diff --git a/Benchmarks/CyRK - SciPy Comparison.ipynb b/Benchmarks/CyRK - SciPy Comparison.ipynb index 1b49b64..e77dc03 100644 --- a/Benchmarks/CyRK - SciPy Comparison.ipynb +++ b/Benchmarks/CyRK - SciPy Comparison.ipynb @@ -10,7 +10,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "id": "971e366b", "metadata": {}, "outputs": [ @@ -18,7 +18,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.11.0\n" + "0.11.2\n" ] } ], @@ -43,7 +43,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "id": "eff22823", "metadata": {}, "outputs": [], @@ -152,7 +152,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "id": "bdae6603", "metadata": {}, "outputs": [ @@ -165,7 +165,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGwCAYAAACtlb+kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACEUElEQVR4nO2deZxdVZXvv5VUKmNVEghJZQASkDkMAqGRDiYiQcQWDPoAQQWablp8vLToaxponxFb5UkzpEFom/cQaJ+iqNAoCgYCibRhMEFiEmQQCIRKpcxcSSqpSiX7/bHPqX1O1R3OPK7v53M+5+bec0/t+8vea6+99tr7NAAKQRAEQRCEAjMo7QIIgiAIgiDEjTg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwtOYdgGyxKRJk9i+fXvaxRAEQRAEwQfNzc2sW7eu5jXi8FhMmjSJtra2tIshCIIgCEIAJk+eXNPpEYfHwo7sTJ48WaI8giAIgpATmpubaWtrq9t3i8PTj+3bt4vDIwiCIAgFQ5KWBUEQBEEoPOLwCIIgCIJQeMThEQRBEASh8EgOjyAIgiDkgBEjRjBu3DgaGhrSLkpiKKXYuHEjXV1doe8lDo8gCIIgZJiGhgYuv/xyZs+enXZRUmPx4sXcd999KKUC30McHkEQBEHIMJdffjmzZs3ixz/+Ma+++iq9vb1pFykxGhsbOfLII7ngggsA+N73vhf8XlEVShAEQRCEaBk5ciSzZ8/mxz/+Mb/85S/TLk4qvPnmmwBceOGF/OhHPwo8vSVJy4IgCIKQUfbff38AXn311ZRLki727x83blzge4jDIwiCIAgZxU5QLtM0ViXs3x8mYVscHkEQBEEQCo84PIIgCIIgFB5xeARBEARBKDzi8JSGwch/txPRQhAEoUyI1S8Fk4FNwPfTLkhG+BTQDVycdkEywl3Ae8DUlMuRBYYCLwNPAuXZzbY604HNwD+mXZCMcBWwAfjLtAuSEQ4BjkYPqLOPODyl4BPAaHQH/750i5IJbkVvQfUDpFMD+ALaKf5u2gXJAO8HjgfORLebsnMVMBb438D4lMuSBe4GxgH/lWopRqR0uBmErhvDgYkVy7l27Vquuuoq13sf+MAH2LlzJwcddFCg3x4GcXhKgdPJ+evUSpFNPpx2AVJmiuP1HCqZtXJxjOP11amVIjsc4Hh9eWqlyCbvT+WvjgB2pnS4rcMwx+v9K5b1+eefZ8aMGa73FixYwIIFC3j33Xd9//awiMNTCk5wvD4prUJkhGHoaIbNcWkVJCMc63g9CJnWmu54fXhqpcgOTgew7HpM7vfvw1IpRXYY7njdSKVprf4Oz2c/+1kOOuggbrrpJgA+9rGP8eqrr/L6669zxRVXxFxeebRESXB26v0bbdnoP988pdqFJWF6v39PAV5JoyAZwdnBT0TXlb0plSVtmnB36mVvK8f0+/eBqZSiCxiZyl/Wf9swvN+nTcAu1zvPP/883/72txk5ciT79u3jW9/6Fl/5ylfYsWMHgwcP5rbbbuNDH/oQnZ2dvPTSSzz88MNs2bIltvKLw1N4hgH7Of5ddqPV30iV3QE8pN+/y14/DnW8Hgy0Am0plSVtDgSGOP4tdcNNenoEe5JU1Azt9+8h9Hd4li1bxt69eznxxBM588wz2bRpU9/DP0855RRWr17NunXrAPjVr37FRz7yEX70ox/FVmJxeApP/7nV0ejxwc4UypIF9uv377IbcdHDTSU9yurw9NcinYhGdpC24qa/+9A04Iru7m5WrFjB+eefz5VXXsnHP/5xlFIATJo0ibY207bee+89Jk+OdwAqOTyFx3Z4OoBO63WZoxq2Hq9Z5zJrAcaI23qU2YgPBsZYr209ytzJ928rzUBLSmXJAnZbsR/iWea6ASY1YLd1HujwgJ7WmjdvHk899RRPP/103/uVnollO0NxIQ5P4bEb6Sb0XitQ7k7e1uMP1nkS5V6a3l+PMjs8YxyvV1rnMuth14216L14QPQAaSs2doTHnsYaUvGql19+md7eXv7hH/7B9X5bW5srojNlyhTa29tjKKdBHJ7CY4/SNmFC82VuqLYer6CTUYdQ7v1FxIgbbC22AWus16KHdnbswVKZoxr928pEyp0VYv92O6OocoTnkksu4e677+b11193vf/iiy8yffp0Jk2axKhRozjnnHP49a9/HV9xKff/VkmwO/jNgJ39LhEe+DOwHq3FFPSUXxnpb8SlQ5MO3qa/HschDiDoKa0edAc/ER0BKxsNmMi4HeExDk9DQwMHHHAAV1xxBUcccQRz584dcIe9e/fy5S9/mWeeeYZBgwZx8803s3nz5gHXRYk4PIXHOaW13npdeVfMcuCMeLWjHZ7W9IqTKkMwORmrrfMY6/09aRQoZZwdvN1WxqVUlizg1MPuzA6ocm0ZsPXYiB4wTUHXjzI6PLbroNCP6XG+Bx/84Ad5+umnefXVVzn//PPp7OzsfwMAfvGLX/CLX/wi1pI6EYen8Dg7+I3W6/6rDcqE04hvsl6PTaksaWP/7n3AO9bZ3i7+z2kVKkWc0VB7pCltxe3wiB6mfkyhvHrYrkOvdTjfgyVLljB4cPaeryU5PIXH6fDYU1plbaTg1qPsnZr9u7eijdbWfu+XDWc0tOx1AwZ28M73yojoYbCdmb24N+bMnpPjRByewjPGOm9BGimY3y56uA248yx6iBYgejgZiYlyiR7uCI9CR4dBHB4hZUZZ5+1IIx2EefxdJxLxsvN37Pn1steP0da5E6PFKKqtPik+th7bMG2lrNO/Y6zzHnSSbtlthzPCA5WmtbKIODyFx3Z4diJGy/ms351IB2/XjR3Wuex62E8o2oF2emxjXtb24tRD6oZG2orGdh3syI7dViTCI6SKs1NzNtIybrZna7EXvTuorUfZOzT7MSNlN+JOPRQyincOlqRuaKStaCTCI2QSZ0O1Dfhg9DbxZUOMlhuJ8LgRPdw420vZtZC64aZ/hEccHiETOBvqbswmUWWMaojRciMOoBvRwzAYGGa9dkaHRzjeLxNSN9zIlJaQSaShGvprUfYpi2p5CWV0hkHyNJyMdLzeic5pskfxZawfYkfd2K6DTGkJmWEQYsSdVIvwjKXcOU1ixDWih8G2G3sxO+mWeYAg0WE3diRHprSEzOBclWQ3VDFaAyM8gzFLtMuEjFrdiB6G/h08lFsPqRtuZEpLyBx2I92Hzt+Bck9b9I92dWMMWBkNV7VR6/4Vri0DooehfwcP5e7kqzk8w3APLMuCt6TltWvXctVVV7ne+8AHPsDOnTs56KCDYi1hJcThKTSVRmkS4XEb8a3WeTTlo78R32adyxjtAtHDSf/BAZS7rfS3HTswnX0a9WNESodN/2XplSM8zz//PDNmzHC9t2DBAhYsWMC7774b8LcHRxyeQlNplGbvqlvmZelOI27rIZ1aubVw7sItelQeHGy3zmI7NGnVjxHo/5c0DruNeJvS6u/wfPazn+Wggw7ipptuAuDhhx9m8+bN/OQnPwkuhw/E4Sk0lSI8YsQrO4Cih9FiKOV7nEL/Xbih3HWj1mBJ9NCUWY9qDo/bpXj++ec56qijGDlyJMOHD+db3/oWX/nKV9ixQ/dJd9xxB5/73OcSKTFkPaVaCIl08G4qjdJk1OoO09u0ABuTLU6qOPPd7L2qpG7IYMkmSxGvLtzbBiT9t2HgsvTKDw9dtmwZe/fu5cQTT+TMM89k06ZNfO973+v7fPHixcyaNSvOArsQh6fQiNFyIw6gm/71Y5/1ehTldXikbmikrbjJmi3tqn9JrPRflm47Pg3WoQDo7u5mxYoVnH/++Vx55ZV8/OMfRymVbFEdyJRWocnSqCQLSKfmplanVrb6IR28G2krbkQPN/2ntPY5PhuYxzNv3jyeeuopnn766SQKVxVxeAqNvQX8Lsd7ZW6kdp6Gc3RUZj3EiBtECzeihxtxiA1Ot8Hp6FROXH755Zfp7e3lH/7hH+IuWF1Sd3g+//nPs2LFCrZt28a2bdtYunQpZ599tuua+fPn09bWRldXF8888wxHH3206/OmpibuuOMONmzYwI4dO3j00UeZPHlykj8jowy3zuLwaMQBdCN6GGppMYzyJXHbtqPS4KBs0T+QtuLEuSt9fYfnkksu4e677+b111+Pu2B1Sd3hee+997juuus4+eSTOfnkk3n66ad59NFH+5yaa6+9li996UtcffXVzJgxg/Xr1/Pkk08yatSovnssWLCAuXPnctFFFzFz5kxGjRrFY489xqBBqf+8lLEb6W7He2VtpFBbj7IZ8cGYFD6pH5U7tO2O12WrH5Xaiq1H2eoGyODRid2v9s/FMSu1GhoaGD9+PNdffz1HHHEE8+fPr3inJ554gp/85Cecc845rF27lpNPPjmuQvehsnZs2rRJ/fVf/7UC1Lp169S1117b91lTU5PasmWLuvLKKxWgWlpaVHd3t7rgggv6rpk4caLq7e1VZ511lue/2dzcrJRSqrm5OfXfH90xX4FScJfjvWnWe9szUL6kj99av/08x3uft977aQbKl+QxyvrdSsEwx/s/s977uwyUMcnjfOt3/6bf+zus96dloIxJHt+1fvdXHO+dZr33egbKl/TxlvXbT3G89zXrve/E+rcPPvhg9R//8R/q4IMPzoAOKBiq4CQFJ/R7/0jr/dFq1qxZau/evWr16tXqlFNOieTv1tLBa/+dqRDIoEGDuPDCCxk5ciTPPfcc06ZNY+LEiSxcuLDvmp6eHpYsWcJpp50GwEknnURTU5Prmvb2dlatWtV3TSWamppobm52HcWj1ihtFBkI8CWMRLwMwxyvux2vyzqKr1Q3oLwRQIlouJGIl8Ge0trX730zpbVkyRIGDx7MMcccw4svvphg2WqTiR5v+vTpbN++ne7ubr773e8yd+5c/vjHP9La2gpAR0eH6/qOjo6+z1pbW+nu7mbr1q1Vr6nE9ddfT2dnZ9/R1tYW7Y/KBLbRqtTBgxhxKK8Rd9YN5XhfOng3Za0fMjhwI7bDUG9KK7sPEM2Ew/Paa69xwgkncOqpp/Jv//ZvPPDAAxx11FF9n/dft9/Q0FB3LX+9a2666SZaWlr6jmImOVfKS+jBjOjL1lDFiBvqRTRED43oYbC1GE75tnAT22HovyTdRhweT+zZs4c333yT5cuXc8MNN7BixQr+/u//nvXr1wMMiNSMHz++L+qzfv16hg4dypgxY6peU4menh62b9/uOopHpQgPyCheRmnSwfdH9HBTqa1IErc4PFB/SisTbkVFMlmyhoYGhg4dyttvv017eztz5szp+2zIkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a8pLpQgPlHfuWVZpGWQKx001PaStGPZi9qEpkx5DHa+THyzZMxWNjVmJqlWb0qr8eImosH9/mJ2aU1fwm9/8Jo8//jhr166lubmZiy66iNmzZ/ftxbNgwQJuuOEG3njjDd544w1uuOEGurq6+OEPfwhAZ2cn9957L7feeiubNm1i8+bN3HLLLaxcuZKnnnoqzZ+WAWTU6qbWqLUF55boxada3ZAO3k1Z20qt+jGScukx3PE6+QjPpk2bADjyyCN58803Y/1b3khnSuvII48EYOPG4I+8Sd3hmTBhAt///veZOHEi27Zt4w9/+ANnn312n7Ny8803M3z4cO6++27Gjh3LCy+8wFlnndX3tFWAa665ht7eXh566CGGDx/OokWLuOyyy9i3r/9/SNmQUbyhATNSq5bEPQp32L7ISAfvRlZpuallO1opV/2w68ZeoNfxfjJ1Y+fOnSxevJgLLrgAgFdffZXe3t4634qTscAEtOPbXeH9EUQ5cGxsbOTII4/kggsuYPHixXR1BX+OWOoOz9/8zd/UvebGG2/kxhtvrPp5d3c38+bNY968eVEWrQBIp2ZwhqWdenSjE7mb0HqUxeGp5wxLB68pY1sBsR1O6qUGjEB3pfE5Iffddx8AF154YWx/wzvNwH7oXbg3ON4fCYxD15nq+bNBWbx4cZ8OQUnd4RHiRDo1gzMsXUmPcWgjXsTtCSohHZob0cON6GGotvijfxL3lthKoJTie9/7Hj/60Y8YN24cDQ0N9b8UG58DbgB+Afwvx/sfBO4BVgJXRvbXlFJs3LgxVGTHRhyeQiN5GgZbi17MXLON0+EpC9KhuRE93EjEy1CtbuxB6zMcrUd8Do9NV1cX7777bux/pzY9aE06gXcc779tvd/S7/3skMlVWkJUiNEyVNMCyh3xqrUqKc1RZNLIKi03ktNkqDalBeW2pfkbHIjDU2hk1GqopgWUs1OrVzdAJ3GXBWkrbiQ6bKjWwUM560c1BzD7WojDU2gkh8fgJcKT3YYaPdWM1m50qB7KqYdENGAIZmlx/jq16Kk1WCpj/ajXVkaS1d2WxeEpNDJKM3gxWmXSw8uotUxGXKZ/Dc4Hy0rES6a0+uM1iTt7iMNTaEZYZzHiEuHpjziAbmRKy+B0eLr7fVZGPWoNDso8eOxvS/c43hOHR0iUJsdrMeISlu5PLQewzEa82qi1mfIkccvgwI0MDtzkN6dJHJ7C4iUsLR28JtuNNB7EiLupN6U1CJ2bUAZkcOBGprTc5HcBiDg8hcW50V5Pv8/K3Ej7h+gh6400HsThcVNNj12YHXTLoofUDTf5jWjEQ34dQHF4Ckul50bZlLGDr6VHthtpPEin5kb0MEjOihupG27y6wCKw1NY7A6+UkTDrpRNuJ8xVWS86JHNRhoPMm3hRvQwyODAjdQNN/m1peLwFBY7ablSpdzheJ3Nihk9+W2k8WDr0X+6E0SP/pRND2krbqRuuMlv/RCHp7DUqpT7cK8+KQP5baTxUMshLtu0xRDHa9HDW1spUxK3tBU3tepHtvUQh6ew1KqUkPWKGT219LAjXmVx/sCb0SqLHs5pXdHDdPCVIhq7MA/fLYse0lbceNEjm4+lEYensHh1eMrSUGuFpcumBYgRdyIOj5t6tqNsAwRpK27ya0vF4Sks4vC48RKWHgY0JlOc1BEjbrC12AOoCp+XVY96tiObo/jokbbixostzaYe4vAUllpeOMgozYnzGTBlM+KV6kdZ64a0FY0MltxIW3GTXwdQHJ7CIqM0N7X06MUsOc1mQ40eL6M0qRuasupRzQHMdqcWPV7aShPu5PciIw6PkDlqNVLIesWMHhm1usmv0YoeaStuRA83XqPDZdCjAePY5S/iJQ5PYZEO3o0kYroRh8cgbcWNtBU3tfTYS9afEB4tzodS5y86LA5PYREj7kbC9G7yu7Q0eqRuuBHb4Ub0MOR7RaM4PIVFGqkbr2H6snTytfZasbUoy+Zy0lbcSE6TG3GIDU6HR5alC5lBjLgb0cMw2Dqgsh5d6N24oRx6yBSOm1rOMJSrrUD9wVKZ6ocfO9oQf3F8Ig5PYZGltm7E4THUC0tDueqHRP/cSFtxIxEvg1dnGLIYHRaHp7CIEXcjRtzgxeEpU/2QuuFG9HAjehjqabGbLD96RByewiKN1I1MWxhsLfZhjFN/ylQ/JEfDjdgON6KHoZ4WkOXBkjg8hUUaqRvp1Az1on9QLj28tpWhlGNzOZkOdyO2w+DH4cmeHuLwFBZxeNzIZmqGfBut6PEa/YNy6CHT4W7EdhjqOX+QZT3E4Sks4vC4kcRDgzg8burpUbZHj4jtcDPMOst0eN6jw+LwFBavYekydPAgRtyJF4enjEbcy6i1DO1F2orBOYUpeuR9sCQOT2HxarRkczlNdhtp9PgJS0sHrylj/ZC2Iisa+5PvwZI4PIWlXuhxJ2ZzuTI1VEnEzHtYOnrE4XHjZ+PB7G0uFy31dhaGctWNfA+WxOEpLPn2xKNlENBovZZRq3Tw/RE93PhJ4i56dNjWohczQOxPmepGvgdL4vAUFjHihnpP+IXyaAFSN/ojeripp8cuzP5N2RvFR0u+O/joyXdbEYensOS7YkaLzMO7kbrhxkvSclmioSD1w4lEyt3ku26Iw1NY8l0xo8Xp8Oypco2txTDM9FdRyfdeGtGT791jo0fqh0HsqJt86yEOT2HxYrTKMjKxtdhd45oybS7nJUxfpm0L8m3Eo0emcQziDLvJdzRUHJ7C4sdoFb2henH+yrS5nHTwbkQPN6KHwU+0qwl3vmARybcDKA5PYZFRmsGLFlAePaRDcyN6uJG8FYOfaCgUX498txVxeAqLn91js1cxo0UcHjdSN9yIHoZBwGDrdT73WokWLx38XqDLel30+pHv/K7UHZ7rrruOF198kc7OTjo6OnjkkUc4/PDDXdfcd999KKVcx3PPPee6pqmpiTvuuIMNGzawY8cOHn30USZPnpzkT8kYYsQNXrSA8unhdZRW9M3l/Iziy1I3IK+j+GjxOlgqW/3IZ91I3eGZNWsWd911F6eeeipz5syhsbGRhQsXMmLECNd1jz/+OK2trX3HOeec4/p8wYIFzJ07l4suuoiZM2cyatQoHnvsMQYNSv0npoQ4PAa/Dk/RR61+6gYUf3M5eZaWwenwiO2QwVJ/8t2vpL7+9qMf/ajr35dffjkbNmzgpJNO4tlnn+17v7u7m46Ojor3aGlp4YorruCzn/0sixYtAuAzn/kMa9eu5cwzz2ThwoUDvtPU1MTQoWa5cnNz9v5zwiGrtAxitNx40cPeXG4wupPfUePavJNvIx4tToen2hYOUD49ZLCk8bNKaxQ6OqxiLZEfMhf+GD16NACbN292vT979mw6Ojp47bXXuOeeezjggAP6PjvppJNoampyOTbt7e2sWrWK0047reLfuf766+ns7Ow72traYvg1aeF3Hl6MlkYcQDeih0HaihvRw43oYXBGh7PlAGbO4bntttt49tlnWb16dd97jz/+OJdccglnnHEGX/7yl5kxYwZPP/00TU1a/NbWVrq7u9m6davrXh0dHbS2tlb8OzfddBMtLS19R7HyffyGpbNVKaNHjJYb0cONODwGL5FhEGe4P2WpH1702I3e5gOy1rekPqXl5Dvf+Q7HHXccM2fOdL3/0EMP9b1evXo1y5Yt45133uFjH/sYjzzySNX7NTQ0oFTlcFpPTw89PfUqcV6ReXg3YrTciB5uxOExyBSOG2krbvzoMRatR3usJfJDZiI8d9xxB+eeey4f+tCH6k4vrV+/nnfeeYfDDjus799Dhw5lzJgxruvGjx9fNe+n2Mg8vBsxWm5EDzd+8hKKvrmc1A03Mv3rJt/1IxMOz5133sn555/PGWecwZo1a+pev99++3HggQfS3q49x+XLl9PT08OcOXP6rmltbWX69OksXbo0rmJnGLtS7qF2wlg2K2X0yKjVTb6NVvT4zUsosh5SN9yIHm7yrUfqU1p33XUXF198Meeddx7bt29nwoQJAGzbto3du3czcuRIvva1r/Gzn/2M9vZ2pk6dyre+9S02btzYN53V2dnJvffey6233sqmTZvYvHkzt9xyCytXruSpp55K8+elRL4rZfSIHm7EAXTjRY+96JVrw9F6bIq7UCkhbcWNtBU3+d6XKHWH5wtf+AIAS5Yscb1/2WWX8cADD7B3716OPfZYPve5zzFmzBja29t55plnuPDCC9mxwyyVveaaa+jt7eWhhx5i+PDhLFq0iMsuu4x9+/Yl+nuyQZAwbLaWD0aLhKXdSGKqGz+d2nCKrYc4PG5EDzf51iN1h6ehofYurrt37+bss8+ue5/u7m7mzZvHvHnzoipajvH7KAWAEcDOeIqTOvlupNEjerjxo8d4iq2HDA7cSFtxk++IVyZyeISo8Vopu9Cheih2QxWj5Ub0MAxxvBY9gnVoRX70iLQVN/nWQxyeQuK1UkI5Rmpep3Cy2UijJ99GK1q8buEA5WgrfusGFPvRI9JW3ORbD3F4CokfhyebFTNa8t1Io0f0MPhxeMqkR73pcOfmcmXQQ5xhTb5thzg8hUQcHjf5nneOHtHDYGuxDzO9W40y6SG2QyNtxU2+HUBxeAqJTGm58dtIh+LO7Sga+TZa0SIdvBvRw02+IxrRk289xOEpJGK03ATJSxA9pG70R/RwIw6xoQx1A/Ie8RKHp5AEMeLZqpjR4lUPe3M5KLbhEiNuEIfHjejhxm9bGYJZJFFE8m07xOEpJGK03Igebvzu01QGLSSioZHBkhu/079Q3PoxCLN1nzg8QmaQDt6N6OEm36O0aJG64Ub0cONVj33ofc2guHrkf88qcXgKiRgtNzJqdSObyxm87tEEUjf6I7bDTdHrR/73rBKHp5CI0XIj0xZuZHM5g9fpPZC20h/Rw03R9XA6PHvqXJtNLcThKSTSwbsRo2XwMw+/m+I/ekTqhhuxHW6kfhhsLfZQ/0HTthYjyZKbkZ2SCBEiYXo3YrQMfubhofh6SN1wI3q4ET0MQbSALEWHxeEpJNJI3YgeBj/z8FAePSSioZGcFTdiOwx+BtLdmGmv7OghDk8hkUbqRvQw+JmHh/LoIXVDI3q4EYfY4EcLyGL9EIenkIjRciN6GPzMw0PxR/FB6sYQ3I5jkZC24kYiXgZxeIRMIkbLTZBRmhgtTdHrR5C6AaIHFL9uQLB8yKLq4dd2ZC/iJQ5PIZEwrBsx4ob8G61o8aPHXoq/uZzYDjdiOwxBB0vZGTyKw1NIgoZhi7q5nBgtg0R43IgebqStuJEIjyH/bUUcnkKS/+WD0SKbyxnyb7SiRSJebmRLC0Oj47U4PEWwHeLwFBI/HfwuZHM5J9lrpNGSf6MVLaKHG4kOG/xu4VB0Zzj/bUUcnkKS/4oZLeLwGPI/Dx8tooeboNHhIuohe1a5yX+/Ig5PIcl/xYwWWaVlkLrhRvRw40ePbG4uFx1Oh6fXw/VlcYa9zBxAFiNe4vAUEjHihkZMNZdRmr8cDSi+HtJW3EhOk8FvBy91w032HEBxeAqJGC1D0LB0U7/vFgWpG27E4XEjehhECzf510McnkKS/4oZHUETD6HYekjd0IgD6Cb/o/jokLbiJv96iMNTSMRoGfzOwxd9c7n8G61oET3ciB6GoM5wIzAs+uKkTv7rhjg8hST/FTM6/M7DQzn0EGdYI3q4kbwVQ1CHB0QPyGLdEIenkOS/YkaHXy2g2NMWUjfciB5uRA+DXy32ATut10V0iPM//SsOTyERo2UI4vAUeRQfJqJR5M3lpK1o8t+pRUcY2yF6ZFELcXgKSf4rZnSI0XITtG6AOIBQ7LrRAAyxXoseMh3en/xP/4rDU0hklGYQh8eNXyPejUn2LrIe0laMswN57tSiQ2yHm6AOz0iy4mpkoxRCxOTfE48OMVpuRA83EuEx+N3CAcqhh+T/afIfHRaHp5DIbroG6eDdSE6TGxkcGJwOz56qV7mRtuJG9DD0OK7Nhh7i8BQOmYd3I6M0N2LE3cgybIOtRS96xZEXyqCHDA40+bel4vAUjjDz8NmolNEiRsuNODxugkZ4hmAiqUVB6oYb0cNN/vUQh6dwyDy8m/w30mgRPdzI5nKG/I/go0Xaipv8Dx7F4SkcQRweMVpuxGi5kfph2EdxHz2S/w4tWsR2uMm/HuLwFA67Uu7F/zx8dpYPRkf+G2m0iB5uRA+DaOFGBgdu8l8/ita7CaEqJWinp0jkv5FGi4zi3YgeBmkrbkQPN35X/0LW9Ejd4bnuuut48cUX6ezspKOjg0ceeYTDDz98wHXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkaGCLI76G6Ku7mcjNLchDHiLRGXJQuIHoYwWkh0WNNpncV2aMThcTFr1izuuusuTj31VObMmUNjYyMLFy5kxIgRfddce+21fOlLX+Lqq69mxowZrF+/nieffJJRo8wIa8GCBcydO5eLLrqImTNnMmrUKB577DEGDUr9JyZMkEoJYsSdbLPORdMCwhlx0UNT1PoRpm6A6AHSVvpj6zE64rIER2XpGDdunFJKqdNPP73vvXXr1qlrr722799NTU1qy5Yt6sorr1SAamlpUd3d3eqCCy7ou2bixImqt7dXnXXWWZ7+bnNzs1JKqebm5tQ1CHecoEApWOvze29b3zslA78hyuNa63d9z8d3DrO+sy0D5Y/6eMr6bRf6+M4XrO/8JAPlj/IYZP0upWCsj+89an3nbzPwG6I8zrZ+1+98fq/L+t7BGfgNUR63Wb/rmz6+M9P6zmsZKH/Ux2rrt83y8Z2vW9+5M9ayee2/Mxf+GD16NACbN28GYNq0aUycOJGFCxf2XdPT08OSJUs47bTTADjppJNoampyXdPe3s6qVav6rulPU1MTzc3NrqMYBI3w2KPW0RGWJQuEHcFnromEJIweRa0bIHqA2I7+SFtxk/9oaOas+W233cazzz7L6tWrAWhtbQWgo6PDdV1HR0ffZ62trXR3d7N169aq1/Tn+uuvp7Ozs+9oa2uL+JekhRgtN0ES7bY5XhfFEbbJv9GKDnF43ARpK1D8+pHvKZzoyL8DmCmH5zvf+Q7HHXccn/70pwd8ppRy/buhoWHAe/2pdc1NN91ES0tL31GcBGdxeNwE0aMbk/QtRrz4dQO8PzsKpIPvT9HrR5C2Mgx3/SoC+bcdmXF47rjjDs4991w+9KEPuaIt69evBxgQqRk/fnxf1Gf9+vUMHTqUMWPGVL2mPz09PWzfvt11FIOgRquoIxMx4m7yb7SiQ+qGG7EdbsImcYseWasbmXB47rzzTs4//3zOOOMM1qxZ4/rs7bffpr29nTlz5vS9N2TIEGbNmsXSpUsBWL58OT09Pa5rWltbmT59et815UGMuBvRw02QaYtsGa3okLrhRvRwE0SPfciKVyfZqhuNaRfgrrvu4uKLL+a8885j+/btTJgwAYBt27axe/duQC85v+GGG3jjjTd44403uOGGG+jq6uKHP/whAJ2dndx7773ceuutbNq0ic2bN3PLLbewcuVKnnrqqdR+WzqI0XIjergJY7RGoE1Gb41r84TUDTeih5swejRTXD387PGWrenf1B2eL3zhCwAsWbLE9f5ll13GAw88AMDNN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mAf5XXPNNfT29vLQQw8xfPhwFi1axGWXXca+fV4fr1AUwhqtbFTM6JAwvZsowvSboitOqgRN0pW64UZshxupH4ZsOcOpOzwNDQ2errvxxhu58cYbq37e3d3NvHnzmDdvXlRFyykySnMjergJosde9O7To9CdWlEcHung3UhbcSN6GIY4XgdxeIYAw4FdkZUoCJnI4RGixB61+ll1AsVspCCdWn/EiBtECzeihxvRwxB0C4ed6AETZEEPcXgKR5B5VihmIwUxWv2RML1B6oYbqRtuZLBkCOrwQJbqhzg8hcOO8IjDoxE93EgnbwirRRN6v5WiIHXDjUTLDXbd2GcdfsiOHuLwFA4xWm4k4mVwjtJEj+DO8A6M0Rc9ilk3ILjtyE5EIzqC1g3IUsRLHJ7CEbRiFrGRgqzEcRImLJ0doxUdQQcHCrPXShHrh9QNjTiAhigcnvT1EIencIRtpEMd9ygCYfUokhF3/r+KES/KqDU6pIN3I3oYgjrDkKXBozg8hSNoxXQ+WqNIRlym+AzOnITaz6EbSHaMVnSEMeJFrh9Bo8NFshsgES8nEuERMknQirmPYnZqMkozSAfvphhGPDrCdvCD0Xs1FQWxHYZi2A5xeApHMSpmdEjSskE6eDeih5ugeuzCrGQSPWTg2J/sRLzE4SkcYsTdBE1azk4jjQ6pG25kcOCmGJ1adMh0uKEYtkMcnsIRNKIBWaqY0RE2LN0IjIyuOKkSRQdfpA4tjBEvYt6KOIAG2cLBjSQtC5kkaEQDpKE66cI8FbwonVoxRmnRIXq4icIBLIoeUWzhMAqd11QEitFWxOEpHMWomNEhRtxQjFFadEhEw43oYYhiCweA5gjKkgWK0a+Iw1M4pFMzDMKMsPLdUKOhGEYrOkQPN6KHIcwWDnswTwUvih7FmA4Xh6dwSOKhwTlKk1FrdHWjKGZDOng3YjsMYTp4KN7gsRhtpSiWS+hDwtKGMGFpKJ4eUdQNKM5eK9JW3IgehjAdPBRPjzCLYbLj/InDUziK4YlHgzPx0O8Tj6F4eoSpGz3Abuu16FHMVVqS72YQh8dNFIthhgNDoilOQMThKRzi8BjCGq2idWoSpncjEQ03YjsMYdtK0ab4onCGIe36IQ5P4RAjbpBRmhvRw4108G7EdhikrbgJUzf2YZ7VKA6PEClixA1RjdKKoocYcTdRtJUR6M0pi4DYDkNU0WHRQ5ONiJc4PIVDRmkG6eDdiAPoJootHKAYegwmmi0cijKFI23FTTEcQF8Oz5QpU+IqhxAZMkozhFlZAMXToxijtOgIo8deYIf1ugh6hNlZGLLSoUWHDJbcFMMB9OXwvPrqq3z9619nxIgRcZVHCE0Uz9IqSpg+zMoCkA6+P9KpuSmSHrKFgxsZHLgphgPoy+GZM2cOZ511Fm+88QaXXXZZTEUSwjHMOgfp5Lc7XhehoUqH5qYYo7ToED0MzghPb9WrqlMkLUDqRn9K6PA899xznHrqqVx33XV8/etf56WXXmLWrFlxlU3wjXOPgyAVsxfYab0uQkOVKS03xTBa0SF6GGwtdte8qjq2Fk2YQVeekcGSm2Is0w+UtPz973+fww8/nF/84hf88pe/5OGHH+bQQw+NumyCb8LOw0MxjbhooZFRqxtxeAxhtdiBXn4MaXdq0SB1w00x9Ai8SquhoYGFCxdyzz33cO6557Jq1SpuueUWRo0qyrbz+eKTwGdDz8NDVipmGIYA/wgcKREeAA4CbgaGF8RoheVM4J8AcQA1VwMfCa2FwkQ1xoQtUmq0AN8AJkndAOAY4NvA4IJsWuorM/Xv/u7vmDFjBjNmzOCoo45i7969/OEPf+Cuu+7i5Zdf5pJLLuGVV15h7ty5LF++PK4yC/04A/gp0E4T3wf0CpJ9tb5Sg/w31JuBLwKTGco8IHgj3Wqdh6LD9EHD/ekxCPgtMAV4hKE8BwR3eLZa5zFhi5UaBwFPWq//haFWzSivHp8G7gReYii/BoJrAVqPMeRZjweATwAbGcoCoMx1Yxjwe/QA8t8ZyltAcD22WOcxocsVBl8Ozz/90z/x/PPP88ADD/D888+zbNkyenpMZ3Lfffdx/fXXc//993PsscdGXlihMt+2zt2hR/BgKubYEPdIjwPQzg5AU2g9tqOdx8FoPdpDlS0N/hva2YEoRq35rhsA8x2vw49a869H9LZjKnnV42i0swMwJrQedt0YjR52BB2ApseVmKzQ/UM7PFutc7p1w5fDc9BBB9W95t577+Wf//mfAxdI8McI4P3W62iM1lbrnE+jdarjdU/oKS3QeuyPHpnkz+E53fE6fP3Yap3HBC1O6nzQ8XpvyfWYChxove4J7fxB3vVwtpXwemxxvB4DbA54n/RwLkdSkekxJnB5oiDynZb//Oc/c8YZZ0R9W6EKJ6LjDzswjbQhlNHKRsUMygzr3Imzg49Cj3w6gCdb561E4fDkW4sxwPus11uAnpLrEW3dgKLosYUo9OjFbEw5JkSp0sPWYxtRDpZyFOHxym9+85s4bitU4BTrvBAYYVXKRrrZE/iO+TZatsPzA6KK8ORXjyHACdbrHxPlqHWkdffgtSwNbAP+J+AN1xYO5ZzSstvKz9BTFqBtR5BdeDT51sOuHw8RZcRrFHnUYzw6320fOj+0KIMleZZWzrEb6e+AtVYjbZKIhquRNpZUj+nodOvNwNNEYbS2YXIR8qfHSdZ5GfBmJCsa81s3wLSVpcB6y3YMK2lbGYpuLxBVBw951sNuK68BfyAKB3CrdR4TvFARIA5PzjncOr8CrLUa6dCSNtKxwDjr9VJgm6VHS0n1OMI6rwLeJgqjpTCr+PKnx5HWeSXwlsvhybcRD4pTjzZLj5ElbSvvQ093bEGvarQdnuEl1eMo67wSWEOUEZ7BQHPwgoVEHJ6cY2/3+CdgndWhlbWR2vkZbegF5JssPUaXXI8/4TZajSVNarf1eBNYY9WNQfQSfAVNfuvGcGCS9fpPmAjPyEiSlvOnh21H3wR2AZ2WHvuVNOLl7FfeJgqHZzdmW48xwQsWEnF4coy9dgjgLaDdqpQjStpInR08wCZLj3BGa6t1zp8eTiO+Adht6TE+EgdwTIh7pIPTiL8baTS0BT1yzQ+HWOct1rHe0qO5pHXD6QwDbLH0GFdSPZy24x1MdHh4zm2pODw5xm6k76F952iM1lbrnO8OHmCr1Uj3L6nR6m/Euyw9JpXQIR4BTLRev4mZ/h1GNw2B77rV8XpM4LukgdP5A9hg6VHWaGh/27Et0sFBfvX4E+4Vr5Nzroc4PDmmv9HaFElYOv8dvK1Hp9VIx+S8kQalvxG3IzzROID50sOOaGxGuymbHQn+wfcU34vZMj9fevR3hrdZeowqoTMMA9tKV990eL4jGkEYDBxsvbb12NM3eMz3Pk3i8OSY/kbL7uBHRdKhDQdXYmf2GRjRsEet5TPi/SMaYMLS4YxWPvXo36H1Oqa0xlX8hle2Wucxoe6SNP312BHplFa+6gYMHDzusvQYW0I9DkJvOrEbWAc4H0p9QM71EIcnx9i7pK6xzjscS0uDP8LVfpwC5LGhgtFjt6VHGSM8U63zVswv2FPiCM9U6/x23zsmwhPO4cmnHtOs81vWeWckKxq3Wucx5KlrGYSJaNj1Y3df/l/5psPtuvE2el2mc+AbzuFZh07ASO8xG7FsPCgkg/2MpDbrvMcxat0fs8+nPxTmcQpjgfVhipgYgzARjfes8+6+UVr5wtK2M7zW8V5vJHkJW61zPvV4t++dqCI8+XR4+tePLseU1lCCrsVxPk6hBXeOU3aZgI5o7MWOaJhoaBlXaQ20HSbCMyGUHn8b4rvRkLobfvrpp/Pzn/+ctrY2lFKcd955rs/vu+8+lFKu47nnnnNd09TUxB133MGGDRvYsWMHjz76KJMnT07yZ6SC/Qvf63unvEZ8Atp73wt0WO919xmt8kU0bGfYGK1B7LPGNweUMMdroBEvb1uBgfWju99gKRh7gJ3W6/zoYdeNdZjY9p5IV2nlRwuoZDvs7Sz2cIAV88krqTs8I0eOZMWKFVx99dVVr3n88cdpbW3tO8455xzX5wsWLGDu3LlcdNFFzJw5k1GjRvHYY48xaFDqPy9W+kd4nGH64EYL8thQbeevHWO0ehxh6eA1of/jFPJBrVFaawmNeDU9wreVrdZ5TKi7JMkoTGnFAazUwRuHJ9wUzlbrnB8tIM7BQfqkPqX1xBNP8MQTT9S8pru7m46OjoqftbS0cMUVV/DZz36WRYsWAfCZz3yGtWvXcuaZZ7Jw4cKK32tqamLoUDM32dyc3u6PQRiBaUbRR3i2Wuf8NNSBzp+ZwhlGD2OBTYHuvM3xegx6R5vsU81oAUwUh4cyd/C2Flsw8Zhoc5qmkEc9nA7PXkuP6KKhDZCT6EitwUHeHZ5chEBmz55NR0cHr732Gvfccw8HHHBA32cnnXQSTU1NLsemvb2dVatWcdppp1W95/XXX09nZ2ff0dbWVvXaLGJHNHZgFsZKhMft8Nh6hOvU9mEcwP0C3yVpas/Dh3nop1038qPFYAbmd0Xn8Gy2zvnRo1IHTyRTWpDH+mHr8Z7jvb2OR20E37bArhvpPk7BLwP1KE6EJ/MOz+OPP84ll1zCGWecwZe//GVmzJjB008/TVOTNuCtra10d3ezdetW1/c6OjpobW2tet+bbrqJlpaWviNvOT8D83cgOqNlN9T8OTyV9AjvANqxofwZ8f4RjSa6OaDC9d7JnxYT0V1ODya/K7pRa/4cHjsa6m4rUemRv/pRzwEMrkc30GW9DmeBkqRaDk8RHJ7Up7Tq8dBDD/W9Xr16NcuWLeOdd97hYx/7GI888kjV7zU0NKBU9RBiT08PPT1hwpXpUjmiEVXFtI1W/hpp9BEe0J3aoeTRiJtOzXRoI9C7LO0KdGe7gx9l3TP7bcjWog3npEJ520p8HTzk0QGsrIfbAXyToGxCJyDsh3NThKwyEjPMrTSlFW6wlD6Zj/D0Z/369bzzzjscdthhff8eOnQoY8aMcV03fvz4qnk/RaBWBx/dqDU/RrxexKtMndpotOGCymFpCNMdbcOkheejU6sc0TDRv3C/In8dfC09htId8pfkq61AfdsRLs6dL1tq141tOLc1MVo0k4MoSQ1y5/Dst99+HHjggbS3twOwfPlyenp6mDNnTt81ra2tTJ8+naVLl6ZVzNip10iDzztDHsPSlR1A06mF0yNfnZr9FOwtOKM4WoshlsMTXA9F3vI07Pydda53TfQvmraSjw4NTP2oNliKpq3kQ48GTP0wegzGfhhs2WxpvboBeoelvJK6szZy5Eje97739f172rRpHH/88WzevJnNmzfzta99jZ/97Ge0t7czdepUvvWtb7Fx48a+6azOzk7uvfdebr31VjZt2sTmzZu55ZZbWLlyJU899VRaPyt26kV4ymbEKzuAplML10jzpYdtwNtd72otGi2jFb5+jCMvethG3O3wRDU4yFcHD9Xqh9Ej3ANl8tXBj0NvNrGPgfld+lW5HMBadcM5WNpMPknd4Tn55JNZvHhx379vv/12AO6//36uuuoqjj32WD73uc8xZswY2tvbeeaZZ7jwwgvZscME3K655hp6e3t56KGHGD58OIsWLeKyyy5j3770trCOm3gjPPlqpM4pnGo5TWWM8FTq4AeHjvBA3vSo5QA2WY9hGYyZqPOH3cEPI0xmVJLUcwCHhbp7vmyHXTc2AL197w51vCpnhCc+25EuqTs8S5YsoaGhoernZ599dt17dHd3M2/ePObNmxdl0TJNMhGefDRSW4vN6AfeGcoZ8ao1ShscWYQH8qJHvQ4edJh+C0HYgd5heAhaj/dqX54yjdCXeFrNASyT7ajVVgAa6S3V4LHW4KAhEtuRLrnL4RG00bIX