forked from boardhead/aged
-
Notifications
You must be signed in to change notification settings - Fork 0
/
PColourWheel.cxx
576 lines (530 loc) · 18.8 KB
/
PColourWheel.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
//==============================================================================
// File: PColourWheel.cxx
//
// Copyright (c) 2017, Phil Harvey, Queen's University
//==============================================================================
#include <math.h>
#include "ImageData.h"
#include "PColourWheel.h"
#include "PColourWindow.h"
#include "PImageWindow.h"
#include "PResourceManager.h"
#include "PUtils.h"
#include "menu.h"
#include "colours.h"
//#define DEBUG_IMAGE // un-comment this to print debugging info about image
// colour monitor types
enum EColourType {
kIndexedColour, // not true colour - use indexed colour
kTrueColour15, // 00000000000000000RrrrrGggggBbbbb
kTrueColour16, // 0000000000000000RrrrrGgggggBbbbb
kTrueColour24, // 00000000RrrrrrrrGgggggggBbbbbbbb
kTrueColour24rev // 00000000BbbbbbbbGgggggggRrrrrrrr
};
// number of colours for limited-colour monitors
const int kNumCols = 5;
const int kTotalNumCols = kNumCols * kNumCols * kNumCols;
const int kShadowWidth = 4;
const int kMargin = 8;
const int kGreySize = 5; // radius of grey region in center of wheel
const int kDirtyWheel = 0x02; // the wheel needs redrawing
// ------------------------------------------------------------
PColourWheel::PColourWheel(PImageWindow *owner, Widget canvas, int size)
: PImageCanvas(owner,canvas,PointerMotionMask|ButtonPressMask|ButtonReleaseMask)
{
if (!canvas) {
CreateCanvas("colourWheel");
}
mWheelSize = size / 2 - kMargin;
mColours = NULL;
mAllocFlags = NULL;
mImage = NULL;
mDrawLabel = 0; // don't draw the image label
mIntensity = 255;
mCurX = mCurY = mWheelSize + kMargin;
mDelayedUpdate = 0;
mFirstTry = 1;
// figure out if we can draw directly in RGB colours
TestColours();
if (mColourType == kIndexedColour) {
// allocate colours if necessary
AllocColours();
}
}
PColourWheel::~PColourWheel()
{
FreeColours();
delete [] mColours;
delete [] mAllocFlags;
if (mImage) {
XDestroyImage(mImage);
}
}
void PColourWheel::Listen(int message, void *dataPt)
{
switch (message) {
case kMessageSmoothLinesChanged:
SetDirty(kDirtyPix);
break;
default:
PImageCanvas::Listen(message, dataPt);
break;
}
}
// test colours to determine drawing strategy
// (sets mColourType before returning)
void PColourWheel::TestColours()
{
Display * dpy = PResourceManager::sResource.display;
int depth = DefaultDepthOfScreen(XtScreen(mCanvas));
mColourType = kIndexedColour; // use indexed colour by default
if (depth > 8) {
// allocate a single colour to check the pixel RGB bit patterns
int scr = DefaultScreen(dpy);
Colormap cmap = DefaultColormap(dpy, scr);
XColor tmp_col;
tmp_col.flags = DoRed | DoGreen | DoBlue;
tmp_col.red = 0xcccc;
tmp_col.green = 0x5555;
tmp_col.blue = 0x4444;
if (XAllocColor(dpy, cmap, &tmp_col)) {
switch (depth) {
case 15:
case 16:
if (tmp_col.pixel == 0x6548) {
// draw in standard 15-bit true colour mode
// - pixel bit pattern is 00000000000000000RrrrrGggggBbbbb
