , l₁↭l₁' , sorted-l₁') →
bind (F (sort-result l)) (sort/clocked k l₂ h₂) λ (l₂' , l₂↭l₂' , sorted-l₂') →
bind (F (sort-result l)) (merge (l₁' , l₂') (sorted-l₁' , sorted-l₂')) λ (l' , l₁'++l₂'↭l , l'-sorted) →
ret (l' , trans l↭l₁++l₂ (trans (++⁺-↭ l₁↭l₁' l₂↭l₂') l₁'++l₂'↭l) , l'-sorted)
)
(Valuable.proof (sort/clocked/total k l₁ h₁ u))
⟩
( bind (F (sort-result l)) (sort/clocked k l₂ h₂) λ (l₂' , l₂↭l₂' , sorted-l₂') →
bind (F (sort-result l)) (merge (l₁' , l₂') (sorted-l₁' , sorted-l₂')) λ (l' , l₁'++l₂'↭l , l'-sorted) →
ret (l' , trans l↭l₁++l₂ (trans (++⁺-↭ l₁↭l₁' l₂↭l₂') l₁'++l₂'↭l) , l'-sorted)
)
≡⟨
Eq.cong
(λ e →
bind (F (sort-result l)) e λ (l₂' , l₂↭l₂' , sorted-l₂') →
bind (F (sort-result l)) (merge (l₁' , l₂') (sorted-l₁' , sorted-l₂')) λ (l' , l₁'++l₂'↭l , l'-sorted) →
ret (l' , trans l↭l₁++l₂ (trans (++⁺-↭ l₁↭l₁' l₂↭l₂') l₁'++l₂'↭l) , l'-sorted)
)
(Valuable.proof (sort/clocked/total k l₂ h₂ u))
⟩
( bind (F (sort-result l)) (merge (l₁' , l₂') (sorted-l₁' , sorted-l₂')) λ (l' , l₁'++l₂'↭l , l'-sorted) →
ret (l' , trans l↭l₁++l₂ (trans (++⁺-↭ l₁↭l₁' l₂↭l₂') l₁'++l₂'↭l) , l'-sorted)
)
≡⟨
Eq.cong
(λ e →
bind (F (sort-result l)) e λ (l' , l₁'++l₂'↭l , l'-sorted) →
ret (l' , trans l↭l₁++l₂ (trans (++⁺-↭ l₁↭l₁' l₂↭l₂') l₁'++l₂'↭l) , l'-sorted)
)
(Valuable.proof (merge/total (l₁' , l₂') (sorted-l₁' , sorted-l₂') u))
⟩
ret _
∎
sort/clocked/cost : cmp $ Π nat λ k → Π (list A) λ l → Π (meta⁺ (⌈log₂ length l ⌉ Nat.≤ k)) λ _ → F unit
sort/clocked/cost k l _ = step⋆ (k * length l)
sort/clocked/is-bounded : ∀ k l h → IsBoundedG (sort-result l) (sort/clocked k l h) (sort/clocked/cost k l h)
sort/clocked/is-bounded zero l h = ≤⁻-refl
sort/clocked/is-bounded (suc k) l h =
bound/bind/const
{e = split l}
{f = λ ((l₁ , l₂) , length₁ , length₂ , l↭l₁++l₂) →
bind (F (sort-result l)) (sort/clocked k l₁ _) λ (l₁' , l₁↭l₁' , sorted-l₁') →
bind (F (sort-result l)) (sort/clocked k l₂ _) λ (l₂' , l₂↭l₂' , sorted-l₂') →
bind (F (sort-result l)) (merge (l₁' , l₂') (sorted-l₁' , sorted-l₂')) λ (l' , l₁'++l₂'↭l , l'-sorted) →
ret {sort-result l} (l' , ↭-trans l↭l₁++l₂ (↭-trans (_↭_.trans (++⁺ʳ-↭ l₂ l₁↭l₁') (++⁺ˡ-↭ l₁' l₂↭l₂')) (↭-trans l₁'++l₂'↭l _↭_.refl)) , l'-sorted)
}
0
(suc k * length l)
(split/is-bounded l)
λ ((l₁ , l₂) , length₁ , length₂ , l↭l₁++l₂) →
Eq.subst
(IsBounded (sort-result l) $
bind (F (sort-result l)) (sort/clocked k l₁ _) λ (l₁' , l₁↭l₁' , sorted-l₁') →
bind (F (sort-result l)) (sort/clocked k l₂ _) λ (l₂' , l₂↭l₂' , sorted-l₂') →
bind (F (sort-result l)) (merge (l₁' , l₂') (sorted-l₁' , sorted-l₂')) λ (l' , l₁'++l₂'↭l , l'-sorted) →
ret {sort-result l} (l' , ↭-trans l↭l₁++l₂ (↭-trans (_↭_.trans (++⁺ʳ-↭ l₂ l₁↭l₁') (++⁺ˡ-↭ l₁' l₂↭l₂')) (↭-trans l₁'++l₂'↭l _↭_.refl)) , l'-sorted)
)
(let open ≡-Reasoning in
begin
k * length l₁ + (k * length l₂ + (length l₁ + length l₂))
≡˘⟨ N.+-assoc (k * length l₁) (k * length l₂) (length l₁ + length l₂) ⟩