3Mcb4RmLPZedZSpHuxqxq3fZIl6VO3httAZJhMdCt5Vo9MhPJz8B3Sr2ABtdn5QzOlyrrTSymwbKUzeg9uCgwTE4yCvi8OSQVozR+rPrE2O0RhHmP9c5Qzsm8F2SolbCMsioVeM2WhLh0Z3avkhGrfnp5O26sZ7++/5GleBfnLYS7eAg+3UDkrAd6SIOTw6xIxrr6G+0osqm34vZXTj7DbVWwjLIqFVj61GuDn4YZl+RSqPWfSWL8FSuGxDdqjW7bjSSh1hA7WholNO/2a8bUFsPJVNaQhpU3nQQTFSjXCOTWpswwl4a2RvRKq18GK3Ky7CjrBv50cPWogvnI1ggHocn+22l8gge+q/SCr5Sazdmd+H81I/4Ihr5saNQWw8lER4hDSpP4YDtie8p2cikVgJ3NIl2ttFqJg9PTLdHafEZrfwY8XoRjd6SRbzq6RHNXit516Ocg4Nm9P7pUNl2RDM4SBdxeHLIwI2ybHTF3FPSTq1yhCcKLbaid+qArBuuFvRG9lB5pcXeSDq0/BjxehGN3pJ1avX06BE9iHYKx7kAJNvdra3FNkyMTuO2HeLwCIlSeQQP/Y1WWTbbqz2FoxvpcMLEZpy7C2dbD7tubKX/jjBRjtLy5wxXi2hEEw0tgh66fnSXrH7Ush3RRkMHhb5T3NSrG9EMDtJFHJ4cUs+I7y7RlFYjMN56XXmU1t33Thn0qGzAIdopnHxoARLR6E9lPcxQYFeJ6sf+mFR+91MX3YODcAPHPcB2x1/MLtUH0lEODtJFHJ4cUs+Il2mUZu8r0oveLdVgprTsPbnLoEe96F80ozRbi+HWkV3qjVqjiYbmo25AvZyVctkOW4s/o90Sg3sKpxEzTRyMfETLqw+W3LYj+2vvqiMOTw6pF+HZFWmeRj4a6cB9RcwybHt1TnOov2Rv0xbuuetx49VojRrwuR+2Y08V5kWPaqPWHut3hNMjH3VjMNWiocbh2VUiPeoNHPfR3Ze5VwbbUW+wZOeGhtMiXcThyRnV9xWB/hGeMhiteiN4Z4QnXEO140cH1LwqbbyGpcMbrXzpUa+tlKFuVI+G2oODXrqsLr4MevixHeFsqa1Htm1pvcFBdLYjPcThyRl2pdyFzqY3mI32dkVSMfNhtOpFNKC7bwa9DA5gPT3sKZzhhH1oSL70qDf9G01b2Z8sP4ql3i7L0Q8O8lo3THTYth3RRHiybUu9Tv+Gs6PpIg5Pzqg/KoHd1iM0y+Dw1ItoRGe08qGH1yRdKL4ewzBps/US/MNp4XwUS3YTdetNhTvbSjSDg+zWDfAW4RHbAdEODtJFHJ6cUX0EP6zv1a5IR63jgOpPs0+b6kbLTqbdVSqjVa9T29eXtRJVmD67etgP2B0YDQXbiO+OZNS6F5Pzll096nVo0sHbmC0tyhTx8rr6dxg6kTuPiMOTM6pHNEwHH828sz1KayTLCxGrGy3bAdwdcVg620arukMctQOYfT2qG3Cw68euSKKhkIdOrboeUbeV7GsBXiI8u0sT8RpFtV2Wwa4f3VZbgfxGecThyRn1IzxRGa0ezNOHsttQvRjxaBMPs6tF9a3hIb5OLbt6VHeGwdajKzKHJ/udWvKDg6Gh7xQn1fUoX3TYtqOdwM4Bn+r6sbcvHprfPB5xeHJG9QiPbbSiaqSQp4YqU1rureF3Dfi0fKP46m2lAePwaKXCG/Ds14/kosO7MN1mdvVIzgHMflupPTiI2pamhzg8OaN+Bx9VI4WsG/FGTMmSG7WOJKub7VV+pphNXFOe2awbUP+ZcwA7rQjPYML+r+anUxuoR9RtBbKux36YWuDFASz6Ki0v07/R1o90EIcnZ3iZ0oqmQ4OsG63q+4pA9I20k6xvtpes0cq2MwxeBgew0xELK2+nFscIPtt6VN9lGSq1lWimw0cT5ol+cVLbdkTtAKaHODw5o/6UVpReeLaNVvV9RSD6iAZkvZOvXjcgvim+bDp/4CW/qxfYWwoHcDB6gABJ5P9B1vVIdnCwFV3XIKvtxa8eksMjxE7tXZYHdmjhN5cTo+Um2w5gsnrYWuxHVs2Il8EBUAoH0I6G7sH8zxlM/l9ZosNeIxrR1A1F1rctkCktIXNU32UZKlVKKPaoNflGWgwjHk2nZhvwQWT1eWtepnCAUuQ02VrUjobK4EAzMD1AbAdI0rKQKF4b6R6IeHO5bDbS5FcWiANocG62l736MZxa0dA4IzzFqBvRRYezVzfAfwdflunwgXo0YmpClA5gOojDkyOqJyxD/1FrGZ4BI1NabkQPg91WdmJ2kzLE0VaK1cFDORzAWns0laWtgJcNSyFaBzAdxOHJEV4bKZRj1FrbAYxz1Vo29Ug+LJ1dPbw6fxD14CCbm+0lHx3OdgcvbcXQgt5sA2rlu0F0jx5JD3F4coTXDh6iMuJ/ts7jQ90lLpJdlQTQYZ2zp8cYzC8eqMcQTFOP0gG09ZhQ86o08OPwRLfZnl3T8qZHHBGv7NYNSCOHJ7t62FpsodKGpXHUjfQQhydH+DFa0Rhxu5EOJ4tV3O8UTvjN5Ww9WmtelQa2FpvA8Tx0m8ph6TIY8eQ6eNApwZDl+pHcYCm7WjTgffAY3RROXttK5cFB9noDb4jDkyOSn9LahcmAyFZDrb3LMjj1cD4bJhojni0twKvR2gf0SAcfS1uBonRq0UZ4sjdYOgBtP/ZhSukmjuhw3m2Hu25IDo8QO8lPaUFWoxq1d1kGp9FSRB3xyq7Rqj29V74Ovt50J5RDDz8LHqIZxWd3is+uGx3otYYDKWd0ONloaDqIw5MjxIgbnFoM3FcE4h+1toS6U9T4cYYlhycuPbIZ8RqCyTpLdhSfzU6+dt0Apy3tcrxb1Jym5GcO0kMcnpxQe5dl+wqIvmJm04jX3oMHyjbFl84UTjbrBqQdDc1W3bD/d7qBzRWviDunKVt61G4rgzHPu9qNIioH0K4bI8iauyARHiFz2Aa8i0q7LEPZRvF+RmlQ/E4tiNEaQdjN5bKpBaRlxLOpR/22Ui4H0JszDNHq0UXWp/iSjYamgzg8OaF+RKNcK0/8RniKPm0RJMIDUa7iy84U3yhMaZIN02d7CsdvWym6Hsk6PJDPiJdEeIQUkFGaGz9haSi7Hm6j1UNUm8tlc4rPdoY7MZ23mzi2cIB8dmhQrVMrpx62He1Br+MSB1DjtqPhHz2SDuLw5IT0HJ48RzSgLBEvP0YL4jDi2enUZHDgRvRw42fxB8SRxJ0dPfZD7w0O/qKhkM8ojzg8OcHvlFbRc3hq6+HeDh2KbcT3B5qs1+srXuFelg7FdgDT7+CzNcWXfr5bduoG+B8cFHlKy9ZiIybq68ZdN5yPHhGHR4gNifC48RuWLnKY3tZiA9ogDcTWY+CotYgOYP2clbg6+GxO8fm1HdFF/7LXVgZjSuNl+heK7QDWTuCGWg5gHhOXxeHJCekswwbTSIein9iUPvV3WR5otIo8D++3Q4Ni77UStIMfjDs2GIzsOoD1Izxx7cOTHS3Go/+fq29YGmeEJ3t6+I3+Qb4Tl8XhyQnphaW7ga3W62w01Pq7LIvRchOnA5i9UbxfPZyJzeV2iOOa0srOFJ+txXrs2G9/4sx3y2NbidOWJo84PDkh6Kg1mrBjtoy4312WoRzz8OkYrWzVDfCvh/PRI0WbAh6GTkyFanoMdbyOOjrsnOLLhh5hIhrljIYOzP/L8wNEU3d4Tj/9dH7+85/T1taGUorzzjtvwDXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkLsDMPsslw/L8FttMJvLgdZM+LeE7jjmMKxtXD+r6RLumFp+39hUs2rkiSIEY9ej4k1r0qK+huWOp8QFeWztGyypUe6gwP7r2ZDC/CzR1McDmDypO7wjBw5khUrVnD11VdX/Pzaa6/lS1/6EldffTUzZsxg/fr1PPnkk4waZeResGABc+fO5aKLLmLmzJmMGjWKxx57jEGDUv95kTDFOu+gmtEahKmY+tng0W0uB6ahZsOJtPV4r+oVI6yzeRJOdEa8BzORlg097FKkk8PTZp2z4/BkQ49s1Y36Hdpe9CRx1B1a3vRIwhkeCowLfbcoCNNW8hjhaUy7AE888QRPPPFE1c+/+MUv8s1vfpNHHnkEgEsvvZSOjg4uvvhi7rnnHlpaWrjiiiv47Gc/y6JFiwD4zGc+w9q1aznzzDNZuHBhIr8jTg60zmurXuEcpelO3t5crgldMSs7Sl7JltGy9ajv8OzseyfaRroOnTY9GVgVyR3DUL9+xOkA2nVjAtqc9Ia+Yxj2x7SGtqpXDawf0euRjbZiDw781I3+0eHKTxT3Sv71iK5u9KKntSag9dgY+o5hCWI78uzwZDoEMm3aNCZOnOhyWnp6eliyZAmnnXYaACeddBJNTU2ua9rb21m1alXfNZVoamqiubnZdWSV+hGNkY7XxR+1hjHi0fwv500Pu37E4QBuQLvWg8jClKetxZ+xd2CqhK1HHPUjW3WjfodWXQsoXnTYewc/sK0ULeLViGmx9fuWOBzA5Mm0w9Paqv87Ojo6XO93dHT0fdba2kp3dzdbt26tek0lrr/+ejo7O/uOtrbq48G08ddITRpvUUet3o14XBGe7OgxFL3UFvxN8UWnh8KE6tPXo37dgHgjgNmpGxCsg+/B7OcUnR7ZmPIM4wAWzXZMQjsAPegBQmXidgCTJdMOj41S7rU4DQ0NA97rT71rbrrpJlpaWvqOLCc5e4/wdLneLboRD9LBF22UZteNLmBz1auqO4DR6JGdUbw3h6d6pxZdRKMlkruFxbvt2Ol6t6jR4TARnmgdnvQdQKcdrd5Txj14TJZMOzzr1+sVMf0jNePHj++L+qxfv56hQ4cyZsyYqtdUoqenh+3bt7uOrBKkkUIcDk/6jbQBYzr9RHjsaFcjUWwulx09/EU04gpLZ0eP+h18E2bdYhw5PDswS7HT1yNIjgYUc7A0FvNrq8fz457CyY4eYQcH4vBEzNtvv017eztz5szpe2/IkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a/JOkIgGxDFqTX91wQFWKfZRa2VB9Q4eimXE63fwUKYpPu9TFlCGaYsg078Q12CpIfTdwmBrUTu/K+4pnOxEQ73ZjjgT/JMn9VVaI0eO5H3ve1/fv6dNm8bxxx/P5s2bWbt2LQsWLOCGG27gjTfe4I033uCGG26gq6uLH/7whwB0dnZy7733cuutt7Jp0yY2b97MLbfcwsqVK3nqqafS+lmREiQpFaKsmHvQZmI8aa8usLVYT631QANHJfbmcqPQelTeodkr2TFa2Ril5bGD78FZg6LX4yjS1qMJsz2m3whPtBsx7gOGoIcr1bNF4iZsW7Gjw7sJQ57aCsQ7/Zs8qTs8J598MosXL+779+233w7A/fffz+WXX87NN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mDH7NddcQ29vLw899BDDhw9n0aJFXHbZZezbV3nz8DwxHL3UFtIMS4NuqLbDsyKSOwYhaFIqaD1GEWVewgS0Ia/8yM4kCJukW7ScprDTv0XSw/7ru/CX3wVR6tGLdnJa0VGe9ByeoBENpzLNlM3hiTunKVlSd3iWLFlCQ0PtUOeNN97IjTfeWPXz7u5u5s2bx7x586IuXurYlXI7JjNgIHEnLYNuqO8n7YZaP9oF1fSIbtS6ER0UH4reNfXd0HcMStAprWjD0tmJeAVN8C9inkbQ/C6Iw3a0ovV4OZI7BiFoRCPa6LBdN8ah7Uf1ybW4qa/HYMyjRySHR0gAbx18eUat9fOZIP4kbshKJx+0U7O1GEkURiAbScvO/C4/mw5CMaf4/HXwoocmblu6BfOYhnTbi7/93YqRwyMOT8bx18HLqFWTVMQLsq9HA7XC0hDlFF8zaZpBW4sOak0yJlE3suEMhxksie1IYrCUnsPThNl0sP70716ckag85/CIw5NxvDk85RmlBZ2Hh7hWW6RntLzldw187Aho82U7BeH16AK2Wq/Tqx/Zi4amO4L3ZzviWuEJWXMAw+hRFFvqzO+qvgSlthbRPJg6WcThyTgHW+c1Na9Kah4e0jZath7v1LwqCaNlm80pNa+KE2d+V/VnpTnD0rtcn0Q7ik9fj4Osc7r5XWC0mEiaXYI/PeIcLKVfNxoIN6UVT/04sOZVcRJFagDkL8ojDk/GmWqd19S8KolRmp2Ye1DNq+KkEWMy19S8MgmjZetxcM2r4mSqdV5T8yqnM+zeTzXaTi0veiTRwa9Hx9AaSXOAMNU6v13zqiQGS/bwJL26MQG9pLyXcNPh0djS9PWYap3X1LyqshbRPnokWcThyThTrfOamlclkYhpN9IxwOhI7uiXKejx8i50nkZ1kojwrLHOUyO5WxDsv7ym5lWVO3goqx5JTGkpTLeal04tzsGBXYL0tXiPek9/T9KWpq/HmppX1bcdEuERIqMBE08JMoUTrdHqwizITKehTrXOtbWAZDq1vBityiN4KKsetZ3hIZiFuOGw9Zha66LY2A/T7mtvmhD3Lu2g3Yx96Hyy8XWujYep1nlNzauGYqYgk4h4Ta11UazYf3lNzasq21HI79J0cXgyzER0Nn0vtZbZQjKjEki7U5tqndfUvTKJML1digm4E4OTY2q/klQmqQhPXhyeym2l/+Zy4bFLkW5bWUe9nV6SmOLbg0lczrLtGOF4Hefg0S5F1ttK5cEBiMMjxMBU67wWr2HYOEdpkPa0hf1Xa0d4Km+WBVEbra2YrSDTyWuaap3X1LyqeoQnHiM+NZK7+aUZs2ItSDR0H6bLL4IDONU6r6l7ZVKDJbskUyO7ox/sv7qmxjXVHjsCceVDjiat9ICp1nlNzauqR3jyuhePODwZZqp1XlP3ytph+mg2l3OWJMtG3DlKk4hX8hGeyaSxgbv9P7AJ9yqSgdQP00c7xTc1krv5xf6r9ad/k8h3c5Yky20lqSkcZ3rA1Eju6IfBmFVaa2peWT/CIzk8QmRMtc5r6l5Ze+NBKIYR97ZE326k++gfzC/SqHUYesrTWYrKJNXBd6D1Hkway4+nWuc1da9MKkxvlyTLHTwks6IR0rYd9l8NEv2DOG1H8vXDHpL0AO01r0xqsJQc4vBkGG97zoCpdu6xrXNzufIYcbv73jHgk+hHJemNWu1JtO3UejAkJGfEFWnqMdU6r6l7ZXUjHm0nb2txEHr5QbJMtc5r6l5Zf3O5vEeHG/A7WIp7+hey0Fbeof9GFf2pv+BBHB4hMqZa5zV1r2yxzgMfLxptJ2+XZGokd/ODM25Q2wG0tRg4sVGkUav9F9fUvbKyMwzFMuLeOjSopUf0G3XuReeTtda5NnqmWuc1Na8ajOnU3HpEv7lcenXD3oNnL/U22rN/adx2FLLg8NTenwmStR3JIA5PhplqndfUvTIpI2430nG4d/CNnynoMGw3elu36ti/tLrRKkJYemq/ElSnvjNchCk++y+uqXGNpn5biaZT68V0r1mtH85fGnd0OP3BwXv0T0XuT/XBUnw5TVMju6NX7L+4pu6V9W2p5PAIkeAMw9aOaDRZB8TviTsnUJI14lOtc/0wbFLOn10ayHtEo0ij1jV1r0zSAUxHD+978Nha7KbS41bjmeJrBsZGckevTLXOa+pemaTtsEuTh7aShB7JIA5PRpmMDobvod5W6M4qVz1vJe8jk0Otc5gwrP1OI1FtLrfGOk9Cb1mXHIf0K0F10nAAp0Z2R69EoUdRpvimWed2tCtTnepaON+NxiHejdkfPR091tS9srozXJS6AUaPoLmhznfE4REi4X3W+W3q7cFjN9KuilcWZWRi6/FG3SurG63oN5fbgNZ9EEk/CNDW4091r0zSiK+xzsnWjbHoqAbAm3WvLr4DGEXdgOJMeXrXI41o6AEknR5wmHXOlu1IBnF4Mor/RlrbaEW/+eC0WhdFThRGK/rN5cDocUitiyLHu9FKsoO3428Hk+RePHbdeI/+z4PvTwPJ5iXYeqRTN+oPDrxFeKKvH4fWvCpq/OtRvW5E9+iRbcAW63VytnQE5nG2YeqH5PAIkeI9opG00bLH0O+reVXUROHwON+NTg+7RIfVvCpKxqH3Z91HNBGN6IzWOrTL0UiSo3jvzl/1JF3nO9HVDbv1Hh7ZHb3gP8JTua1EP4q39UiurUA0ekQfHQZ43TonVz9sV3Mzxt2qTpL5bskgDk9GiWIED3EYreQbKUTv8ETXySevh1033qPec5IgWaOlSKNT8z/duYdK2S3xtZWDMAsL4se/7UgqOpx83RiF2aAzjB7xRIez3FZAcniExMhuRMNuKoeSVPUZjy7/XrwkLSedl5Ce0apfN8BLku4ootwaL3k9ohocRF83Oqy7DibJaS3/DmDStiO5umFHNDagJ5Fq402PPDuAUdsOcXiESIgqLB19I30XHVcYRlKJurY5eBe9HXptko54ZX2UVn9pKZTFiCcd/YOk9WhBDxAgughP9BGvA4Hhkd21FsE6+OIOlrznMw3DrDyVfXiEGJmITi7rxc/SwaQaqTNzJJmGGtWoxPlu9Eb8EJJK1PUe0YBa9WM3ZiO2PE/xRbGCD+IK0yerh63FeiptUtGfpHN4NmP28UomB9B7Bw/JR7zSayvenWGotd1JdA+mToY8lbU02JXyHSptB9afpCMakJYR99bBJx3xWodemp5coq53PYajp1OgqNMWY9BJ3BAugdv5brRtJVk94hgc5DniFWWEJ77ocGukd62F/yXpO6i01Ws80eH4EYcng0SVWOZ8Nx6HJ39GK55EXbtkyTiA3ketttFyply6ic+IH0wSibp23bDdztokHdGApDv4YBGNJCNeWdYjaQewE/iz9Tr+iNdwzPMIwyzRB53U0NvvyjwgDk8GyXZEA5JebisOoGF/dFQD4K26V9fWwvlJtIm6nWjTEv9+K8HqRlKrkiCttpLN6V8oQnQ4Hgcwfj3stPktmInF6qRhO+JHHJ4MYld9MVqaYDkrxRzFO5ek195kD/wYrbxOW0RZN+x3nU+nC4/dVqaQRKKuPz2KHfEaiX7oC3jRYwg6URfSyfFKrq1EEf2DfCYui8OTQY62zq94unqMda686DJeozWVuJ8hNQm9yV4vXo34aOuc5Cg+OQfwSOv8qqera3dozk/y2qkdZZ1fr3mVjbcOHvKbqGvr8Zqnq4udw3OEdf4zsLXu1c7/8WI6gLbt8NZWJMIjJMAQTNX35vDYTx6uHKSMp1K2o5t/I3Fvi247f2/gJYF7JMYBq7yPaN47+GOss7+6UX1P1bwntdv1Y7Wnq2vrsQ+TB5TH+jEe/UyxvXh1eGrrEW9biT9R11/dGGOdd1Dt6YV5tx3B2srWqlfkcS8ecXgyxvvQXXYn0ObpG96MVvTLB5OZe/YX7bK16KFakm68YemDiHvaIpge1R2eePU4ouZVYRns+AtRODwQdwTwyJpXhcV2ht+i3lPSbdJweDrRi+Yh7voRbHBQPbslz3UDoh8sSYRHCI2/Dg28Gi2I+pm8f7TOx9S8Kiz+Gqn9zOykIxobgI3o5nRUnWvD4W+UZutR34hHq4dduumR3rU/h6CzLnbiZb8q8GPEW6peEYRV1jlePfzZjkGY6d/KesQ3gk+mfvjTo77tiKduvIqesB+LyTiKHqdlitoBFIdHCEzUDk83ZnfiaBvqSut8bKR37U/UEQ0702l01SuCEr8eIzE7/WRbj1fR0wL7Y55kFD123fgjlXYKqUR9I77VOkerh+3wZKmtjMaY/8r1Y6t1HknUW2omazuiiv5ttc5jApanMj2YKE98ehyMjj3vxsvqTvDiAG61zmMClyp5xOHJGP6M1gjMepL6FXNs1SuCkE+HZ6t1HhOwPNWx9Yhv1GqP0DrwsqwUvOhhfxJt3diNmfKMTw//gwPvRjyetnIEcSb529FQfx38Tqo9sGVrhaujIf6I13DMMmx/EZ76zvCYYEWqQfx62HXjVXSuWn28244xAcuUBuLwZIxgHXwvtTaSj6dTs434kcT1SIUJmCRMbysL0urgIQkH0N+IFbwY8Tzr4W+6E9KrH2vRsbQhxJm3EvXgYB8mAjgmYJkqE3/dOALduW2wjvqUw3b4bytp2I74EIcnQziTMKMyWs5Po62Y76ITEJuIy4jbjTSqJEznJ8Mwu25EQ/zTFlFPdzo/id5oJaeHNwewAdNtp2HE49VjHHAA2knxtmVB/Q4N4tLD/h+biJ72jB5pK27yEw2NF3F4MsQhwFB0kPldT99I0+GBuBuq/4iGt0Q7e0v0eML0kzDGIlr8TVmAnym++Eat8YTpB2HWtUSVs+L8JG962HXjbbxsSAleOjSIq37sxGSSxKuH/w6+vjPsrEnRYNeNoyO/s00ctkMiPEIo7A7+VfwmYabl8MQbio1jlAZxGfEd6O4G4jLicYzS4puHt+vGMcRhZqah8zR2AWs8fcP+3+6iWs4KJJHjla+2En/9yNpgqf7gAKJOan8LXS+HEcfmlA34XaEFfqa0xgQoU1qIw5MhjrPOUUY0IIlRfDxGy75rlB2889M86TECvyu0IN15eNuIDyeOZ2rFkYTp/DS+aGhWIhppTmlB3NHh4BGe6vXDmSkZrR6KOJfqH4xeadcNvOnpG0Mwuw3JlJYQE++3zi95/kbaRjy+Dr4Bo8fvPX8rbT3iM+LHoxvrOvSOP/Vx5qzUj/A496iOhn2Y7iZ6I27XjRWev5GVDn4acTx9yNbjD56/keaUFsQ5xdeM2bfYux5p14/4bOkJ1vkVqu0h3R/nr6v8yCKQKS0hJCda5/w5PFOJepefw9DdQhdet8mH7OhxXM2rgmDXjeWev9GCToOHWno4nzgWnx7HR35n/3qkHf3bjNk7Pdr6MQjTqXnXIytt5Vii7oZOsM7vAJs8fysrekTfVk6yzsHqRvX4qTOnqSFAudJAHJ6MsD869AjwsudvHWCda4/542ukWzB73L6/1oW+cY7gvY1KwKz4qG3m4tPDNiknEPVSfdtoeXeG7Q6+Cx3Mrsw+4hzF23qcHPmd/Q8O0o5oQFx6HIGe8tyB1ydhg5ckXYgzT+M1dPJyM1Gv8vRfNyD9+pG/tmJ/Opj87LaceYdn/vz5KKVcR3t7+4Br2tra6Orq4plnnuHoo4+ucrfsYnfwb1Dr+bT9GW+d/1zzqnhDj7+zzqdEetdgRmuCde6oedVW6xy9Hn+y7j6cqEP1/vWwtahdNyDO+hFP3RgPTEE7a96ntOy2Urtu5LGt2M7w7/GazwTp2469mNo8I9I7+x8cjMBMM6alx0toTQ5EP1g1Ovzr4a1udGO2C8nLtFbmHR6AVatW0dra2ncce6yZ57z22mv50pe+xNVXX82MGTNYv349Tz75JKNGRT9PHidxdvD2GC6exdIvWue0HZ7hmHFG7YYanx4K06lFZ8SHYpIw/Rut2nUDTDwsej1WoFdEHYCJX4bHrht2jMAb3hxAW4tmzB7m0WG3lWg7+Dhth61HPLvlZEUPu63sot5wMz49dmJy3qLTYxL6f7oXP4MDb3UDzNxCPPUjenLh8PT29tLR0dF3bNxopnC++MUv8s1vfpNHHnmE1atXc+mllzJixAguvvjimvdsamqiubnZdaRJMKPlzRO31Rrn695eyZrR2o07M2Ug9s6r8egR/Sj+WPQE2QbgPc/f8h7hsevHATWvCkI3Jm00Oj385++An+ifvU9T9EZ8mXU+nCgnifyP4MFr/YivbkAcbWUEZn8m7/XDewefjO2IzpbadeOPeN28FbJhO+IhFw7PYYcdRltbG2+99RYPPvgg06ZNA2DatGlMnDiRhQsX9l3b09PDkiVLOO2002re8/rrr6ezs7PvaGtrq3l93PhfoQVeR/F2I92POP7Dl6MD6QdjGko4DkaXtQc/S/S9RzTibaTRO4DhOrS0jXhW9PBWPxRmFB99/diMWRgcTa6GczWj9w5+GGaRgTfbEW/dOJ6o4mnHo3NK1uGl5ttkpYOP3gGMc3AAcdeP6Mm8w/PCCy/wuc99jo985CP87d/+La2trSxdupT99tuP1lY919nR4f6P6ejo6PusGjfddBMtLS19x+TJk2P7DfVoRo/5wM8S7KGYUaK3KZxBxDFtsYOoQ7F2I10J7PH8Le9GK5lR2nT0eDM84aJ/aTuA8RnxuBzAPEVE34e2H7vw+kgJMHWjm1rLjsGtRfQrcd62/sJQolq5FnfdkMGBm3jbSvRk3uF54oknePjhh1m1ahWLFi3iYx/7GACXXnpp3zVKufclbmhoGPBef3p6eti+fbvrSIsTrPO7+FlGaXdPPbj3AB1IL8bpyUOnlu8Ofh16+fFgolq5lu9Rmm3ETyIKc7MfZgPGl319078eeWgrdofmbzWjf+evkah3F7axp/mi6eTz3cGvRDuh+xHVZp1JDQ5kSismurq6WLlyJYcddhjr168HGBDNGT9+/ICoT5b5gHVeVvOq/niPaEBSnVo0RvxU6xysg087wgOmU/uL0HcaitmKLI4cDYjbaL2KjgKOwmxwHxx7IuhP1ItNOHFGQ9Pu1KJtK7abEFeH1oPJiIt3CjgfesTbVvZgYvzh9ZgITEYnHLzs65tZGSxFT+4cnqamJo466ija29t5++23aW9vZ86cOX2fDxkyhFmzZrF06dIUS+mPv7TOz/r6lvdRCcTdUF+wzqdiNrsLRiPG4fkvX9/0P0obRhx73gI8Z51nhr7TDHR3vR7zpC5vZMVo7cPUj9ND381W9Le+vuU9GgpxOzwvWeWYhH5ccDhsPfxZO+91A+LWw24r4evGGMxmEM/VuG4gWRosRaeH3a/8AT+rGSE707/Rk3mH51/+5V/44Ac/yNSpUznllFP46U9/SktLCw888AAACxYs4IYbbuATn/gExxxzDPfffz9dXV388Ic/TLnk3mjAVEx/RjxYhCceh2cFuiMZTdhpnOPRTsgW/DwHB/zo0WUdEFdDXWydZxE288E2e/6cYcjOFB8YPWaHvpOthz9nOEttZRfGAZwd6k4jMFMWcQ6W4tXjt+hJ90PRe9AEx7ajr+H1f9rGfwc/Cj1gip7F1nl26DsFsx3BoqEypRURU6ZM4cEHH+S1117j4Ycfpqenh1NPPZV3330XgJtvvpkFCxZw9913s2zZMiZPnsxZZ53Fjh076tw5GxyJXv7ahZ+EZTCbU/kzWvGN4n9jvf5QqDs5R/Denhhv40+PeBvqS+j9PPYj7LNxbD38dfBDMOnpWRi1LrbOs0PdZQhmktCfEc9SRAOi0uMv0BHRtej8P+/4cwDj1WM7ZvJ6Vqg7BWsr4Kd+dKLjcxCXHr9B29OjCLvqNZjDYzvD3qKhMqUVMZ/+9KeZPHkyQ4cOZcqUKXzqU5/ij3/8o+uaG2+8kUmTJjF8+HBmz57N6tXeFzOnjd1In8fs/+GNg6yzN1MXvyf+jHWeHeouwY2WPz3ibai9mF8Q3AEcBNibK/gzWlOs8y68pMHbdWMsUT8Qw+ZFqywTCJPHcxJ6e8kN+Hm+GpjIgbddjOKNaEBUDk/w6J8/PZKzHeEGS8H1sNuLt61J4nUAt2IyboI7gC2YdW/+bKmtxTpPV8uUluCL8B38OzWvsonfiNtG63TCdJvB9GjAGPHiOIDT0cHl7fh56jOYXY29abEZs8InHj16MBO2swPfJWlneHzNq8LwHHo1zoGEWY2TlB52HCg+PRZb59mB7zAMk7Dsz+HZD5PJt9bTN+z6Ec2uY5VYbJ2DO4AfQGdTvgm017nWjW07vPUrdt0YR9jszWQQhydl7HnnuI3Weusc7VNanPwBHU1oxiwO9ceh6PJ1E2TFWhO62/Y2MrGNwERff8cPi63zBwmax+NMSPW+5Bj8Gi2FqR/x6zE78B2Cd/D+9LBrUHxahM/jGYxZ3ek/opE1Pew8nkMwds0fM9AWoB14y9c37b/Xgde9iOPXY7F1nh34DnZb8V83/A+ke9GORHwOYHSIw5MiE9Gd/F70lJY//I3i7UYa3/aKClhivQ42MrEb6e+o9XzvSthatOHVNbD1mOTr7/jhJfSM/37oVGz/JDWChyT0WGydZxPEAWwgjBEP1lb2R6dwxsNi6xysrZyASe73N4E/AhPH86dHfHVjB2aIMzvQHcLXDW8dPCShx7PoPJ4jCepWBUvuhyCDJXvwGJ8e0SEOT4p82Dq/jJ8npINeDWVvDe8tDGvPTsdbKZ+2zh8J9G1bj7hHJZCE0dqL6dQ+GugOs61zMYz4i+haPh6ztsg709EOyE78JveD3/qxFR2DgThH8Yus80cIYoZnW+el+E3ut6d+t+F1J6P46wbAU9b5nEDfnm2d4+7gIQk9tmIcQP+2YxhBk/vB7+AAkqof0SAOT4qcbZ2f8P1N24BvwJjm2theeDNx7T0D8EvrPBO/D7FowLhJv/b9d/03UtsBjPeBIr+wzuf6/ubx6M52B373FIFsOoB7MDXdvx52W1mM3+T+Rsz/cpaM+G/R2VPjMJNT3rG7wSd9fzOLHTyYtnI2ej2ed0Zg0nv965HFtgJGj4/7/uZstNOzFnjd97ezWj+iQRyelBiE6eCDOzzeDfhOzHguvoq5Bp3L04jfkcmJ6LH/dvxuogbZnMIBeMw6n4rfGW5bvacxy2C9k9VRWnAH0Nbjcd/fnIzOeOnGz+Mkk4kA/sp67U+PkZgpC/96+K8b9mBpJCauHD2/Q2eSjUbnvXlnNnrqcQ1+nidmk/W2chZ+d/wJ3lZAHB4hFk5Ej+22ESZ/x9t0lk0yUY2fW2d/RtwewT+FnweG2gQ3WhOJ46GINusxW+d/zNc3wxmtrI5af4Xu6E/AzyZzzZgcDf96OJ1h75M/yehhtxV/o/gz0Am6bxFkBO+/buxC5wpBnHoozADBn+0oZge/Al1nR6D/x71j21L/eoxBtzYI4hCLwyNUxdnB+wvRAxxhnd/w9a1kjfjZaLPsjeDTe2CeNf+m52+sR6cFNqFzQ+LDvwPYgtl/x78eU9Ajwj143WcFkqobmzDL07138h9GT3K8jt8VOKCfJw56/O+dZPT4NTp+dxRwmOdvhevgs6xHsGmccHrY2wJ4f3CLrUUrcQ6WIEhE9BC0NdyDyRLzjq3FeryuWAOJ8AgeCNfBH22d/1jzqv4kUzGXWX+pBa8rLsZgshj86zEEY8S9P4yiF7OHRDIO4Bz0tnn1ORM9KfgqfrslMHXjDfy40skZLVuP8zx/I1yHZuvhby1TMnp0YhLbvXdq0ejh78EtySUu7wKm4XWH8sPQ3XQ3ZsmEd1rRuYZ78RMr60APloYQ94Z7TgfQm2tl143/wu9CGIBjrHMW60Y0iMOTAvthHpAZzOGxd6v1VzHtKa0pNa8Ki8J0ahd6+sYcdJbFK/jdIh+0yWtEdx7edkq1sa8OtvOHV1ai4xIj8NrJp9Gh2VpMIK5nBNn8p3U+A695TeEGB8GMuK3HwTWvioL/tM4Xe7r6SGAquoN/pvalFRiMiQ77cwCT0aMLWGi99qaH3Vaexe8DMsG0lTfxsxHGXsw0Trx6PINesTUJr4PHNGyHHUeO145Ggzg8KXA+2vT8Hj+TDjYtmCwcfxEeO2gb/hnN9fh/1vkCdKpjbf6bdf5FzauqEayRgtFjWqC/64fvW+fL6l7ZCHzCev3LGtdVJ5gem9AuI8RtxN9Ep6U3ApfUvXoG2pDuxMRC/BFMD3vqLP668WP0tNaJmGd9V+eT1vlpzANwvXMoOr13J36HFsnp8R/W+bN46Z5sPZJsK5CUHj3o+gFwad2rR6OjwxBWD3/OsG1Hx2IeO5pVxOFJATvu8aNA37ajO22YLsobdiON3+H5LXpKZRTavavOKOCvrNc/rnVhVYJFuyBJPWwjfib1Ar8fRofJO0i2g4ck9XjAOtc34hdZ50fxk1VgMwrjvgVzeCbjJxMtCJsxrr53PYK1FedUuL/de5KrG4+hNZmM2ZmrMpMx67l+EuhvBYv+QRpt5ZPUGzx+Au3OriLIL4KgenRhdmqP3yEOhzg8CTMes7fqQ4HuYHfw/qI74G6k8SbbAdxvnS+redXH0ZktrxNkQzkI08HbKc7xG6230E9BHgx8puaVdof2E/w+TsImDw7Pj9Huy3HoFVuVaSCqwUE7Zp2RNzag90AaRBLTWnan9hlqPZHoGHQMqBszEeYPu0Pz/3Dl5OpGD/Cg9bq2A3iBdf4NfiezbYJFNCBJPZ5DW8dRmHhWZWzbEaytjEBPlkK2bUc4xOFJmE+hTdoLBElIBZPM579SvotOYx1GnDvI2nwfndp3BrW6jHAjVjBGPLgDGPzxjX6wO7XLql4xFJhrvQ5mtCaiA8v+kjBtkjNa29AxG6ilx0z0KH4rQTajhDAjeEhSj8fRKfSt6H1XKnOR42pveyT3J3xE40D8bgsYBLutzKXWzj+fts7B2grkI8IDJkJc3QEch5nOCqbHkWh34M+YRyt7RxweoSLhRqxg0p1/5/ubezG7TcRfMddiFkZ+vuIVozEJqcH0aMEYreW+v51sI/0JOnfiKKrtq3E2WpO1BNl8EUzdeAW/TyODpPW43zpfitn7w43dwT9MkM0XwWyw/3KgbyenRy/wA+v1/6h6VbgRPITRowM9dZFMxOt36Do8Arii4hWHovO79gI/DfQ3DkVvSNFNkMFScvmQ4B48Vs7z+iQ6K+53+Nmcw8kp1nlFoG8nFy0Phzg8CfI+9JzzPoLOOQ/FPIk8WJdoV8xkohp3WuerqDRS+zQ6PyL4nPNfoKvwm/jZRdfmXbTBHE4SEa/twL3W6+sqXvE56/wQfjMsbOzde35b86pqJFs3fo3uaMYAfzfg06GYKYvg0b9weiQbAbwTXRs/ip7qc/MBtP3YSdDk/lZ0d7SPIFudQtJ63G6dv0SlmJI9MbwIPf3on7+0zssJMzg4CO1oxMu7wM+s19dWvMK2HcGdYVuPPLSV4IjDkyB2nONXBJ1zPhHdFXQQZAs2gD9Z5yNqXhUVj6HdmdFop8fNf7fO/yfw/e0OLZjz14sZqR0ZuAx+uM36q3Po/wDNAzGL1r8X+P7hjJa9jeVh1MokiQoF3Gy9vob+qcEXosP072AeK+mP0ZjRcDA97EnBo2peFRVvY7L6/nHAp3Zb+TFBVmeBqRsr8bvYwcbWI5m28h/oHV6m0H+J+hCMi5xWW2lHD2Ea8bNlZBi+bZ0/Tf8F4CegLWEPJk7on3B6JNtWgiMOT0IMBy63Xt8d+C729nzBOnjQ7gd43dYrLArTUK/BucPL6ejuaCdmxt4/4UbwoM0/JKXHO5iETHen9ndoJ+Npgka7wkf/1qATdYdhtnKMlx+gN2aYhF6GbLA7+H9DxyT8cyravP0Js8WkP+y2Un+xeFTYDuCFmARSvdDB3rrhO4HvHa5Dg6RtRw+wwHp9Lc5lFnPREdn16OnOYESnRzL1Yzna9W9ER70Mdlv5KUHi3KDVnIaOMAaL/tlp31PI/tJ0JQequblZKaVUc3NzLPe/DJQC9SaoQYHv80ulb/M/A5djplWONYlp26jgbavc/73v/R9Z5fhu4PsOVbDduu9xgcv3dasc9ySmx3SrzHsVHKkA1QSqwyrH+YHvO8u6b3uo8j1vleNTienxJavcrysYogA1wyrDblDjAt/3m9Z97w9cttFWOZT1Ohk9Hrf+5Hf73vsnqwxLQ913mXXfiwPf41NWOZ5PTIsWBVutcn+y7/0lVjm+Fvi+4+z/VgUHBC7fPdZNvp6YHmdaZd6hYIIC1FhQXVY5Tgt834us+74UqnxrrHLMTEwPc/jov5MvXBaPuB2eZVZl+IfA9xitoFvp2xwZuBxjMEa8JTF9r7L+5AYF+6mJoHqsMhwX+J4ft+75roKGwGX7b1Y5nktMCxQ8YpX91wpQF1tlWAtqcOB73mHd875QZfs/hO1M/B6jFHRYZf+yAtQDVhkeCHXfV617fjpU+d4lbGfi95hplbtXwftVo1UvlFVPgt3zYMc9xwcu25FWObaDakhMj69bZX9bwXB1rFWGPaAmBb7n31r3XBaqbPOssjycmBYoeM4q+wMKUF+2yvBSqHs+ZN3zplBl+4VVls8nqoc+xOGJTzDfx0etirAT1P6B73OJ0rdZHbo8thH/y8T0HaxghVX+f1cLrL+/JNQ9H7Dud3uosqVjxA9RsEuBUg18Uq20yvBPge/XoKDN0uOcUGX7e9Iw4pdZZd+uDmRynzM8I/D9jrXut0tphyp42X5JGkb8h1b5l6rLaFAK1Hp0JDDY/b5s3W9RqHINRkfdFKhDE9NihIJ3rPLfqB60/v6PQ93z19b9/jFU2T5kleVPidaNk5WODivVxEzVZpXhilD67rT0ODFU2W6yynJ3onroQxye+ATzffyWQUqB+pdQ93lYgVJ6xBOuPI/qG6kvJqrxX1rlV2oJf6EUqDMC32uIgi3W/f4yVLkGo50dBeqYRPX4mgKlRvCu2s5ItZkw0yZ2VGCLgqZQ5bKnPNsS1aJBwW8VKHUKDyoF6olQ97OjAo+ELps95XlfonpMUtCpQKmbuUwpUF8Kdb/nLT0+H7psL1h6fDpRPc5XoFQDu9SfOCRkZHh/BXssPQ4JVa4xmGh58IFskOO7CpQaxwq1h8FqDWGc4U9ZP+HN0OWypzyXJ6qFPsThiU8wX8fJzFaH8Zp6iSPU+MD32V9BlwKl4PjQZfpHfSP1k8R1vk+BUsewUv2KESHuc56lxToVZjrLPp6y9PjbRLUYpuAtBUpdyXfV9aHudZelxwOhyzUMM914cKJ6nKD0lItSP+GTIaI7DQpes/QInq9iH2dbWryWqBYoO7dpLJvU8xyshgW+zyGWFnuVnfcR5rjN0uPOxPXQUZmZ/Eb9PxpD3OfvLD2WR1KuVZYef5WoFvsp2KhAqa/yNXV5qHv9zNLjf4cu12RLi15QIxOuH+LwxCeYr2MGTyhQajyrlU7CC3KfbygibKT2KH5dwhofzAGqlXUKlDqAH4a41wuWHuEbKaQ1ikd9hDNVQ194+tKA92lVxhk+I5Jy2YnLyY7iUefyvxUoNYxOBUcEvI89Yt2iIHxbHoMZxQdPoPZ/DKdRnWDV8wP4ndJJ+kHudY9V/McjKVdao/jjOES1WAnMY7k14H0aFfzJ0uOLkZTLznn7VsJ6nMfF1u9QahAfDXifo5U9PaYXU4Qv1xqrULMT1kMcnvgE83XszwQ1mrVK14PHFL5HJ2MUbLO+/4lIyjQMVDdJz8WjngT1G2aqwfRYv+fLAe7zEeu7O1WYFRbOwx7Fv5mgFgeA2gjq63zF+j1dCk4JcK/brO//V2Rls0fx/5agHmeD2sNgNYunrd+zWsFYn/dpULDS+v5XIyvbakuPuQnqcSuodzhQjWWD9XvuU/6jmVMVfW3tA5GUaxJmFJ/UoodGUL8H9UhfZFcpndPo916XWd9drwgVYTbH5VaB/ivBunEoemXWVX2R3c0q2ADhQev7P42sbD+09PhqgnqAODxxChbgOEmZUfjPlL88C7tS/0FFMX1jH8/om6r/kZC+l1p/rwvU/vwP6zf5HWkNUyb5+ZbIyjYKk4x5REJ62IZhGQ2qgZ9bv2mrglN93OdoZerVnMjKdo5VtncS0mKU9bcUqK8xXsF71m96SenpXK/3utL63halVzVGU