mColourType = kTrueColour15;
} else if (tmp_col.pixel == 0xcaa8) {
// draw in standard 16-bit true colour mode
// - pixel bit pattern is 0000000000000000RrrrrGgggggBbbbb
mColourType = kTrueColour16;
}
break;
case 24:
case 32:
if (tmp_col.pixel == 0xcc5544) {
// draw in standard 24-bit true colour mode
// - pixel bit pattern is 00000000RrrrrrrrGgggggggBbbbbbbb
mColourType = kTrueColour24;
} else if (tmp_col.pixel == 0x4455cc) {
// draw in standard 24-bit true colour mode (reversed)
// - pixel bit pattern is 00000000BbbbbbbbGgggggggRrrrrrrr
mColourType = kTrueColour24rev;
}
break;
}
if (mColourType == kIndexedColour) {
Printf("PColourWheel: Unknown pixel pattern (0x%lx) for %d-bit depth\n",tmp_col.pixel,depth);
Printf("(will use indexed color for wheel)\n");
Printf("Please inform Phil Harvey of this warning so\n");
Printf("support for your hardware can be added to Aged.\n");
}
// free the colour we allocated
XFreeColors(dpy, cmap, &tmp_col.pixel, 1, 0);
}
}
}
void PColourWheel::AllocColours()
{
Display * dpy = PResourceManager::sResource.display;
int scr = DefaultScreen(dpy);
Colormap cmap = DefaultColormap(dpy, scr);
XColor tmp_col;
tmp_col.flags = DoRed | DoGreen | DoBlue;
if (!mColours) {
// create arrays for colours and alloc flags
mColours = new Pixel[kTotalNumCols];
mAllocFlags = new char[kTotalNumCols];
if (!mColours || !mAllocFlags) quit("Out of memory");
memset(mAllocFlags, 0, kTotalNumCols);
} else {
// free allocated X colours (but not arrays)
FreeColours();
}
int count=0;
int i = 0;
// allocate X colours
for (int r=0; r<kNumCols; ++r) {
for (int g=0; g<kNumCols; ++g) {
for (int b=0; b<kNumCols; ++b) {
tmp_col.red = r * 65535L / (kNumCols - 1);
tmp_col.green = g * 65535L / (kNumCols - 1);
tmp_col.blue = b * 65535L / (kNumCols - 1);
tmp_col.pixel = 0;
if (XAllocColor(dpy, cmap, &tmp_col)) {
mAllocFlags[i] = 1; // allocated successfully
mColours[i] = tmp_col.pixel;
++count;
} else {
mAllocFlags[i] = 0;
mColours[i] = PResourceManager::sResource.white_col;
}
++i;
}
}
}
if (count != kTotalNumCols) {
Printf("%d colors could not be allocated for color wheel\n", kTotalNumCols-count);
}
// install this colour map into our drawable
mDrawable->SetColourMap(mColours);
}
void PColourWheel::FreeColours()
{
if (!mColours) return;
int i;
Display * dpy = PResourceManager::sResource.display;
int scr = DefaultScreen(dpy);
Colormap cmap = DefaultColormap(dpy, scr);
// are all colours allocated?
for (i=0; i<kTotalNumCols; ++i) {
if (!mAllocFlags[i]) break;
}
if (i == kTotalNumCols) {
// free all at once
XFreeColors(dpy, cmap, mColours, kTotalNumCols, 0);
memset(mAllocFlags, 0, kTotalNumCols);
} else {
// free individually
for (i=0; i<kTotalNumCols; ++i) {
if (mAllocFlags[i]) {
XFreeColors(dpy, cmap, mColours+i, 1, 0);
mAllocFlags[i] = 0;
}
}
}
}
void PColourWheel::HandleEvents(XEvent *event)
{
static int sPressed = 0;
switch (event->type) {
case ButtonPress:
sPressed = 1;
XGrabPointer(mDpy, XtWindow(mCanvas),0,
PointerMotionMask | ButtonPressMask | ButtonReleaseMask,
GrabModeAsync, GrabModeAsync, None, None, CurrentTime);
// fall through!