(k * length l₁ + k * length l₂) + (length l₁ + length l₂)
≡˘⟨ Eq.cong (_+ (length l₁ + length l₂)) (N.*-distribˡ-+ k (length l₁) (length l₂)) ⟩
k * (length l₁ + length l₂) + (length l₁ + length l₂)
≡˘⟨ N.+-comm (length l₁ + length l₂) (k * (length l₁ + length l₂)) ⟩
suc k * (length l₁ + length l₂)
≡˘⟨ Eq.cong (suc k *_) (length-++ l₁) ⟩
suc k * (length (l₁ ++ l₂))
≡˘⟨ Eq.cong (suc k *_) (↭-length l↭l₁++l₂) ⟩
suc k * length l
∎) $
bound/bind/const
{e = sort/clocked k l₁ _}
{f = λ (l₁' , l₁↭l₁' , sorted-l₁') →
bind (F (sort-result l)) (sort/clocked k l₂ _) λ (l₂' , l₂↭l₂' , sorted-l₂') →
bind (F (sort-result l)) (merge (l₁' , l₂') (sorted-l₁' , sorted-l₂')) λ (l' , l₁'++l₂'↭l , l'-sorted) →
ret {sort-result l} (l' , ↭-trans l↭l₁++l₂ (↭-trans (_↭_.trans (++⁺ʳ-↭ l₂ l₁↭l₁') (++⁺ˡ-↭ l₁' l₂↭l₂')) (↭-trans l₁'++l₂'↭l _↭_.refl)) , l'-sorted)
}
(k * length l₁)
(k * length l₂ + (length l₁ + length l₂))
(sort/clocked/is-bounded k l₁ _)
λ (l₁' , l₁↭l₁' , sorted-l₁') →
bound/bind/const
{e = sort/clocked k l₂ _}
{f = λ (l₂' , l₂↭l₂' , sorted-l₂') →
bind (F (sort-result l)) (merge (l₁' , l₂') (sorted-l₁' , sorted-l₂')) λ (l' , l₁'++l₂'↭l , l'-sorted) →
ret {sort-result l} (l' , ↭-trans l↭l₁++l₂ (↭-trans (_↭_.trans (++⁺ʳ-↭ l₂ l₁↭l₁') (++⁺ˡ-↭ l₁' l₂↭l₂')) (↭-trans l₁'++l₂'↭l _↭_.refl)) , l'-sorted)
}
(k * length l₂)
(length l₁ + length l₂)
(sort/clocked/is-bounded k l₂ _)
λ (l₂' , l₂↭l₂' , sorted-l₂') →
Eq.subst
(IsBounded (sort-result l) $
bind (F (sort-result l)) (merge (l₁' , l₂') (sorted-l₁' , sorted-l₂')) λ (l' , l₁'++l₂'↭l , l'-sorted) →
ret {sort-result l} (l' , ↭-trans l↭l₁++l₂ (↭-trans (_↭_.trans (++⁺ʳ-↭ l₂ l₁↭l₁') (++⁺ˡ-↭ l₁' l₂↭l₂')) (↭-trans l₁'++l₂'↭l _↭_.refl)) , l'-sorted)
)
(let open ≡-Reasoning in
begin
length l₁' + length l₂' + 0
≡⟨ N.+-identityʳ (length l₁' + length l₂') ⟩
length l₁' + length l₂'
≡˘⟨ Eq.cong₂ _+_ (↭-length l₁↭l₁') (↭-length l₂↭l₂') ⟩
length l₁ + length l₂
∎) $
bound/bind/const {B = sort-result l}
{e = merge (l₁' , l₂') _}
{f = λ (l' , l₁'++l₂'↭l , l'-sorted) →
ret {sort-result l} (l' , ↭-trans l↭l₁++l₂ (↭-trans (_↭_.trans (++⁺ʳ-↭ l₂ l₁↭l₁') (++⁺ˡ-↭ l₁' l₂↭l₂')) (↭-trans l₁'++l₂'↭l _↭_.refl)) , l'-sorted)}
(length l₁' + length l₂')
0
(merge/is-bounded (l₁' , l₂') _)
λ _ →
≤⁻-refl
sort : cmp (Π (list A) λ l → F (sort-result l))
sort l = sort/clocked ⌈log₂ length l ⌉ l N.≤-refl
sort/total : IsTotal sort
sort/total l = sort/clocked/total ⌈log₂ length l ⌉ l N.≤-refl
sort/cost : cmp (Π (list A) λ _ → cost)
sort/cost l = sort/clocked/cost ⌈log₂ length l ⌉ l N.≤-refl
sort/is-bounded : ∀ l → IsBoundedG (sort-result l) (sort l) (sort/cost l)
sort/is-bounded l = sort/clocked/is-bounded ⌈log₂ length l ⌉ l N.≤-refl
sort/asymptotic : given (list A) measured-via length , sort ∈𝓞(λ n → n * ⌈log₂ n ⌉)
sort/asymptotic = f[n]≤g[n]via λ l →
Eq.subst
(IsBounded (sort-result l) (sort l))
(N.*-comm ⌈log₂ length l ⌉ (length l))
(sort/is-bounded l)