74FVtn+T0J6zEA7FArUyZyp7Kk+Ha3xYwN+an3viUjL94pVtqS2LrjO+nsbQQ3nJus39Sp/U5ZjlUl+/lJkZTsQ4wDul5Aei6y/+RhNyqzaaldwlI/7/KUy0Z3g23r0P/7aKtsLCWlhH+LwxCdYwOMcZa/M0QZonIfvXGBdH22HBjoJUoFamIC240Ftsv7e/+x73zZcSsE/K72Sq969/q91/XoVZnltpeOJAeWL7/gYxkieCApGKlhs/bZOBed6uM8oBX+0vhNthzYMvaJQgTo2AT3+FRNhGwFKO3Lt1m9bpbyNXk9Upn1F16EB6kzMFHDcK/mGgPqD9fe+3/f+xco4PQ8qb1N1f29d363Crr7pf3zbKt/9CdSNw0Htsv7eZ0DBIGXswF6lB0z1nMAGpaPrSukprWiiO/bxslW+SxLQ4wrrb+0ANQ2U7kdetn5bh9L7cdW7zwRlVnXeH2n5WjFTwBMS0MM+xOGJT7AQx4eV3jTK9sjPV9Ub62XKGPBvRF6Ww/SNVTd686q4fnMjZkSynP77zHzV+n1KwVJVfR65SdkrE7ThjyZXxXlcbRXktzFqAXpEuN76W992fTZcwUKHHv+uqk/ZTVFm5c27ypvz7O+wV/LFHZo+1/xg9WHXZ4crE+nZqeBqVT0y+iFl9vL5TxVlJBS0E9JplfHUmPWwnb8/03/lzwXKrC56U+lN6Krd58uOa/974LJUO07HRFyCrw6qfwxH2wwF6nHXZw0K/k2ZqvO4gvdVuU+zgh9b13WpKBZ99D++YRXkpzHXjWMw9fAa12f7KbOx5F6lcxurRTiPUHoQYQ8mRkZezhetMv5dzHo4D3F44hMs5HG8MhXOzlW4XmkDNkvBpUrvl2F//lPlLfrh//i99Ufmxfh7F1h/oxPU0RWvuViZJeZKwa+U3qhwptIO4v9UZtXNXqU7vujLORG9mZkCdVRMWjgN+O+tf7uvaVLwbYcWXUqPZi9RcJqCs5Xed2iz9fkmFSzvp/5xiVWItwmzM3jtw2nA76h4zUTldgLfU3oH5Y9Z9eOTSndmdvTjJRXlVJbzuJ/4p7Xs0btCO4IDr/lLZXYtV0on7/9PBbOt40plpjiU0k5B9OUcjNkM8b/FqIe9G3sHqCkVr7lKmSndXqVt5d9YOp2p9IDKnsbqVnBhLOW0N0PsRufmxfE39kNHQBWop6nUJkcq+D+O//ttCu5UOon/NKXbzHeV2Z2+TelBRfRltTdDTHJaSxye+ASL4BiqdNRmq8LYuH5Hr4L/paIerTqPq6w/tjqm+1/p+EHn1bz2QAU/UqbjqnRsVDphOb7/l0esP3ZbDPcejN4sTaEN+EE1r5+tTASn2rFM6aTUeLQYBmqz9cfOjuH+49Ebtil0BLCx6rUNCr6gTLSn2vE9pXO84tHDXtm4g3iSdWdhFhLU3oCyRcG/KtPRVzp2K738Oh4twKxsfCqm+8/HOBG1N0g9SsEv6tSNdxX8Rax62Csbr43h3kMxUfI3qbfnz7nKJO5XOxapqFMCnMc4TF0+IUbNnYc4PPEJFuHRorQxf1DpKMYfld6Abb7STkC8f78Fs+le1CtQnM7OfM/fO8T67Y8rHbb/g9L7b1yhwu6Y6+WwV2vtQM9FR3XfRujbIbYHP8+amaX0KqznlM49+L1VVz6q4or6OQ97tVa4ZzgNPCaB+qN177fwumlbk9KRru8pHSF9VcGLSke8op+mqHTYe67Mj/i+H8bkTHnfQXicgmuUXgTxhtKR4t8oHfFpjV2LgzER0ah3bP8qxnb8jefvTVd6ELlI6bayQmlH6GKlp4vj1eMyq7zriXYPmuHoPEuFjoZ62xy1QWkbcaeC31n14yWlV/rNVnEOou3DXpTxs5j/jn2IwxOfYIU6bkRXzFeJbj7+eozBiiNaEuex1Cr3v0d0v2ZMPkw3qE9k4Dd6PVoxHfEnI7rnUZjIzhqS3RYh7PFJTMczMaJ7fgqTlPsrCLHBYPLHv1vl/i3RTHsORi/HV9ZxXQZ+o9ejEdQbVrm/FtE9DwD1G+ue20F9MAO/0+txFGalYRKPMBKHJz7BCnU0Y5Jobw95r7HoZzAp6/jfGfh9fg87IVOhl2eHudexaEdSoTu1j2Xg9/k97KmLPxM+6nURJqL4J+pN62XzeM4q/0LCrdhqAnULpq49QrwJwHEckx3/n/8Y8l6t6NwUW48vZuD3+T3sTRn3gDol5L1Ow+RJbQX1gQz8Pr+HvSnjm8S/Z5M4PPEJVrjD3ndFoR8e6ff7Degk1w7rHrvxE4rO3nG79Tu2gfqLAN8fid551X5Ew7uEN4BpHU3oJzErdKJ1kL1GpoH6OaaOPUV8yZ1xH4ejpzwVqHsI5vScgZnSU+jVeoMD3CcLh73x3l6CPc29EdQX0J26QkfPooompnHYU9fr0Q8m9vv9/dAP39xr3ecV4ltEEfcxGr3oQYFajL3lRDyHODzxCVbIYz7GAN+Dt6XqI9Fz16sc310F6uQM/J4wx1DMaLML1H/HW4c0GdT/Qi/XtfV4mGQfSRDHcSiodkzOzWyP3zsJ1PcwuR7d6HB/Xjt3+/gUJlz/a1BTPXxnCHrl1WJM3WinXjJ/Po5/w+28eclhGYN2dN5yfPcFktv4M66jBTNA2IreO8iLU3yopZ29alGh286oDPymMMeJGGd2Jaj3x/R3xOGJT7DCHv+EGVlsQzs+F6Iz7Q9BjzTmoMPNj2DC2QrUFvSc+5AM/I4ojhGgHnP8vrfQ+218FL28/lD0E5vPQ+dBPevQTqGnsiovLc7ncSQm90aht9K/Bp1XcJh1nIIe5d+JO4Kh0Bs7BhnxZvW4AJPf1I1+EO/laGf/EHTHPRu9F8n/A7XBocVu9DL80Rn4HVEcDZjtJ5T1W+8EdT66jUxDt5mPolcx/Qqzs7lCR0OuIr7tD5I+9ke3D/v3rUYPhM5Et4FD0Tb1fFA3YfatsY+X0Kv20v4dUR1/gRkw7SWe3CxxeOITrNDHbMzOoV6O19Dz90k9VyfJowEd3fmzDz0Wo53Eohhv59EC6juYqbp6Rxd6tUbwJ59n+zgKHeHxWjfaQd2MXqWWdtnjOM4F9boPPVagN/wcuB9V/o9G9OKNbR616EVvrpjsU9eTO8ajHX+Fzk+K+v5e++8G60XpaW5uprOzk5aWFrZv3552cVKlAZgFnA+cAhwEtADdwDrgT8BSYBHwUkplTJIRwCeAs4ETgVZgCLAbeAd4FVgCPAm8m04RE2UicBG6jhwDHGC9vx14C1gBLAaeAjpTKF/SnABcAJwGHAKMBfYAG4E3gRfQejwL7E2lhMkxGDgLOA84GZgCjES3lTbgdeC36LqxOqUyJkkL8Em0JicAE9Aa7QTWAK+gbcdCoCOVEibL+9D9R9R47b/F4bEQh0cQBEEQ8ofX/ntQgmUSBEEQBEFIhUI5PFdddRVvvfUWu3btYtmyZcycOTPtIgmCIAiCkAEK4/BccMEFLFiwgG9+85u8//3v59lnn+Xxxx/nwAMPTLtogiAIgiCkTGFyeJ5//nleeuklvvCFL/S998orr/Cf//mf3HDDDXW/Lzk8giAIgpA/SpXDM2TIEE466SQWLlzoen/hwoWcdtppFb/T1NREc3Oz6xAEQRAEoZgUwuEZN24cjY2NdHS4F/Z1dHTQ2tpa8TvXX389nZ2dfUdbW1sSRRUEQRAEIQUK4fDYKOWenWtoaBjwns1NN91ES0tL3zF58uQkiigIgiAIQgo0pl2AKNi4cSO9vb0Dojnjx48fEPWx6enpoaenJ4niCYIgCIKQMoWI8OzZs4fly5czZ84c1/tz5sxh6dKlKZVKEARBEISsUIgID8Btt93G97//fZYtW8Zzzz3HlVdeyUEHHcR3v/vdtIsmCIIgCELKFMbheeihh9h///356le/ysSJE1m1ahXnnHMO775bhqcbCYIgCIJQi8LswxMW2YdHEARBEPJHqfbhEQRBEARBqIU4PIIgCIIgFJ7C5PBEhey4LAiCIAj5wWu/LQ6PhS2Y7LgsCIIgCPmjubm5Zg6PJC07mDRpUuQJy83NzbS1tTF58mRJho4Z0ToZROdkEJ2TQXROhrh1bm5uZt26dTWvkQiPg3pihWH79u3SmBJCtE4G0TkZROdkEJ2TIS6dvdxTkpYFQRAEQSg84vAIgiAIglB4xOGJme7ubr72ta/R3d2ddlEKj2idDKJzMojOySA6J0MWdJakZUEQBEEQCo9EeARBEARBKDzi8AiCIAiCUHjE4REEQRAEofCIwyMIgiAIQuERhydmrrrqKt566y127drFsmXLmDlzZtpFyjWnn346P//5z2lra0MpxXnnnTfgmvnz59PW1kZXVxfPPPMMRx99dAolzTfXXXcdL774Ip2dnXR0dPDII49w+OGHD7hOtA7H5z//eVasWMG2bdvYtm0bS5cu5eyzz3ZdIxpHz3XXXYdSittvv931vmgdnvnz56OUch3t7e0DrklLZyVHPMcFF1yguru71RVXXKGOPPJIdfvtt6vt27erAw88MPWy5fU4++yz1T//8z+ruXPnKqWUOu+881yfX3vttWrbtm1q7ty56phjjlEPPvigamtrU6NGjUq97Hk6Hn/8cXXppZeqo48+Wh133HHqF7/4hVqzZo0aMWKEaB3h8Vd/9Vfqox/9qDrssMPUYYcdpr7xjW+o7u5udfTRR4vGMR0nn3yyeuutt9TLL7+sbr/99r73Retojvnz56uVK1eqCRMm9B3jxo3Lis7pC1TU4/nnn1d33323671XXnlFfetb30q9bEU4Kjk869atU9dee23fv5uamtSWLVvUlVdemXp583yMGzdOKaXU6aefLlrHfGzatEn99V//tWgcwzFy5Ej12muvqQ9/+MPqmWeecTk8onU0x/z589Xvf//7qp+nqbNMacXEkCFDOOmkk1i4cKHr/YULF3LaaaelVKpiM23aNCZOnOjSvKenhyVLlojmIRk9ejQAmzdvBkTrOBg0aBAXXnghI0eO5LnnnhONY+Cuu+7il7/8JYsWLXK9L1pHy2GHHUZbWxtvvfUWDz74INOmTQPS11keHhoT48aNo7GxkY6ODtf7HR0dtLa2plSqYmPrWknzgw8+OI0iFYbbbruNZ599ltWrVwOidZRMnz6d5557jmHDhrFjxw7mzp3LH//4Rz7wgQ8AonFUXHjhhZx44onMmDFjwGdSn6PjhRde4HOf+xyvv/46EyZM4Ctf+QpLly7lmGOOSV1ncXhiRinl+ndDQ8OA94RoEc2j5Tvf+Q7HHXdcxYR70To8r732GieccAJjxozhk5/8JA888ACzZs3q+1w0Ds+UKVP413/9V84666yajzYQrcPzxBNP9L1etWoVzz33HG+++SaXXnopzz//PJCezjKlFRMbN26kt7d3QDRn/PjxA7xbIRrWr18PIJpHyB133MG5557Lhz70Idra2vreF62jY8+ePbz55pssX76cG264gRUrVvD3f//3onGEnHTSSUyYMIHly5ezZ88e9uzZw+zZs5k3bx579uzp01O0jp6uri5WrlzJYYcdlnqdFocnJvbs2cPy5cuZM2eO6/05c+awdOnSlEpVbN5++23a29tdmg8ZMoRZs2aJ5gG48847Of/88znjjDNYs2aN6zPROj4aGhoYOnSoaBwhixYtYvr06Zxwwgl9x+9+9zt+8IMfcMIJJ/DWW2+J1jHR1NTEUUcdRXt7eybqdOpZ3UU97GXpl19+uTryyCPVbbfdprZv364OOuig1MuW12PkyJHq+OOPV8cff7xSSqkvfvGL6vjjj+9b6n/ttdeqLVu2qE984hPqmGOOUT/4wQ9kaWmA46677lJbtmxRH/zgB13LS4cNG9Z3jWgd/vjmN7+pZs6cqQ4++GA1ffp09Y1vfEP19vaqM888UzSO+ei/Sku0jub4l3/5F/XBD35QTZ06VZ1yyinq5z//udq2bVtfv5eyzukLVOTjqquuUm+//bbavXu3WrZsmWtZrxz+j1mzZqlK3HfffX3XzJ8/X61bt07t2rVLLV68WB1zzDGplztvRzUuvfRS13Widbjj//7f/9tnHzo6OtSTTz7Z5+yIxvEe/R0e0Tqaw95Xp7u7W7333nvqpz/9qTrqqKMyoXOD9UIQBEEQBKGwSA6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwiMOjyAIgiAIhUccHkEQCs/tt9/OI488knYxBEFIEXF4BEEoPDNmzODFF19MuxiCIKSIPEtLEITC0tjYyM6dO2lqaup774UXXuDUU09NsVSCIKRBY9oFEARBiIu9e/cyc+ZMXnzxRY4//ng6OjrYvXt32sUSBCEFxOERBKGwKKWYNGkSGzdu5A9/+EPaxREEIUUkh0cQhELz/ve/nxUrVqRdDEEQUkYcHkEQCs0JJ5wgDo8gCOLwCIJQbI499liZzhIEQRweQRCKzaBBgzjuuOOYOHEiLS0taRdHEISUEIdHEIRC85WvfIULL7yQdevW8dWvfjXt4giCkBKyD48gCIIgCIVHIjyCIAiCIBQecXgEQRAEQSg84vAIgiAIglB4xOERBEEQBKHwiMMjCIIgCELhEYdHEARBEITCIw6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeP4/cZ4Fv1Dm5tcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGwCAYAAACtlb+kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACF10lEQVR4nO2deZgdVZn/P72lA53OAlk6CSFhCwHCYgLEKJBAQEHAiCigzAiOOiriNqMsIyODMjDiCPgjUUdEZHHAEUQRhAAqQSQJEiSEJUEhCdBJd8jWnbWX9Pn9car63Orcpapu7fV+nqeeurldt+6535zznve85z2nagCFIAiCIAhChqmNuwCCIAiCIAhhIw6PIAiCIAiZRxweQRAEQRAyjzg8giAIgiBkHnF4BEEQBEHIPOLwCIIgCIKQecThEQRBEAQh89THXYAkMW7cOLZu3Rp3MQRBEARB8EBzczNr164te404PBbjxo2jtbU17mIIgiAIguCD8ePHl3V6xOGxsCM748ePlyiPIAiCIKSE5uZmWltbK/bd4vAMYOvWreLwCIIgCELGkKRlQRAEQRAyjzg8giAIgiBkHnF4BEEQBEHIPJLDIwiCIAgJp76+nrFjx1Jbm684hVKKDRs2sGPHjqrvJQ6PIAiCICSY0aNHc+211zJ48OC4ixIbTz75JLfffjtKKd/3EIdHEARBEBJKTU0Nn/70p9m2bRv//d//TVdXV9xFipT6+nqmTJnCeeedB8BPf/pT//cKqlCCIAiCIATL8OHDmTJlCj/4wQ947bXX4i5OLLz++usAnH/++dx7772+p7fyNRkoCIIgCCmiubkZgPXr18dcknhZsWIFACNHjvR9D3F4BEEQBCGh1NTUALB79+6YSxIvvb29gNHDD+LwCIIgCIKQecThEQRBEAQh84jDIwiCIAhC5hGHJzc0xF2AhCFVXxAEIU+I1c8FZwPdwD/HXZCE8P+AjcBhcRckATQAS4E/AXUxlyUJTAE2Ad+MuyAJ4VPotjI75nIkhbuBVwH/K4WyQy1wBHBA3AVxjTg8ueAG6/w/yH85wBeB4cDtMZcjCRwBTANOAD4Sc1mSwKeBEcA1wNiYy5IE/gfYB/hj3AVJAI3AhWin+NuxlmTvmA4nzcBgdP0YUrScb731Fp///Ocd782cOZPt27ez//77+/rt1SC9X+44Ne4CxMzogtcz0I02z0wteP2F2EqRHMYUvP50bKVIDoVLgGfEVopkMKXg9cdwahMdewPbYzqcTk/hYy5GU4wlS5Zw3HHHOd67+eabuemmm3jzzTc9//ZqEYcn8zQABxb8e3pcBUkIRw349yGxlCI5HFnwekrJq/JDoQM4ObZSJINROLuIvOtRWDeGofXJM3sVvC7+jK/Fixc7HJ5//Md/ZMKECVx//fUAnHnmmaxYsYLXXnuNT33qU2EWFpBHS+SAKcCggn+Pj6sgCWGgw7Mf8HwcBUkIhUZ8FDpsn69n9RjqcDp9+8VVkIRwxIB/ix5OJgDR7368A2iK/FvNdxsKHZ7ii2IWL17Mf/3Xf9HU1IRSiuuuu46rrrqK7du3U1dXx4033sjJJ59MR0cHS5cu5YEHHmDTpk2hlV8cnswz0MHJu9GaMODfeXcADxzw7/HAG3EUJAGMwzlSzXtbOWjAv0UPJ/uhE/6jx9+TpIKmseB1PToa2Oe4YunSpfT19TFt2jROPfVU3nnnHW6/XedOHn/88bz88susXbsWgEceeYT3ve993HvvvaGVWByezLPvgH/nvYPfZ8C/827Ei+mRV4dH6oaTgXoMHCzkDakfTgau6mxgYHR4586dLF++nHPPPZfPfOYzfOADH0ApBcC4ceNobW3tv7a1tZXx48PtnySHJ/PYDo/9lN28Ozy2Hiutc971sI24rUeejbitxd+s82DyvfzYbisrrHOe6waY+mHrkWcHsDBWsss6Dyp2IYsXL+aLX/wiCxYsYOHChaGXrBzi8GQeu5G+aJ3HkO/A3kA98mzEmzF1QfQwdaPNOkD0AKkbNqKHwY7u7Ebv8QalHJ5ly5bR09PD17/+dcf7a9eudUR0xo8f3z+9FRbi8GSewohGN/q/PM/7i9h62EYrzxEe24DvxEQ18mzEbT02AW9br0UP01ZGUWo1Tj4Qh8dgD5R6MQ5P8cTlCy64gHnz5vH666873n/22WeZOnUq48aNo6mpiTPOOIMFCxaEVmLI91A/J9gd/AZgLTAJ3cm/FVeBYkaMlqFYB5/nMH2hHgo4FtED4HV0muzeaNvxeslPZJd6YKj1epl1znPdKIzw9FivTYSnpqaGUaNG8alPfYpDDjmEuXPn7nGH3bt386//+q/88Y9/pLa2lhtuuCHUFVogDk8OsI3WRozDk9cITw16F12Al63zEPQiz+2xlChebGd4I2YKJ897ixQ6PHbyZZ5zeAptRxt6Rd8o8unw2HajD5MPmee6URjh6RnwHpx00kn84Q9/YMWKFZx77rls3bq16F1++9vf8tvf/jbUkhYiDk/mKezUNlivB642yAvDMCOTt9CdWiPamOXR4Sns4DcNeC+P2G2l0OHJsx4D68eB5FcP+3dvAd6xXg9Fd6G9cRQoZgodnt4B78HChQupq0ves/kkhyfzFDo8m63XeTVathZb0fPOee/kxeFxUhjRED2kfhRSqEUHZr+ZEcUvzzyFU1q7B7yXXMThyTzDrfNmxGjZv9t2/EQPjXRoGtHD0IjZz1f0cNaNPnSkp/D9vFE+wpNUxOHJPPZTbLciRsvWotM65z3iZSdhdmLqRgOlnnycfYZZ50I98l43QOtht5W8RjSGW+cO65x321EY4RGHR0gEgzBLBbcjRssesdr5Onnv1GzHZht6abq9gVhe9bDrxzakbhS2FYXoUVg3QPSwXYc+zJRWLXE9Qd4t4vBkmsKR+nakkRZ28GD0EAdQk/f6UahH3rWw24rUDY20FSfFcngK308m4vBkGruR7kJXyrw3UjFaTko5gKKHaCFtxYm0FSeFER5Iy7SWODyZZmAjzfuUlhgtJ9KpOSnUw24r9ehHcOQNaStOpK04GejwpGOlljg8mUYaqZOBeuQ98bBUXkIeHeJGjLHeho6K7rD+ncf6IbbDiejhxHYdbEdHIjxC7JQapdkbZuUNGbU6kTwNw8B8N8i3HtLBOxHb4cQeHMiUlpAYBjbSLQV/y+MoXjp4J9KpGQrz3Wwjnmc9yiX4J3slTjhIW3EiU1pC4hjYSAs3zMqjwyNLS52U6tT2LXJt1hmoBeRbj1IdfB3OPXryQik98lg3wG3S8ltvvcXnP/95x3szZ85k+/bt7L///qGWsBji8GSaYkY8z3krAyM8W6zzsD0vzQUDjbi9qZp0aBrRw9iObvReTZDP9jLQdsRdN/aO6QAd4bOjfLsHnJ0RniVLlnDcccc53rv55pu56aabePPNN/3/fJ+Iw5Npihlxe5fhPK48GWjEC7XIc5h+oB7SwWvyrMfADh70bu0gtgPirRt7o/9f4jj2xuk2lJ/SWrx4scPh+cd//EcmTJjA9ddfD8CvfvUrNm3axC9/+Uv/cnhAHJ5MUyzCI0bcGHFbi1qMQcsLA3fhBqkbUHxwkEc9yg2WRI98a2G7DargvdIOz2GHHUZTUxN777031113HVdddRXbt2sdv//97/OJT3wi9BLbJDulWqgSMeJOBo7SdqHnnu29VrYV+1BGKXTwxIgX7+AloiGDJZuBttSuG01oB6Bvj0+Exw7iG6DtAAZbrwt3WLZ/vzOGsnTpUvr6+pg2bRqnnnoq77zzDrfffnv/3xcuXMisWbPCLLADcXgyjRgtJ6UcwH3QeqyLvETxYdeNLkzCoW3E81g3pK04kcGSk1JTWqAd4g6iZUflS0JjYMIylIrw7Ny5k+XLl3Puuefymc98hg984AMopYgLmdLKNDIP70TC9IZyHVoe64Z08E6krTgZqEc3erAA+dNj4KaDha/3XJa+ePFivvjFL7JgwQIWLlwYduHKIg5PprFDjzsL3suz0bJXGRSOjvKqh3RoTkQPJ6KHoQGd8waiB3iJ8AAsW7aMnp4evv71r4ddsIrE7vB87nOfY9myZXR0dNDR0cEzzzzD6aef3v/3xsZG5s2bx4YNG9i6dSv33Xcfo0ePdtxjwoQJPPTQQ2zfvp329nZuuOEG6uqSvQFSNOxlncXh0YgDaCinRR6TuKVuOLFtR7HBQd4igIMLXkv98OrwXHDBBcybN4/XX3897IJVJPYcnrfffpsrrriCv/3tb9TU1HDRRRfxm9/8hne961288sor3HTTTZx55pl89KMfpaOjg3nz5vGrX/2KE044AYDa2loefvhh2traeM973sPYsWO588476enp4Rvf+EbMvy5u7Ia6q+C9vDZSKK9HXo14oRY7MUncQ3GOZrOOODxOitWPvOZ47VXwuqvgdV7rR7FVWs6k5ZqaGkaNGsWnPvUpDjnkEObOnVv0To8//jhHH300TU1NvPXWW3z0ox9l8eLFoZXcLnWijo0bN6p/+qd/UkOHDlVdXV3q3HPP7f/boYceqpRSasaMGQpQp59+uurt7VWjR4/uv+azn/2s2rJli2poaHD9nc3NzUoppZqbm2P//cEdf1SgFHy04L1PWu/9NgHli/JosH63UjCs4P17rfcuTUAZozzOsn734gHvb7TePzQBZYzy+H/W7/5WwXvHWu+tSUD5oj5WWL/9hIL3/s1678cJKF+Ux/7W794x4P0nrfc/Eur3T5w4Ud15551q4sSJCdACBSMVTFdwUMF7NdZ70xXUqlmzZqndu3erl19+WR1//PGh6+C2/459SquQ2tpazj//fJqamli0aBHTp09n0KBBPPHEE/3XrFy5kjVr1jBz5kxAb1O9fPly1q9f33/NggULGDZsGEcccUTJ7xo0aBDNzc2OI3vIKM1QGJaWiFfxugFSPyT6p5HpcIO0FSf2Jq2FU1q2TwFQx8KFC6mrq+OII47g2WefjbZ4ZUiEwzN16lS2bt1KV1cXP/rRjzjnnHN49dVXaWlpoauri44O55K/9vZ2WlpaAGhpaaG9vX2Pv9t/K8WVV15JZ2dn/9Ha2hrwr0oCttGSDl7C0gMp1qFBfjt56eCdyHS4oVJbyZsexaa0IA0PEE2Ew7Ny5UqOOeYYZsyYwQ9/+EPuuOMODjvssFC/8/rrr2fo0KH9x/jx40P9vniQvARDMS1A9Bg4ahU9DLYWdZgVfnlBHB6DtBUnxZKWIQ0OT+xJywA9PT39GdzPP/88xx13HF/+8pf5xS9+QWNjI8OGDXNEecaMGUNbWxsAbW1tHH/88Y77jRkzpv9vpeju7qa7uzvon5IwykV4ZASvyavREiPupJgeO9BG3H5CeJybvUVNuYhX3myHtBUnxaa0wDg8iYijFCWRJautraWxsZGlS5fS3d3NnDlz+v82efJkJk6cyKJFiwBYtGgRRx55JKNGjeq/5rTTTqOjo4NXXnkl8rIni2JRjbzOO1cyWnkz4uIAOimlRx7bSx3mOWsS4Yk7OmzvTJycrVZKTWnZDlA45ayv1/GZanZqjj3Cc9111/HII4/w5ptv0tzczMc//nFmz57N+9//fjo7O7ntttu48cYb2bRpE52dndxyyy0888wzLFmyBIDHHnuMV155hbvuuovLLruMlpYWrr32WubPn5+DCE4lyoWlG9GbaeVFI+nQnEgippNyDvFw8qVHY8FrWfBQPFIOUTk8W7dq3UePHs0bb7wR6ne5I54prSlTpgCwYcMG3/eI3eEZPXo0d955J2PHjqWjo4MXX3yR97///f0rs7761a/S19fH/fffT2NjIwsWLOCSSy7p/3xfXx9nnXUWP/zhD1m0aBHbt2/njjvu4Jvf/GZcPylBFOvktxa8Hgr4rzzpQsLSTkQPJxIBNBQm+EuEJ+66sWXLFlasWMF5553Hpk2b6OrqqvyhUBmPHgSA2YEaYAwwDB35GUJQ1NfXM2XKFM477zyefPJJduzwP7Ucu8Pz6U9/uuzfu7q6uPTSS7n00ktLXvPmm29y5plnBl20lFMqLN2HfgDeEMThgfwacVml5USm+Ax2W+nGOYq3tahH6zVQq6xSakormoiXUopbb72V//zP/+Sqq64K9bvcMRK9E/smnAPofdB2YwthPEz1ySefdDxp3Q+xOzxCWJTaDh204RpCvjo16dCciAPoRPQwlNJiO9oBqkXrkReHJ94pLYB33nmHSy65hJaWlgTk8swDjgf+HfhlwftfAz4N3AZ8N7BvU0qxYcOGqiI7NuLwZJZSG+1BPufipUNzIno4ET0MpQYH4Mxpai/y9yySjLrR29vL22+/Hcl3lacerUkbsKbg/Xbr/foB7yeHRK7SEoLANlpd7JlNL0bcYGsxGDMFmAckiduJ6GEo1cFDPqc8ZQ8vJ/FHvPwiDk9mcWO0klsxg6eUHtsKXufRiKfPaIWD6GEoZzvy6ACmt4MPh/Q6gOLwZJZKYWnIVwdfSo/dmKeCJ7ehBk96jVY4VOrUpK1o8lg/KjnD9ThTCLJOegcH4vBkFhmlOZGIlxPp4A2F+86IAyhtZSClBgd2EjfkS4/0RrzE4cksMkpzIno4Se8oLXjKJfjnWQ9xeDSlOniFmRLPkx6VosPJHSyJw5NZxGg5kURMJ5WSdPciP0ncdt3oA3oG/C2P0VAZHDgRW+pEIjxC4pAO3okYcSeVHi0B+akfUjeciO1wUiqiAVI/Ckn+4EAcnsxSyguHfDfSYtuyJ7+hBk8po9WLeSp4XvSQEbwT0cOJ2FInlaa0BuHMi0sO4vBkFrvCSQevsfUQo6WRTs0gWjgp18Hn0XZI/TCUemQROLf4SKYe4vBklnIOT94aKYgeA5FpC4No4UQGB06kfhgKIzcDbaki6fVDHJ7MYj/FVjp4jTg8Tmw9uov8LW96uNFib/LzJB5pK06krRjKOTyQdD3E4cksboxWXkYlIEZ8IOUc4rxNW7jRAvLTXqStOJG2YrDrxm7rGEiy9RCHJ7NIDo+TcnrYc8956dAGFbwuVz/yoke5utGLmcrIix52/SgW0chbWwF3tjQvepTTAoweQyIoi3fE4cksbhppMitlOJQLS+fVaIEYcXBvxEWP/GkBokch5ewoJF0PcXgyi5tGWofOTcgDbsLSeXEACx0ecQDF4RmIDJaciMNjKGdHIel6iMOTWcp54jsKXiezYgaPGC2DrUUPemXFQPI2bVFp1JpXPcTh0ZSrH1I3nCTblorDk1nKVUxF/gyXODwGt6M0qRuavOpRLvpXCzRFU5zYkeiwQRweIZGkO/QYPOLwGNJttIJH2oqTcnrsxKzOyYseYjsM6Y6GisOTWaRTcyKrtAxSN5yIHk4q6ZGn9lKD2VlYHJ60R4fF4cksYsSduAnTDyYfm8tJ3XCS7pUnwSP1wyArGp2ku26Iw5NZ0l0xg8ft5nLJHJkES7l9ViB/dUPaihPJaTLIikYn6W4r4vBklnRXzOCRzeUMUjecyBSOE3GIDYWbdJZbpTVowLVZJd22QxyezJLu5LJgqcdU9XQ21GCRDt5JuvMSgifdnVqwuNUC8lE/0u0Mi8OTWcSIGyrNw0PSG2qwyJSFE+ngnYgehkpa7EavXAPRA5I+WBKHJ7OI0TK4cXiS3VCDxW2Sbt4cnnSOWoNHbIehkhYgehSSbNshDk9mEaNlKHzCb1+Ja/Kkh9voX142l5O24kSmww2VtIB81Y90txVxeDJLuitmsFTq4CFfelSqGzvI1+Zy0lacyHS4QWyHEy/R0Jrwi+MRcXgyixhxg5ewdB6MuBs98jiKl+lOjdgOg7QVJ26dYUhidFgcnswiYWmDzMM7ESPuxO3Kkzw4wyAOTyFiO5xU0mMXepsPSKIe4vBkFjFaBjFaTrzkJeShk5e2YijcS0b0kOjwQNI9WBKHJ7PIPLzBTQef3EYaPJKX4MStw9OIea5SVqm00R5I3RhIHvVI52BJHJ7MIqNWgxgtJ6KHEy+by2VdD9nCwYms0nKS7sGSODyZpBbzEExxeNLeSINHHB4nsrmcwdaiB1AlrknuCD54xHY4SbftEIcnk3jZWTgPRkvm4Z2k22gFT6WkZchPVEPqhpN056wET7rrhzg8mcSLw5OHzeXS3UiDR8L0TsQhNkjdcCK2w0m69RCHJ5MUOjy9Ja7Zgdl1OHkVM1jS3UiDx02Y3h61Zr2DB6kfhXidwkne5nLBIs6wk3RHQ8XhySR2pdxV4bq8dGqySsuJdPBORA+DFy0gP9FhiXhp0u0AisOTSdyM0iA/DVUSD51IB+9E9DC40WIX+Xn0iNgOJ+luK+LwZBI3YUdIcsUMFjFaTtzUD9HDSV708Go7kjeKD5Z0d/DBk+6IV+wOzxVXXMGzzz5LZ2cn7e3tPPDAA0yePNlxzR//+EeUUo7jhz/8oeOaCRMm8NBDD7F9+3ba29u54YYbqKuri/KnJAhxeJx46dDytLmcGHGow5hBWYkj0eGBeMl3y7oWkHbbUV/5knCZNWsW8+fP5y9/+Qv19fVcd911PPbYYxx++OHs2LGj/7of//jHfPOb3+z/d+Hfamtrefjhh2lra+M973kPY8eO5c4776Snp4dvfOMbkf6eZCAOjxMvDg/oUevm8IoTOxLRMLjZWRjyE9EQ2+FE2oqTdOsRu8NzxhlnOP598cUX88477zB9+nT+9Kc/9b+/Y8cO2tvbi97jfe97H4cffjinnnoq69evZ9myZfz7v/873/nOd/iP//gPenp69vjMoEGDaGw0q5mam5P3n+MfN2FHyM/IxE0jtTeX2wutR94dnrwktHt1eKStaEQPg61Fg3V9Je3SjKzSCpRhw4YBsGnTJsf7F154Ie+88w7Lly/nuuuuY6+99ur/28yZM1m+fDnr16/vf2/BggUMGzaMI444ouj3XHnllXR2dvYfra2tIfyauBCj5cStHsltqMGS7lFasBQ6PHsOjAx500Nsh8ZLBw+iByS5bsQe4SmkpqaGm2++maeffpqXX365//3//d//Zc2aNaxdu5ajjjqK73znOxx66KGce+65ALS0tOwR/bH/3dLSUvS7rr/+em688cb+fzc3N2fI6ZHEQyde9BhFEhtqsKTbaAWLdPBOJDrsxG10eAewN1qPjWEXKka82I7k9SuJcnjmz5/P1KlTOeGEExzv33rrrf2vX3rpJdatW8cf/vAHDjzwQN544w1f39Xd3U13d1ZDj2LEnYgeTrw6PDWUfq5S2pG64UQGS0686GE7PFkm3YOlxExp3XLLLZx11lmcfPLJFSMtS5YsAeDggw8GoK2tjTFjxjiusf/d1tYWQmmTjhhxJ6KHE69J3FneXE6mO51IW3Ei9cOJODxVc8stt3DOOedwyimnsHr16orXH3PMMQCsW7cOgEWLFnHkkUcyatSo/mtOO+00Ojo6eOWVV8IocsIRo+VERq1O3Oixk3xsLidtxYno4UT0cOJ1SitZjx6JfUpr/vz5fPzjH2fu3Lls3bq1PzLT0dHBrl27OPDAA/n4xz/O7373OzZu3MhRRx3FTTfdxMKFC1m+fDkAjz32GK+88gp33XUXl112GS0tLVx77bXMnz8/w9NW5ZBG6kT0cOJFj+Fk2wEUZ9iJtBUnUj8MhfuTudmXCLQeW0tdGDmxR3guueQShg8fzsKFC2lra+s/zj//fEDn2px66qk89thjrFixgu9973vcf//9nH322f336Ovr46yzzmL37t0sWrSIu+++mzvvvNOxb0++kDCsE9HDiSSmGqSDdyJ6OBE9DG63cNiFeWh1svSIPcJTU1M+5PX2228ze/bsivd58803OfPMMwMqVdrxultqlkclIEZrIKKHQbRwIoMDJ1I/DG4dHtB6jCBpfUvsER4hDKSROhE9nIgeBq9aDMJp+LOG1A0noofB1mI30Ffh2mTqIQ5PJpFG6sTtFE4e9Cichxc9vEc0QPQAiQ4PRNqKk2TqIQ5PJpFG6kT0MHgNS0M+9Kikhf3oEciHHvLwUI1M8RnE4RESiZ8OPlnLB4NFRq0GPw5PHvTwYsRFj6R2aMEjtsPgpa0k0wEUhyeT+AnTy+ZySW2kwWJr0YfZZ6cUedIjvaPWYBGHx4noYUh/WxGHJ5O4rZg7kM3lCklmIw2W9ButYBE9nHgdHCRvc7lgEdthSH80VByeTOIn9JisihksYrQM0sE7ET2ceG0rILYDpG4MJJl6iMOTSdJfMYNFjJbBbVIq5EuP9OYlBItbPQo3lxOHR9rKQJKphzg8mST9FTNYxGgZpG44ET2ciB6GWszevJL/l4W6IQ5PJkl/xQwWP5vLNZS7MMWkfx4+WNzu0QT50ENsh8HPnlVSNzTJdADF4ckkYrScyOZyBqkbTmSKz4nUD4PsWeUk/XVDHJ5Mkn5PPFhkczmD1A0n6TfiwSL1w1Do8PRUuNauGw2YqGHWSH90WByeTCJheoOXeXjIfqcmHbwT0cOJ6GGwtegBVIVrJTrsJJl1QxyeTJL+ihkcXubhIft6SN1wIhENJ+kfxQeHFy36gO3W66zWDz8D6WRpIQ5PJpFOzeBlHh7yo4fXDi2rm8tJW3Eiehi8aAHZd4jTXzfE4ckk6a+YweFlHh7yo4eXugHZffSIRDSciO0weHV4sl4/0l83xOHJJOmvmMFha9GLDjtXIus7T3upG4Wby2W9fkhb0YgeBi9TOJB9PfxM/zaRJDcjOSURAkTyEgx+R2mih0bqhyHrdQPEdhQitsNJ+qPD4vBkEjHiBjFaTkQPJ9JWnIgeBmkrTrzo0YVJIUiOHuLwZBLJSzB42VgOxGgNRPQwZD2iATDYOovtkLYykPTrIQ5PJpHdYw3pb6TBIno48TM4yOrmcvUFryXCI9O/A0m/7RCHJ5NIWNqQ/kYaLLLyxImfCA9kUw/ZwsGJ2A4n6ddDHJ5MIg6Pwe8oLYsdGmTBaAWLFz12Azus11nUQxweJzI4cOI1PSB5ES9xeDKJbC5nkKWlTkQPJ+IAGgodnt6SVxmS16EFi9QNJ+l3AMXhyRx1mP9WCdOL0RqI5CU4kfphkAR/J1I3nKRfD3F4MofXsPROdKgeklQxgyP9jTRYRA8n4gAa/NaNZG0uFxzSVpykX48s1tKc49XhgSSGHoMj/Y00WEQPJ6KHwa8WkKTN5YJDnGEn6W8r4vBkDq/z8JDEihkc6W+kwZL+efhgET0MXqe0krm5XHCI7XCSfj3E4ckcXo0WJLFiBoeM0pyk32gFi+hh8KoFiB6FZNkZhizYUnF4MocYLSd+jVYDzmhZVpAO3onoYfBjO5LXqQWH1A0n6ddDHJ7MIQ6PE7+jEhA9INt1A0SPQsR2OJFVa07SH/EShydzyCjNiVc98rK5XHo3DwuOGnQkD9Icpg+Oahye5HRqweG3g6/HPJMsS6R/cCAOT+YQo+VERq1O0m+0gqOh4LXoIW1lIF712F7wWvRIYt0QhydzeN1JF5JYMYNDjLiT9Ielg0O2cHAibcWJVz36ME6P6JHEuiEOT+YQo+VEpvicVOPwZO3RI9U4PFI3NKKHE3GIDcmzo+LwZA4xWk7EaDmpZnO5rOlha9GLHp27QdqKE9HDiehhSJ4W4vBkDmmkTkQPJ171yPLmclI3nEg01InUDyd+HZ69SYqrkYxSCAEiRsuJGC0nUj8MooUTiYY6EdvhJP3RYXF4Moc0UieihxPRwyBaOBE9nIhD7MSrHt0F1yZDD3F4MoeM0pyIEXci9cMgWjiRtuJE9DDUWQekWY/YHZ4rrriCZ599ls7OTtrb23nggQeYPHmy45rGxkbmzZvHhg0b2Lp1K/fddx+jR492XDNhwgQeeughtm/fTnt7OzfccAN1dXXkD3mWlhMZpTmpxogPDbgscVONFg1kb3M5qRtO/OjRaZ2zZjv8rGiEpPUtsTs8s2bNYv78+bz73e/mtNNOo6Ghgccee4y99967/5qbbrqJs88+m49+9KPMmjWLcePG8atf/ar/77W1tTz88MMMGjSI97znPVx00UVcfPHFfOtb34rjJ8WMGC0nfvTosM6ih8Y24lnTo5q2AqIHZLdugOhRiF+Hx9ZjWIBlqQ6VpGPkyJFKKaVOPPFEBaihQ4eqrq4ude655/Zfc+ihhyqllJoxY4YC1Omnn656e3vV6NGj+6/57Gc/q7Zs2aIaGhpcfW9zc7NSSqnm5ubYNaju+IoCpeAuD5+ZaH1mRwLKH/TxO+u3fcLDZz5jfeY3CSh/0Eev9dvGePjM/1mf+UICyh/kcYr1u5Z5/FyH9blDEvAbgjz+y/pd3/XwmeOtz6xKQPmDPp63fttpHj5zlfWZ/0lA+YM8Rlm/S3n83FPWZ86t8vvLH27779gjPAMZNmwYAJs2bQJg+vTpDBo0iCeeeKL/mpUrV7JmzRpmzpwJwMyZM1m+fDnr16/vv2bBggUMGzaMI444ouj3DBo0iObmZseRDaqJaOyFc7v9LFCNHsMCLkvc1OJvHj6revipGyB6FJJVLUD0KKTatpKMiFeiHJ6amhpuvvlmnn76aV5++WUAWlpa6OrqoqOjw3Fte3s7LS0t/de0t7fv8Xf7b8W48sor6ezs7D9aW1uD/jkxUU0YFrLXUP08aiPrRgtkig/E4RlINW0la3UDqrOlWasb2WgriXJ45s+fz9SpU7ngggtC/67rr7+eoUOH9h/jx48P/TujwU/F7MPkJiSjYgaH5PAYqnV4pG5osl4//NSNOqAp2OLEjkR4DOLwBMott9zCWWedxcknn+yItrS1tdHY2Ng/1WUzZswY2tra+q8ZM2bMHn+3/1aM7u5utm7d6jiygd+KKSMTQ7IaaXAUOjw9Ja/ak6zrkW4jHhx+9NiJfjQHiB4gdWMgyepXEuHw3HLLLZxzzjmccsoprF692vG3pUuX0t3dzZw5c/rfmzx5MhMnTmTRokUALFq0iCOPPJJRo0b1X3PaaafR0dHBK6+8EslvSA5ixJ2I0TL4mbKApBmt4JC24kT0cCLRYUM26kZ93AWYP38+H//4x5k