case MotionNotify:
if (sPressed) {
SetCursorPos(event->xbutton.x, event->xbutton.y);
Draw();
CursorMoved();
((PColourWindow *)mOwner)->WheelColourChanging();
}
break;
case ButtonRelease:
XUngrabPointer(mDpy, CurrentTime);
sPressed = 0;
CursorMoved(); // calculate our new colour RGB values
((PColourWindow *)mOwner)->WheelColourChanged();
break;
}
}
// Calculate maximum colour values from current cursor location
void PColourWheel::CursorMoved()
{
float p3 = PI / 3;
float p3i = 3 / PI;
float x = mCurX - mWheelSize - kMargin;
float y = mCurY - mWheelSize - kMargin;
float r2b = x * x + y * y;
float ang = atan2(y, -x);
float f = (sqrt(r2b) - kGreySize) / (mWheelSize - kGreySize);
if (f > 1.0) f = 1.0;
else if (f < 0.0) f = 0.0;
float pang = ang; // positive angle
if (pang < 0) pang += 2 * PI;
float t;
// calculate red component
t = fabs(pang - PI) * p3i - 1.0;
if (t < 0) t = 0;
else if (t > 1.0) t = 1.0;
float fr = (1.0 - f * t) * 255.0;
// calculate green component
t = fabs(ang + p3) * p3i - 1.0;
if (t < 0) t = 0;
else if (t > 1.0) t = 1.0;
float fg = (1.0 - f * t) * 255.0;
// calculate blue component
t = fabs(ang - p3) * p3i - 1.0;
if (t < 0) t = 0;
else if (t > 1.0) t = 1.0;
float fb = (1.0 - f * t) * 255.0;
mMaxColour[0] = (int)(fr + 0.5);
mMaxColour[1] = (int)(fg + 0.5);
mMaxColour[2] = (int)(fb + 0.5);
}
void PColourWheel::SetIntensity(int val, int fastAnimate)
{
if (mIntensity != val) {
mIntensity = val;
if (fastAnimate) {
if (mImage) {
// we have an image, so fast updates are possible
// - update the wheel immediately
SetDirty(kDirtyWheel);
Draw();
} else {
// fast animation isn't available because we don't have
// an image -- so delay the update until later
mDelayedUpdate = 1;
}
} else {
// update the wheel normally
SetDirty(kDirtyWheel); // force the wheel to be redrawn
}
}
}
void PColourWheel::AnimateDone()
{
if (mDelayedUpdate) {
mDelayedUpdate = 0;
SetDirty(kDirtyWheel);
}
}
void PColourWheel::GetColourRGB(int *col3)
{
for (int i=0; i<3; ++i) {
col3[i] = (int)(mMaxColour[i] * mIntensity / 255.0 + 0.5);
}
}
void PColourWheel::SetColourRGB(int *col3)
{
int i;
// get colour component min/max values
int minVal = col3[0];
int maxVal = col3[0];
for (i=1; i<3; ++i) {
if (minVal > col3[i]) minVal = col3[i];
if (maxVal < col3[i]) maxVal = col3[i];
}
// set intensity
SetIntensity(maxVal);
// set the max colour values
if (maxVal > 0) {
for (i=0; i<3; ++i) {
mMaxColour[i] = col3[i] * 255.0 / maxVal;
}
} else {
for (i=0; i<3; ++i) {