7dy5bt27tj8x0dHSwa9cuOjs7ue2227jxxhvZtGkTnZ2d3HLLLTzzzDMsWbIEgMcee4xXXnmFu+66i8suu4yWlhauvfZa5s+fT3e31/+gtJONihkc1RitevRzYHYEWqL4kLrhRPRwUo0e+yJ6QPbrhpf93SBpDmDsDs8ll1wCwMKFCx3vX3zxxdxxxx0AfPWrX6Wvr4/777+fxsZGFixY0P85gL6+Ps466yx++MMfsmjRIrZv384dd9zBN7/5zeh+SGKQvAQnfvTYDuxG5yUMQxyerBpxiXg5EdvhpNqNB2vR+ZFZIBu2I3aHp6ampuI1XV1dXHrppVx66aUlr3nzzTc588wzgyxaSslGxQyOauaeR6D1WBdoieJDOjQnoocTsR1Oqlm1Brp+bAmsNPGSjbqRiBweIUjsRuolKRWSVjGDQzo1QzaMVnCIHk5ED0NhLMCLHt3ALut1lvSQpGUhkVQ715qMihkcYsQN1RqtZqByRDY9SN1wko1OLRj8buEAMlgqJFltRRyezGFHeMTh0YgehmqNVi1JeQhgMGTDiAeH6GFoLHgt0XJTN9KthTg8mUOMlqEG86gMcXj8O39dBZ8RPbJZN0D0KMS2o32YfYbcksWIV7V1IxmPLRKHJ3P4rZhZbKTVhKWzrIefrRokTG/IYt0AyXcrxK8dhWw6gNX2K5CE+iEOT+aQUZqhMCyd7v0jgkGMuJNq20qW6gaI7ShE2ooTv85wH7DNeh2/HuLwZA4ZpRmCSDyMv5EGRzVGPItRjWrbShMJ2NkjQCQ6bJBoqJNsOIDi8GQOGaUZCpfoK4+fzaIeQRjxLOmRjTB9cEj+nyEbHXxwZMN2iMOTOcRoGfwu0Yds6iFG3IlfPXrRu3GD6AFSNwaSxYhXELYj/sGBODyZo1qjNQT9SIUs4PfRASBGfCBZ1CMbo9bgkJwmg9QNJ9mwHeLwZI5qNx6E7BiubDTS4JC8BCdBjOKzokfhFg4SHRbbMZBqbEdyIl7i8GQOv1GNXsxDMuOvmMEQRCPNSocGYsQHInoYChP8/eY0NeJcGZlmJMLjJBttRRyezJGNihkMooWTbIzSgkM6NUM1Kxq3Yp4KnhU9spGzEhzZsKXi8GQO6dQMkrTsJBtGKzhED0NhZMar7VBopweyp4fUDU02psPF4ckUdZiEYxmZBJO0PBjn6DfNiBF3InoYCtuK1y0cIHu2QwaOTrLRVsThyRTVhKUhSRUzGKpppFsLXmdFj2yM0oJDprQM1WgB2dNDprScVBMtT44DKA5PpqjmUQqQPaNVTSPtI0kNNRiyMUoLDlmlZahGC5C2UojdVurQ23xkgWxs8SEOT6awK6WfJ/xCkipmMFTTSCF7nZqE6Z1IhMdQrcOTNT2qqRs7MPY3K7YjG4MlcXgyhYSlnYgRd5INoxUcoodBbIcTsR1OsjE4EIcnU0gjdSJG3EkQHXw9sHcwxYkdcXgMYjucyBSfk2zkNInDkymkg3ciRtxJNfVjOyZML3pkr24E1Vbi79SCQWypk6Dy3eJ1OTx9+3777RdWOYRAkA7eSTVJy5A9PYIatWahU5MtHJxU28FLRMNJ1mxHEIMDgOYAyuIfTw7PihUruOaaa9hrr73CKo9QFUF18Fkx4tUmLWdVDwnTV7+iMUtagHTwA5GIl5Nq9OgGdlmv460fnhye0047jfe///387W9/46KLLgqrTIJvglqVJEZLkzU9JExvCGrPqmb0gzfTjtQNJ6KHk2w4xJ4cnkWLFvHud7+bK6+8km9/+9s899xznHDCCWGVTfBMNiplcMiUlhOpH4agtnCoJe4wfTBI3XAigyUnQTmA8Ua8fGUQ3XXXXRx66KE8/PDDPPLII/zyl79k0qRJARdN8I6MSpwENaWVFT2kfhiq7dC6Cj4reiSlQwsOcQCdZEOPqlKmH3vsMX7yk59wzjnn8Morr/Cd73yHpqamoMomuKQO+BdgamCVMt1h+hbgP4EhEuEBYBbwTSArRqtaPgecVbXzB1nQYwjwbWBCYM7w8GqLFCtTgBuAehkcAPAh4F+BrCS113u5+LOf/SzHHXccxx13HIcddhh9fX289NJL/OhHP2LZsmVccMEFvPLKK3z4wx9m6dKlYZVZGMC1wBXATxjEZ4DqG6kdpu8sc20yqQWeAg4BHqORhYB/PbZY5+HVFis2xgNPWq+/SyM7Af8OzxbrPLyaIsXKucAPgZdo5CHAvxag9RhNmvW4FbgA2EEj1wN5rhuDgKXoXaZ+SiMrgDzrcQTwAPpRst+rerC02ToPr7JU1eHJ4fnGN77BkiVLuPPOO1m8eDFLly5l165d/X+/9dZbufLKK/nZz37GkUceGXhhhT0ZDlxmva4PJEy/E9gLGEEaHZ65aGcHYGxgjXREVWWKk6sKXjcwyHJ4/DqA6dfjBuvcHUiEJ916HIx2dgCaA2sre6EjidU4kvHwT5gtNUdV7fCku26AjvwB9FKPmQyq1gGMVw9PDs/+++9f8ZrbbruNb3/72xWvE4LheAqrYrVGC3TFtB2eNVXcJx4KU+i7q57S2mKdh/stTuycWPC6r+r6scU6D/dbnFgZDxxovQ6urUBa9SjeVvw6gFvRCeC1aD3a/RcsJmYVvN5dtR7pd3hsPbqrXtEISYnwBL7t4fr16znllFOCvq1QguOt81aCHrUOr+Ie8XGcde6ksFPLp9FqAg6zXm8hiE4+3Xoca503E5TDkw09thCEHoqkjOL9Emz9SLcdPQDYB+gBtlS9ZxUkpW6Ess/zU089FcZthSLYDs9diBGvA6ZZr39OEBEeW4sGtPuQLqahG/hbwJ+BnpyPWm1n+NfAdkuLhhxPadl6/AKxHcPRU3wAvySIweMW65w+LcA4fy8Ar/TXjd3W4Ydk1A15llbKsSvmfZhGOiinRnwK2i3pBB4niAjPjoLPpk8Pu278Bfi7IyydzwjPdOu8BHjbqhuNOe3g64GjrdeFtiOvOU123fg78FeCjPAMwWPmSCKwbcdzwBtW3airqm5ssc7Dq7hH9YjDk2KGAGOt10uBTVYjbc6pEZ9snV8B3kBGrYda55eAVYHOw6dPC9AOMcByoNWqG3vnNIfnAHRq8XZgIbDL0qMpp22lsG6sIgjbsaXgdfr0sKfClwOrLS0aMlA3xOFJMQdZ53fQUY0NVqc2LAMV0w92SPp1dLq1iXjlW4+/A6syNA/vh0GAveTidWCdVTf2zmlEw7Ydr2PnaWg99glkFJ9uPVYTRMSrD7PNR3r1+DuwJtBo6PAq7lE94vCkmMIODWCDVTGH59SIF+qxBdhp6TFGjHi/0aqnB51g6ge7bjQCg6sqW9RMQhu7bej1Q205j4YW1g0w0eGRGejU/DBwsGRHeIbmUI8azGrG14G3LeevMQN2VByeFFPYSAE2W41030DC9Ok34jushjo2h0ZrYETj7YL8Lv8ZBVsxz51KV/0YWDfaA+3Q0qUFOEfwAB2BOjzp1eN19HO97Sm+8TnUYxx6ONODdv7WBjL9a2sxjDh38ReHJ8UMNFqdVqcWTIRneBX3iIeBEa+dOTbik3BGNDYVhKX3rerOW6xzuvQY6PB0WG1lSM6joQMHB3mMDg+MaICZ0to3A1ENr9htZQ16TdYmS4u96K7CVdlinWuJ83lr4vCkmD2Nlu7U8pjDMwiYYL229ejqj3jlz4jbRusN66wKIjwjq7pzuvWw68a2QKa0tljn4VXcIx72jIba0+H5sx0DIxpQQ6/VXvI4WNpzcGAGS8N937UbveoV4tQjfevlhH7sDn61dd6Z41HafmjvfSew3nqvp3+Ulj+jdYB1fqP/naAiPOnUY5J1XmWd7X14mgNpK03ovZp6qrhXtEyyznb9sKdw9snhdLjdVt7C3mXGrGgcncPp8IG2o6/AdozE/CrvrEHv4h9f/p9EeFLMfta51TrbRmtEDjv48db57YL3eiw9RuUwLG07w2/1v+M0Wv7ZYp3Tqceb1nl7QV7CEN937UCvxoE06bEv5plRdnvpDmSVVjo7+IF1o9Dhqc52pNOW7mk7gooOH452p1ZUdZdqiN3hOfHEE3nwwQdpbW1FKcXcuXMdf7/99ttRSjmORx55xHHNiBEjuPvuu+no6GDz5s385Cc/oakpfTvjemEfjJ+81jp3BTJKS2cjHej8gXkezqgc6xG80Up3p2br0RuIA6hI49Jju260YxZdd+c4363U4ABgdA4dnj1tR1CDpfiJ3eFpampi2bJlfOELXyh5zSOPPEJLS0v/8bGPfczx95///OccccQRnHbaaZx11lmcdNJJ/PjHPw676LFiV8p3MLuqdFmd2tB+8+WHdD5OYc8ITy3KmrEdk8OwdHgRnvQZ8UZgtPW6mAMYTBL38KruEiV71o3CaGj+HJ5SHXwD3Yz2vYUDpD0amkWHJ/YcnkcffZRHH3207DVdXV20txd/+u6UKVM444wzOPbYY1m6dCkAX/ziF/nd737H1772NdatW1f0c4MGDaKx0bgFzc3NPn9BPBSbwtk9IE9j7cAPuWIHOhehAd1Qt/suY5TsGeEx/7fV7cOTTiMuDo/BrhvbKcw/CFKPA0iTHsUcnt6CVUl1+H1ikq1uM7pr6S1zbXIIbwonfW0FwtQjfmKP8Lhh9uzZtLe3s2LFCn7wgx+wzz779P9t5syZbN68ud/ZAXjiiSfo6+tjxowZJe955ZVX0tnZ2X+0traWvDaJFJvCCW7Umr6GajuARg8zDx/MPjz7lL0qSdRQfkormLqRHj1sLd52vBuUw7PJOqdHj2IOT2Fiqv9fsqXgdXpsh62HqR9B1430aLEPJr9r4OAxCxGexDs8jz76KJ/4xCeYM2cOl19+ObNmzeKRRx6htlYXvaWlhfXr1zs+s3v3bjZt2kRLS0vJ+15//fUMHTq0/xg/fnzJa5NIsQhPcCtx0tdQ99TDRHhaqlo9s9E6p6dDG412b/oojPIFZbTSp0exDj64UWv6HJ7iDmAQevSRRoc4vGioXTeqs8ZRYteN9RQ+gCY7Dk/sU1qV+MUvftH/+qWXXuLFF1/kjTfeYPbs2fzhD3/wfd/u7m66u6uZ6oiXPSMaEHynlr6GOjDCM8jKbBqKft6Yd2yjNQid05T8KT7bgLdROKmQ3w6+uMOT37YSrh6b0AOldNSPSvldMjiAQj1GRVyeoEl8hGcgq1at4p133uHgg/W2e21tbYwePdpxTV1dHfvssw9tbW1xFDESKk1p5WlkUot5anyxsDRQhR470JvNQ1r0qBT9q878pq+DLzelNYjuKvVInwNYaYovT/VjnHXegfmfLNRiMNXsGmPfcQiFU+xJplLdSE/Mvzipc3jGjx/Pvvvu25+MvGjRIkaMGMG0adP6rznllFOora1lyZIlcRUzdCp1asOqunu6RiZj0KHK3eilthr7YZk6iledHunq1GwjXir6lyctwDjDziR++4GIQbWVdHTwUKp+mMFSMPUjHXrYWjjrhnOw5F+PDkz6dzraS7h1I35id3iampo4+uijOfroowE44IADOProo5kwYQJNTU3ccMMNzJgxg4kTJ3LKKafwm9/8hr///e8sWLAAgBUrVvDII49w6623ctxxx/Ge97yHefPmce+995ZcoZUFKkV48mTEbedvHYWrS7QWDZbRqu7pLenSw+7gnbU/6LqxD3E+BNALlTq1PHXwQzFJqaZ+1FlH/gZLdt0o1lbqqh4sKUxOUzrqR3HbEVRbiZ/YHZ5jjz2WF154gRdeeAGAm266iRdeeIFvfetb7N69m6OOOooHH3yQ1157jdtuu42lS5dy4oknOvJvLrzwQlasWMHvf/97fve73/H000/zz//8zzH9ovDZG5NOHE6EJ11GvFw+U33VozRIW1SjUgc/iCDC9HXE+RBAL0TnACYfu25sxkzUFib45812FI/+aT3qArEd6awf4QwO4if2pOWFCxdSU1N6pHj66adXvMfmzZu58MILgyxWorE7+G0MTMTNpxEvF+2qDWRKKwsRHrOZGmg9duGHbnTNG4LWo6P85TFTQ/lOLa8dfDHnT7/Kl+0o11ZqAp0OT3/9GEQ3zeg2Vc12jHESe4RH8E7x/B3IqxEvl89UG2iEJx16FB+l2Z1aviJe+6K30OyjML8L8prvVm4ED33U0yttpX+wJBEejWkrtVDFs+fiRxyeFFI8olGP/d/ZSFdAOSvpaKTF9QhylJYuPcqNWoNxeNIT8bIN+DsM3Pc36CTdEdh5MEmmXN2oo5sapK0Y25GvwVIdZol+8foRhB7xIg5PCike0QgjLJ38Rgrl9cib0apHr1qD4qPWvpyF6YtPZ0HhqHUo1aRfbyp4Pdz3XaIi/IhGeuoGlNdD5WywNAbtEPSiBwgGrcfuQPSIF3F4Uki5JF39Kp9TWsX1CHKVVjqMFuinoW1w/EXr0ZezMH3xVTgQXJh+N+aRCslvL+FHNNJTN6C8HipnDqCtRRsDc3S0HrslwiPEQbkkXeijjt0BGS17d+FkU06PYEZp6TFadgcfrtFKnx57RnjsCGA+60fx/C6tRXWDg/RoMRjjlhXLWcnr4KBUNLRXHB4hDmxPvFREo4ZqjdYOzJNUkm24hmJcMjFa5aZwdKfWE0inlj49SkV4unNaP8LP70r+7sL2kxZ3MnCtYZBTOOlxAEu3FaftEIdHiJTiYXqn0aqj2thMOvJ47Ea6Be2mGeyIRr6MVqUpnB6J8FhoI74rp/Wj2OAgmCmc9OwuXCmiEUw0ND3OcCU9ghkcxIs4PCmj9L4iJixtr0bJQ0Mt3cHbo7SgjVaydxeuFOHpzlkiZqUIT1eOOrVmzCCo2D4rdkL7EKpZb1a4u3Cy9ahUN4KZwkmfM1zKlnZJhEeIGntfESi+rwh09W9GmIeGGs28c3p2F5YIj5PyOSuwK5Ck9nToYWuxBT2NY3BO/0K+9Ihm+jfZWkDlFY3dgbSVeBGHJ2XYjXQ9eiWOwUR4bIcnDw210rxzr2W0mqv6li707sJQzXPXo8Ct0apu8zB7/VeytajB5GmU2ll4V0FUwz/p0KNSREP1x7tEDzCDg+psh63FYJK+AKTSYKk7ED3iRRyelFGpQ4Mutlqv8mC03EZ4qt8d1N6ZYlTVdwoTt2Hp6oxWOrTYF+PatDn+YrZw2BWIEU+HHpUiGtDdbzvyrYfT4anOdmzHxNOSbUsrDR6DsR3xIg5PyqjkhefNaLmNaNQBe1X1TelwACvp0RXoqLWZQuchadharGfgLst2mXvYbi3ez1NbKW07uvrjmMHokY62UqqD7w6sg7fbS3LrRx2lNiwFu37sCmzwGB/i8KSMSqMS2JUrh6dSRMOeh4fs61F6a3gI1uHZgplQTW6nFl1EIx3OsBc9gokOJ7etQGVb2pWj6PBotDOwm4G7LMNAh0ciPEJklB7BD7bOOwMepSW3kUI5o2XHc3bmxgEsvTU8DFyGXb0RT36n5iWiUZ0eya8b4E6PvLQVcLOCT7eVOmDvqr4p+RGvwg1L+/b4q7YdO2VKS4ia0hENu4PfFdAoLfmNFMoZLdsBDCrilfxRfKEWao+/6vqx08onCC5Mn1w9SjvDQdcNu63sQ5JNavR6JLduNGKWY5SeDt/V3/lnPeJV2o7WYhyeXYA4PEKEVI7wBN3BJ7eRFu6yXM7hycsovrQzDLYeOwIzWsnXIzpn2F7RWId+anoyiX5wkNy6Ya/e24V5EprBRIfzEi2vnCphbIfk8AiRUbpTM1NaeRmlFe4rsmOPv+ZvSqt0hwYDHZ69qGZzOUhT/SgdDQ2qbvRiNttLbv1wo4cMDiCPEa/StsMs9dguER4hSkrvsgzFprSCaaSDSOremm46+DyNWm0j3rrHX0xYenvBlnN5CdPvqUfQ0T9Ieqc2BPMbZUqrXN2A4CM8yW8rlac7e9hmPTJEHB4hEgp3WW7b469BG/Eu6Dd/yTRcpRsp5NGIVzZa0NOftpz9iFd0Ce2Q9E4t2miorcVeJHWzPa+2I+v5kG7ait2vDAbqIyhTGIjDkyIKd1nu3eOvQXfwkHQjXj7CI2F6Q+EORPlwAMtHQ8NoK8muH9EODgo32xM9kl43wFtCO6Q3j0ccnhRR2oBDOKPWZDfUaI1W8jfbq2y0uoG+XEzx2bss9zHwmXMQrsOTTAfQXVsJanAA6dYjrIhXMtsKuHN4eqD/0SNpndYShydFRJtoB+LwFLKFpG+25yYsDeQi4mVr8Q7FoqFBR/8g6Z1aedsRdP4fpEWPSrYj2FVaI0jiZFA9ZsPSSrYjuPoRD+LwpAivjTTrozS3U1p5MOL1lNsa3tQNCMpoJbtueHWGq3/0SDocwGgGB5Du+rGn7ajOlm4GK+E3iQ9jLr9hqdN2BOMAxoc4PCki+imt5HbwEIcRT64e9r4i3ZhdYQxhODy2FvuiM2aShdsObXvBu/l1APM7HV5612kIznb0AZus18nTw82GpQMjPJLDI4SOTGk5Ke8AhhnxSp4ehXXDrdEKxuGpQ+8wnCzcOsOKoCNeyasbEEd0OLmDg70w20OWnsKBvDiAbusGyJSWECFuO3i7Ula/udx66zy67FVxUH6X5RqC34gRTPpr8vTwYrSC6dR6MbGkMeUujIXo9bDbSvK0gDgiPHZbSZ4eth3dDnTu8Ve7buwGegOcwkmuHm7rBojDI0SI24q5reDd6ox48hvpFijYSs8mjLA0GD1ayl4VB/EYreTXj+j0sHfGGkP6pvjCiA7beqStrRSPaFQf8UprW5EcHiEGCvcVqTSl1Q0BbS5XaMSThTstIBwjnjw94glLZ6tTq04PO8JTT9Km+IZjXDy30+HVR4fT2sGHNTjIlu2QHB4hVMrvsgzhGPFCo5WsUas7o9VLYVg6D6O0SivWIF8Rnuj0SO4Unz042IjZR8VJ8ehwcLYjWcQzOJDocBIQhycllN9lGcKpmMkdtYrRcuI2vwuCylmBpHZqtZj/oWj1SGbEq3xbgVLR4eCmw9M4WHLuWZXfwYEkLQsxUL5Dg3AqZi9mtUWyjLjb6T2QsHTeprRGoadjdmNcdidhO8TJqh+VHR4ZLBnCmsJJZlsBifAICcTLKA2yP4r300ir31yucJVWeketeeng2zHbvTnJpx7F60Y9JlsnSAewh6RP8ZVvK/lwhgdhFspHGw2NB3F4UkL5iAaEn2yXrJGJlwhP4eZywSw9ridJO6YOwmx3JxEe74ODrE95upuygOBX4iRbj0rPFYMw2kqyBkvlNywFifAIsRC/EU/WyMRLWFoRlBEvnOJLjh6287cLvYn9noS1W2oa6waE82wxSOqUp7voH4Q3jZMmPYpHNKqPDtuDpQaSNMUXX78SD+LwpIR4wtKQzlG8s0ODbOvhd7oz2I0YkzNqlcGBEy8dPGRbjyHoTUvB3Qq+4KLDyVzFJw6PkEjcPSgTgh+1Js9oDQX2tl67mdKCbBtx9xGNoI1WMqf44nd4kuMMQ5yDg+TpYdvRTpzOjGHP6HCWFz34jYaKwyOEirtRGtg7beQhorGFYrssQzmHJ4th+vI5GlAqL2Fvqt1cLplTfJX1yNfmcl4jPMF1asnTw2sHD/lwAL0ODiRpWQiNGkwTiS+ikbxG6rZDg2wnYvqNaIB5Hpl/0q9H8NHQ5Ezx7YtOaodSG5Y6o3+Q7Rwvr3UDJDqskaRlISLcG60wc1bS1EjFaDlx1o9u9KJhyGv9CMuIJ2+Kr3DD0p6iVzijf5DtwZIf25HviFfxwVL1jx6JB3F4UkDhviLFd1ku3UiDG6WNIinVJV6HJ7lTfPE6gMnQox7zLPvietRihg9B5/Akb6NOaStOqpnSCs6WplEPZzQU0hnlib0HO/HEE3nwwQdpbW1