mMaxColour[i] = 255;
}
}
// set the cursor position
int x,y;
x = y = mWheelSize + kMargin;
if (maxVal != minVal) {
// calculate the cursor position from the RGB values
float scale = maxVal - minVal;
float radius = kGreySize + (mWheelSize - kGreySize) * (maxVal - minVal) / maxVal;
float angle=0;
for (i=0; i<3; ++i) {
if (col3[i] == minVal) {
int i1 = (i + 1) % 3;
int i2 = (i + 2) % 3;
if (col3[i1] == maxVal) {
angle = 2.0 * i1 + (col3[i2] - minVal) / scale;
} else {
angle = 2.0 * (i1 + 1) - (col3[i1] - minVal) / scale;
}
break;
}
}
x = (int)(x + radius * cos(angle * PI / 3) + 0.5);
y = (int)(y - radius * sin(angle * PI / 3) + 0.5);
}
SetCursorPos(x, y);
SetDirty();
}
void PColourWheel::SetCursorPos(int x, int y)
{
if (mCurX != x || mCurY != y) {
// limit xy to inside the wheel
int tx = x - mWheelSize - kMargin;
int ty = y - mWheelSize - kMargin;
int r2 = tx * tx + ty * ty;
if (r2 > mWheelSize * mWheelSize) {
float f = mWheelSize / sqrt((float)r2);
x = (int)(tx * f + mWheelSize + kMargin + 0.5);
y = (int)(ty * f + mWheelSize + kMargin + 0.5);
if (mCurX==x && mCurY==y) return;
}
mCurX = x;
mCurY = y;
}
}
void PColourWheel::AfterDrawing()
{
int x = mCurX;
int y = mCurY;
Display * dpy = XtDisplay(mCanvas);
GC gc = mOwner->GetData()->gc;
XSegment seg[4];
// draw the colour cursor
for (int i=-1; i<=1; ++i) {
int n = 0;
seg[n].x1 = x-8; seg[n].y1 = y+i;
seg[n].x2 = x-2; seg[n].y2 = y+i;
++n;
seg[n].x1 = x+2; seg[n].y1 = y+i;
seg[n].x2 = x+8; seg[n].y2 = y+i;
++n;
seg[n].x1 = x+i; seg[n].y1 = y-8;
seg[n].x2 = x+i; seg[n].y2 = y-2;
++n;
seg[n].x1 = x+i; seg[n].y1 = y+2;
seg[n].x2 = x+i; seg[n].y2 = y+8;
++n;
if (i) {
XSetForeground(dpy, gc, PResourceManager::sResource.white_col);
} else {
XSetForeground(dpy, gc, PResourceManager::sResource.black_col);
}
XDrawSegments(dpy,XtWindow(mCanvas),gc,seg,n);
}
}
void PColourWheel::DrawSelf()
{
// do nothing if we don't need to redraw the wheel
if (IsDirty() & (kDirtyPix | kDirtyWheel)) {
DrawTheWheel();
}
}
/*
** Draw colour picker image
*/
void PColourWheel::DrawTheWheel()
{
#ifdef PRINT_DRAWS
Printf("draw Colour Wheel\n");
#endif
int wheelX = mWheelSize + kMargin;
int wheelY = mWheelSize + kMargin;
int imageSize = mWheelSize * 2 - 1;
float brightness = mIntensity / 255.0;
float maxCol;
if (mColourType == kIndexedColour) {
// indexed colour
maxCol = (kNumCols - 1) * brightness;
} else {
// true colour - maximum is 0xffff
maxCol = 65535 * brightness;
}
// do we need to draw into a newly created pixmap?
if (IsDirtyPix()) {
/*
** draw the constant background components of the image into the drawable
*/
// clear the area
Arg warg;
Pixel pixel;
XtSetArg(warg, XmNbackground, &pixel);
XtGetValues(mOwner->GetMainPane(), &warg, 1);
mDrawable->SetForegroundPixel(pixel);
FillRectangle(0, 0, mWidth, mHeight);
// draw the shadow
XtSetArg(warg, XmNbottomShadowColor, &pixel);
XtGetValues(mOwner->GetMainPane(), &warg, 1);
mDrawable->SetForegroundPixel(pixel);
FillArc(wheelX+kShadowWidth,wheelY+kShadowWidth,mWheelSize,mWheelSize);
// create our client-side image if we haven't already done so
if (mFirstTry) {
mFirstTry = 0; // only try to create image once
// create the image from the drawing we just did
mImage = mDrawable->GetImage(kMargin+1, kMargin+1, imageSize, imageSize);
if (!mImage) {
Printf("PColourWheel: Error creating image\n");
#ifdef DEBUG_IMAGE
} else {
Printf("byte order=%d bit order=%d pad=%d\n",
mImage->byte_order,mImage->bitmap_bit_order,mImage->bitmap_pad);
Printf("depth=%d bits/pix=%d r=%lx g=%lx b=%lx\n",
mImage->depth,mImage->bits_per_pixel,
mImage->red_mask,mImage->green_mask,mImage->blue_mask);
#endif
}
}
}
// draw the colour wheel
int cen = mWheelSize - 1; // the center pixel
int r2max = mWheelSize * mWheelSize; // the maximum radius we will draw (squared)
float p3 = PI / 3;
float p3i = 1 / p3;
float er, eg, eb; // colour errors for dithering
er = eg = eb = 0.5; // initialize remainders for dithering
for (int j=0; j<imageSize; ++j) {
int y = j - cen;
for (int i=0; i<imageSize; ++i) {
int x = i - cen;
int r2 = x * x + y * y;
if (r2 > r2max) continue;
float ang = atan2((float)y, (float)-x); // get colour angle (-pi -> pi)
// calculate distance fraction of full radius
float f = (sqrt((float)r2) - kGreySize) / (float)(mWheelSize - kGreySize);
if (f < 0) f = 0;
float pang = ang; // positive angle
if (pang < 0) pang += 2 * PI;
// calculate red component
float t = fabs(pang - PI) * p3i - 1.0;
if (t < 0) t = 0;
else if (t > 1.0) t = 1.0;
float fr = (1.0 - f * t) * maxCol;
// calculate green component
t = fabs(ang + p3) * p3i - 1.0;
if (t < 0) t = 0;
else if (t > 1.0) t = 1.0;
float fg = (1.0 - f * t) * maxCol;
// calculate blue component
t = fabs(ang - p3) * p3i - 1.0;
if (t < 0) t = 0;
else if (t > 1.0) t = 1.0;
float fb = (1.0 - f * t) * maxCol;
// convert to integer RGB components
int r = (int)(fr + 0.5);
int g = (int)(fg + 0.5);
int b = (int)(fb + 0.5);
// calculate corresponding pixel value for drawing
Pixel thePixel=0;
switch (mColourType) {
case kIndexedColour:
// we are using our allocated colour map
// -- dither the colours
r = (int)(fr += er);
g = (int)(fg += eg);
b = (int)(fb += eb);
er = fr - r;
eg = fg - g;
eb = fb - b;
thePixel = mColours[((r * kNumCols) + g) * kNumCols + b];
break;
case kTrueColour15:
thePixel = ((r & 0xf800) >> 1) | ((g & 0xf800) >> 6) | ((b & 0xf800) >> 11);
break;
case kTrueColour16:
thePixel = (r & 0xf800) | ((g & 0xfc00) >> 5) | ((b & 0xf800) >> 11);
break;
case kTrueColour24:
thePixel = ((r & 0xff00) << 8) | (g & 0xff00) | ((b & 0xff00) >> 8);
break;
case kTrueColour24rev:
thePixel = ((r & 0xff00) >> 8) | (g & 0xff00) | ((b & 0xff00) << 8);
break;
}
// set this pixel in the image or pixmap
if (mImage) {
XPutPixel(mImage, i, j, thePixel);
} else {
mDrawable->SetForegroundPixel(thePixel);
mDrawable->DrawPoint(i+kMargin+1, j+kMargin+1);
}
}
}
// if we have an image, put it into the pixmap
if (mImage) {
mDrawable->PutImage(mImage, kMargin+1, kMargin+1);
}
// finally, draw circle around colour wheel
mDrawable->SetForegroundPixel(PResourceManager::sResource.black_col);
DrawArc(wheelX,wheelY,mWheelSize,mWheelSize);
}