FKcXcuXP3uOaaa65h7dq17Nixg8cff5yDDz7Y8fcRI0Zw991309HRwebNm/nJT35CU1P1wfqk4D4nIQyj9Q7Qh/bnR1W4NhrcT2mFEaa3v3Vs2auiJN68BFuPcWWviooxaKPWi665e7LnvjPBhumTVT/81I3gIhq2FqNJSjwgXgfQ/tZktBXwnv8X3KNH4iF2h6epqYlly5bxhS98oejfL7vsMr70pS/xuc99jhkzZrB9+3YWLFhAY2Nj/zU///nPOeKIIzjttNM466yzOOmkk/jxj38c1U8Inf2s89slr7DXLJl1B8E10t2Ykcn4qu8WBO712NH/TnBGvNU6J0MLMCXxY8SrN1q2Hskw4rYW69ArbPaktMMTjAFPVv0o1KM4YdYN+8l/dSRlGqeyHmEOHpNVN/bC7AgUjwMYPfVxF+DRRx/l0UcfLfn3r3zlK1x77bU8+OCDAHziE5+gvb2dD33oQ/ziF79gypQpnHHGGRx77LEsXboUgC9+8Yv87ne/42tf+xrr1pWu2mlhgnV+q+QVe3bwwVbKVvSIdTzwfCB3rAZbj3gcQNs07Is2BrvKXBs+zcAw67WX+pFVB9B9W+nCfvCErUU9QfyPJksPe3AQj+3oQ7sWE9B6lO5Wo8KPHsG1Ffv3J6tubEOveC1O8fqxL+l0eGKP8JTjgAMOYOzYsTzxxBP973V2drJkyRJmzpwJwMyZM9m8eXO/swPwxBNP0NfXx4wZM0ree9CgQTQ3NzuOpFI5omFP3+1ptLI4ao3XiG8puG/8UQ1bi82U2lcETP0IwwFMZt3w0laCzUtIlh6VHcDStiMYi5icTr6moBSVbceebSW4aOjwgu+Jj8ptBcq1l+T2mKVJtMPT0qKTu9rb2x3vt7e39/+tpaWF9eudz0TevXs3mzZt6r+mGFdeeSWdnZ39R2tra8lr48b9qNU00mArZXKMeB0mO6KyEQ+jg4ck6VE52gXhOoDJ0QL8tZXgHj0CWdAjHNsR/+BgDDpdfTflprTCdAC3Ftwt/vpRuW7UYxL8w3AAoyfRDk+YXH/99QwdOrT/GD8+/gpYimoiPNVvLgdJMuLj0L+nG7MIeE9Kd/BZi3hVNlpQzgEMLol7MEl4RpCfiAYEqUdyIhrgxXaE1aElr62sxZ7MLEaY0+GQJAfQvTMM4ekRLYl2eNra9LLGMWOcCW9jxozp/1tbWxujR492/L2uro599tmn/5pidHd3s3XrVseRVPyM0gp/TXCh2PiNlm3AWymVlArFjHhWR62V60YNJhEzjLB0F2Ypdvx6+EnwhzAiPPFr0QSMsF7Hm/8HSbId8U7hJEcP94OD3Zi1WeLwhMaqVatYt24dc+bM6X+vubmZGTNmsGjRIgAWLVrEiBEjmDZtWv81p5xyCrW1tSxZsiTyMgfNcIzDUnrSbU+jFezywTQ1UhAjXkgUo7Tk6OHeiDsdnuCn+MYQ95oQW4stOPOUnJSO8GQtOuzNdoQV8UpOBDD+wUH0xL5Kq6mpybGvzgEHHMDRRx/Npk2beOutt7j55pu56qqr+Nvf/saqVav49re/zdq1a/n1r38NwIoVK3jkkUe49dZb+dznPkdDQwPz5s3j3nvvzcQKLbtSbqDUc6OglBHfhp5kyFJegt9RWlYTMd138BDe0tJW4Gji1qMOE1fxO6UVzL5V3ejchxYq1dQw8Ts4KHSOhgAdVZUiTW0FwrcdybGl8U//Rk/sDs+xxx7Lk08+2f/vm266CYCf/exnfPKTn+SGG26gqamJH//4xwwfPpynn36a008/na6urv7PXHjhhcybN4/f//739PX1cf/99/OlL30p6p8SCn6NFuiKGazDM9z6rh2lLw2ZZIzS0mS0CrUwk4BZ1GMs2unpwewctSfFR63B6aHQeU0T0XrE5/B4GxwYPbrQGjYQhMOTnCk+d3pElcOTNtthSPOUVuwOz8KFC6mpKf+gvauvvpqrr7665N83b97MhRdeGHTREoG7VThhj1o70eO+IeiG+req7+iXykvSIY/z8F6SUiFoPZIxirfrxlr0DjDFKd5Wgq8ftsMTH8kaLA1Da19684Sw8RvhyaLtcJffFXa/Ej2JzuER3HbwYY9aISkN1dsy7D1HafbmctWRjFHrMMz/rZekVMjmyhO/0T/I5ije7wo+CFKPbegBEyRfj0ZMl5jt6LDdr3TiXODiJIrBUrSIw5Nw/O6zAtkcmVQ7SoMgnxHUCIys+m5+sbXYiPf8Lungw3QAkxXx8uMAZs121OIlvwvCz/8bi15BGQ9BDA7SmMMjDk/C8Talle1OrR7znOHSetSjsw+g1OZy1TfUHswuQPFFNbx1aGEmHsZfNyCJ0dBkRLyqmQ7PysqkFrRlKJ/fZWthHjsCQUeH29ATrg3E+TDm5AwOokUcnoQz0TqvLntVlNMW8Rmt/dAVdiflNh0sPkqDoPWwu5H9yl4VJvtbZz9TFsGO4G0t7L1s48GbHmFGQ209JpS9KmyqqR9ZbSvl87uKO8OF/6pej1600wNx1o/kTP9Gizg8CaYW01BXl70yilHam9Z5/7JXhckk67ym7FV2I+2lcLMsCLpTs/WYWPaqMJlknVeXvSoKZ3hjwf3jM+KTrPPqsldF0cHbNTS+ulGYcOyuvYRZP+LXY5J1XlX2quJ2NNjoMCRJj9Vlr4picBAt4vAkmLHo8XIPlZ4zHIUnnu5GCkHrYZdiUiB384P9zavLXlW+g28iKCNgl2JSIHfzg/3Nq8teFcWUlt1W9iOIrfv8MMk6r0VP0JQmigjg6gGlih77m1eXvap43YC821LJ4REiwG4Ob1Pu2S8QjSe+2jpPCuRufrC/eXXZqyobrXyN0sqP4ME5CeifePVoBvYdUJLiRJGXsA6zk008eTyTrPPqslcVf+wI5LWtRDVYsvWYFMjd/GB/8+qyV8mUlhAhk6zz6opXRhnhGQEMDeSOXplknVeXvap4Bw8S4SnE3lwOsjFqtb91I+WW2UI0q5L6iHvKc5J1Xl32quKPHYG8RjRKD5bCGTzGo0cdZuJ5dZnrKg0Ognn0SLSIw5NgJlnn1RWvjGIlznbMQyLjNeJ+RvAQtNGK14gPRk95gn8HMEsRQPtbV5e5RhPVypN468ck67y67FWFDo9zY4Ng9XgL7QTuTVwrkyZZ59Vlr6oc4clCxGs8esVZN2aDjeKUHxxA+qa1xOFJMJOs8+qyVzVi/OywjbhdkjQY8ajm4VsIYrGqV+zU8a3AprJXFo/w2J+FbDiAk6zz6opXRrW3SLzTFva3uhschF03CrvW6OtHDV5Xu0bVViYFcjev2N+6hsKHzRSjuANYGB0Wh0cIjEnWeXXZqwpHaWFn08fXUOswC+JXl70yqnn4TQV3jH7l2iTrvLrilVHnNE0K5G5esb91dcUro4rw2CVJsgMY1RQOxFk/xqCHJLsxm2sUJ+ocnuHEkR4wyTqvrnhlVA5xdIjDk2BsU1l+lGZXuV3opdiGLBnx/dBh2F2U2zgMTPe9bY+/hDeKj16PSdZ5dcUro161Np44ZvYnDShFacqvSmpAx0yrJw0Rr6imcApLEl9beZuBFnIgUU2Hx5seMMk6r654ZVT5kNEhDk9CcR+GtUcInXv8JTyjNSmwO7rF/sY3qRSGtfXYM3U1S6NW+xtXV7zS/rVh69GGDnbXE8fmlO7aCpjW4NQj2EePQJx1o3APnjfLXVimbmQpp2mSdV5d8Uq7bkRhS+PXo/yeRBCd7YgOcXgSSgt6pNlLpa3h4zBakwK7o1vsb1xd8Ur715Y2WlmIeE0aUILSVHaIg9FDYbrXSYHc0Qv2N64ue1XhuhJne+nDxHyC6dTskuxP1M9MmmSd16EjoqUR2+Gk9GApn3pUtqWSwyMEwiTr3EqlPXgqe+HBby6X5A4+H6NW9xGNynqkfdQ6BPMI1/LTv3aHVujeGIJ/nMJudPbI6EDu6JZJ1nl1xStLO8PBj+Dt0ojtcJYmyXpE6QBGgzg8CeUg6/x6xSsrN1IIOjF1FM5k6fCx9agmDJulKb4DB5SgNNkfxR9gnSvvwVNaCwi6k+/F7I8ebadm67G64pXZd4bBix5ROoDx6FGP2YOn/OAAorUd0SAOT0I52Dr/veKVpb3w4DeX6wQ2W6+jbai2Hn+reGVUUzgQZ0TDfmp8ZYc4+6N493WjvMOTFQfQu+0o3VaCiw7bWgxDr06KDvd6xOEATgrsjm6YhHZ6dlBpD54GzHYbUdiOaBCHJ6F4b6R7VkoIM6pxQLmLAicIoxV8I7XjTeMJam2PG2wt3gE6Kl4d5SjN1uOgslcFTRAdPITRVmw9Dix7VdAcYp2rcQCDjw7vxDwlPLr60YBxv93rEcVgKZ66UdhWyi/+KPylUTiA0SAOT0JJ7qjVjikcXPaqIBmG2Z81iCm+4LR4B20ca4nScLmvG4OsA6IxWrbLcUjZq4LG/rZqnOHCd4OrH/b/0OTA7uiGoKLD9hLu4PWIrn4cgE5T30al7Swg2pwV+39nX/S6umhw31ZsLXZQLItUprSEQAnKiAcf1XjNOkdnxO3xYBvFdtcZSJRhaYhDD+9GC8rtSxR83RhPlDleQUx3QphtJboOvhGTo5G86HD0Do/7tgLl9Ai+buzArL+NTo/kDqSjQRyeBDIC4/O/UfHquEatSWyk4CYvIbjN5SBOPdx3aNvQK5OcBG/EN6NThyHKCGDyIzzR1Y0D0Ua9Ax1/LE/piEbhu2nWw5/tiGqwlAbbEdVAOhrE4UkgdqVspdgelwNxZ7SCa6hJjmhAuYa6vchV1ZNkIx51hwZR67EXehduCM7hCT6iMYaoHiHgvkMDtxGeNEeH3etRi9lpOYocHogz4lVtNFRyeITASLbRspvK/kSVqOtPjz07tcLdV9JsxL1HNKI0WtHqYWdObaLSQ1TBrREPrm5sxSTqRtOpue/QoJJDHPwoPskdvLsk3WCjw9G2lXrMmrDkRUOjQRyeBBJUBw9hGK13gC3oqhPNagv3etSjx/wQ/Sg+GiPeBIy1XifTaEWrR1DRv8J306xHkLYjvKT2fYgqUdf7FE4X+unuTrIQHZ6Idth2YnaIKk0c0eHwEYcngXibd47DiEebjOndaEH0eQnjMSHx8LBdzA1ot7M8USfpQrI7+KgjGhCXA1htvhuE0VZ2EmWibgMmolFtkm7wjx6BONtK+SXpUCk6LDk8QmAEacTDTbYLPxRbuMmee4dnF2bLRSfBG/HNmCcfh5+oG0ZEYwhBPu0p2jC9v8FBlFN80S5NDyPCE85gKXw9JmGWpLeVv5RKdrTwL8Hp8QbalRqKzvMKl+TXjfARhyeBHGqdk1sxozNadge/nlLdVCHltYD0j+LDcHggyNiUrcVookjUTf6UVnTR0EHozDpwo0cNWY94BbUk3Sb4+tGF2XE5Oj2CjP5J0rJQFaPQW1H1AStdfWK4dS6+527ajdZh1vlVV1cPs86VjVZaE3WnWOcVrq4u36HtIozN5QrH09HVj9fKXmWT7VVrk9EGfQt6gFCeQhc3juhw+HrYbSWIugHpt6Xe9HA3OAju0SPRkKay5oLDrfMb6A6pPIMwG7wVX6OS9giPrccrrq4eYZ03l7wi7Z3aEdY5KD3CMeLR1I8RmATuIPQIR4voEnXttvKyq6ttLboptflF2iNe3vQYbp23lLwi7bbDX/3YUvSvhduYpinKIw5PwvDXwfdRKsIT7ihtLGHP4vrTo/QC5XCN+KFlr6qWGkxEI9kOYDR62Fqswc0O3FBJj3Dayk7gLev1lHIXVk3QznD4dSO4zLFi+NOjsu0IJzocbt0YitmB2120vHz9CCc6HD7i8CQMfx18B6Xy7sMxWp2YhY2Hl7uwarwZLXsEHXVEwy7dEWWvqpb90SHkbtzmJdh6RO0A2mPIqYHedSDe6ga4dXiCzzx6yTqHq0fQ0dBw2srr6NyVIZjHeoaDNz0q245w6kc0dcMeHLTi5oHDEN/gMVzE4UkYQRstO5sleCO+3DofGfidbRoxy7CD0sNu7MNKXuGHlWg3ZChhGnG7g19Jscf5FSMuPWwjHl7dAK8h+r0xD1ItbsS3WOcGzG5OwRCtHt46+NId2hbrPNxneYrTi4kxhKfHeHRr7MFtkm7ltrLFOg/3Xapi2Hb0IMJ8/py3tgJuHMAt1nm4j/LEhTg8CSNoh2fLgCuDI3yHZzJ6Welm3CwrhfiMVi8mjTi8kZq3ugFu9LD/Emz9sOvGwcDgQO9ciL8OvgfnNnKG7ZgwfTh6hFc3GjBZIN5yNKKuGxBFVMMeHPyNUhtUDCQuB/AddIp5LSYOEzxBR0ML/zLcT4FiQhyeBLEPZs8Zd6twvFXKYGfMw3d40tPBQ5R6eB+llTbi4ejRjjbktYQ55Rl0zkrhX8NxeMKrG4egnZ5O9LRFZeLs0JLYVvJhO9y1lVpMzDdq2xEu4vAkCNu/X02pMehA3DfSOoKea01aI4VkjFpFD024egxDT1tAcEmpEJYeK9CTkPti1pUFi/+6EUeHJrbDSdJsxzCMaxDH7EF4iMOTIMJopF3odSKFVwfDq2gjPhITlwoW/6O0bBtxd3rshXnMYZxTnuFMW9iDg7cot3NKIZVzEgr/GqweuzCZJOHoYUe7wsjRKKxJwWB38Iei41LB430KJ65oKITdVgrTw70NDrZTbkJQIjxCVdgdmrtlgxBvmH4XZq1QOJ18ukZpttGaQhhGfAI6QteD1xVavZRbtJ3WaYswchIgzETMcPUIo610oje8gKD1eAudLt9AWFsXhDGltcU6D/dRnvKEWzfswcE6KtV+G2/R0OE+yhQX4vAkiKOsc5ARDUhn4nIjJgnT+ygtDofnTXQX0UAYG+7ZHfxrmMTa8sQ5hQNpdXjSmqjrX4/S9UMRpu0IbxpnHLoT7sXtCq0aTLcdh+2w/9fGoqc9g8V/tMvd4EAiPIIv3mWdn3f9ibiNeHid2pFo1+Ed3CZhgpcITz1h7BAanhG368Yy15+Iu27Ybvs4wthh2L8e2XMA98JsW/ei60/F3amFN41zjHVegd4sojLuclbCqxvb0HvrQ5h6uK8bcduO8BCHJyFMQlecLtI0ag3PiE+zzu6dv8GYJdCl9diJ1hjC1OOoslf5wdZjqetPxN2hbQNWWa+D1aMG4/AErUf4beUI9BKC4DjKumMbZjvQyiTFdhwd+J2nW2f3daMwZ6W0i2RrMQQ9YAqWJOohU1pCSNgd2ku43TcC9KNGATaUvSo8o/VX63wkZlO3YPAe7bJDwT1USmMNTw/bpBwb+J1to+Vej8pJmBD2KC0cPQ5Ej8l34iXfLW4H8HV03speBL0jt/fBAXitH8M93dsNdt04LvA7e9fDXd0o3KE4LbajFhPhCVoPifCEwNVXX41SynG8+qoxc42NjcybN48NGzawdetW7rvvPkaPHh1jif3hz2jZv7P8s5HDq5ir0c7WIIIemXjXY4x1Xk+px2zYbLHOwevxF+t8HEHuejQCOMB6/ddyFzoo1KM04RotW4/jA72r7fy9iNsdp8G0lfayV4WnhwKes16Ho4f7EXw9plOLq368gB6cjEY/NCU4vA8O3LWVwicWhmc7gq0bk9ERqe3oHdrd4a5f2WKdxeEJmJdeeomWlpb+44QTTuj/20033cTZZ5/NRz/6UWbNmsW4ceP41a9+FWNp/eG9g6/HRDXKG3F7DBfOs5qftc7BNdR6zCSIez3cNVIIU4+X0HGH4ehdhoPBjnbZMQJ3uOvgN1rnRsLY2N6uG8GO4v0NDtx1arYewaeOQnL0sOtGL5UiPOHp0YXJKglOj1HoFY19aJfKHe7aCoSph+3wHEqQD3qx68YLmBV3lbHbSnk97HmFcNpKOKTC4ent7aW9vb3/2LhRV7uhQ4fyqU99in/5l3/hj3/8I88//zyf/OQnee9738uMGTPK3nPQoEE0Nzc7jjjxbrTs6azKRsuumCO9FsoVwRvxw9DZOFswqXyVcddIQSdCQxh69GJiMME5gGF28NvRGwyAqVHBsRRtZicFenfv+Uzg1YiH01aCH8U3YtJcvUc03qFSNNTWI/i6AWHoYdeN1yi3GcNAkmA7NmKs3fRyF3rCe7QL3NoOu240E/Q+TeGRCofnkEMOobW1lddff527776bCRP0g+6nT5/OoEGDeOKJJ/qvXblyJWvWrGHmzJll73nllVfS2dnZf7S2ul8LFDRj0VWsFy+Z9PaopLLRCq+RQhgRHttouZ++AS+jtHCNePAOYHVGK04jvhXzkJQ49ajD/LryethahNvBTyWox5NORa9m3IDeGMEd7ttKNLYjuLoR5uAA0usAhjE46MDkm4ZTP4In8Q7PkiVLuPjiizn99NP5/Oc/zwEHHMCf/vQnhgwZQktLC11dXXR0OAP97e3ttLSU3/33+uuvZ+jQof3H+PHjy14fJnalXIEZbVcmaY30MIJ6JnvYRitcIx6e0fKX3xW3AxisHhPRU5HdeNmvyv5luzGTEsWxtRhBGCtx3kZv/1aPSSWtjuraSlLqxrEE1RWFrUeaHMAaorMdaXF4gm/TAfPoo4/2v16+fDlLlixhzZo1nHfeeezcubPMJ8vT3d1Nd7e7XRrCJuxKGe6odQN6+fEBaMP1h6rvmO4O3jZa70I3L3fbBJaiGbONYXqN+EUEZcQLVzO6b72FUzjlMxk2WVfUonMTKqvnlb8AH0Q7gIuqvlvY0b9wO7RX0ZOqzejcFfdr7krhT4+kdPDBDg4OQg9Bd+FF2Trc5oaC1mMsYdnS4El8hGcgHR0dvPbaaxx88MG0tbXR2NjIsGHOJK8xY8bQ1tYWUwm9Y0++PVf2qoF4j2jsS9BPTLcJblqrAT+rTiA5EZ6/o9e2DCaI/WdsLd6k0uYDhRRO4SQlAhiMw2PfJawOvg+TEZeGKeCw9Qh3sLQb08qr12Nf/KxmhOREvJ5Ha7IfQTxk1q4bL+Jl2DUK7RZUjoZC2LY0eFLn8DQ1NXHQQQexbt06li5dSnd3N3PmzOn/++TJk5k4cSKLFlU/eoqCWozD8ydPn/S+sqCOsJYQLrHO7636TtPQ2Q0b8LKMEpIT4QFYbJ1PKHuVG+w7POPpUyPRNasPN25SuEZrGXrl2ijMfsD+sfX4s6dPuV/BB2GP4m27dGLVd2rGbAbhrX4kJcIDQephW59XMEum3ZGUwdJ2TBZncHr4qxuVo6GQvimtxDs83/3udznppJOYOHEiM2fO5IEHHmD37t3cc889dHZ2ctttt3HjjTcye/Zspk2bxu23384zzzzDkiVLKt88ARyBXsS8FbPXpjvcN9IejAEIp5NfaJ1PotpdZO0O7WnPn0yK0QJ40jrPrvpOttnz5wxvwM1ONeE6gN0Ykzu7qjs1YuIA3uqH+w4ewo5qLEJrMgG9haJ/3o1ubavw8vgV8DM4GERQGXoDedI6z676Tv7aivuEdoiig3/SOs+u+k7+9PDWVsIfPAZL4h2e/fbbj3vuuYeVK1fyf//3f2zcuJF3v/vdbNigpf7qV7/KQw89xP33389TTz1FW1sbH/7wh2MutXvsDn4RXjZRA7CTsr0Z8XAa6gvoaZyhmCwLf/hzeGoxTS4JEZ4nrfMsqplErMNE//x18O4iGmlxAI9FOz1tuH1ivI0/Ix6OHjsxEdHZVd0pisHBTnTcAcLS42n0hMtBaCfQP/708BYNjc52zK7qLsMx2xVEMThIS4Qn8UnLH/vYx8r+vauri0svvZRLL700ohIFi3+jZe9O6m4x6gb008fDaah9wFPAXHRD/UvZq8vhT49x6Krcje4Oy2M30r3R02f+U99L8Tw6ZrcPOo/H/SMuCzkKPW2xBfNYUnfYHcfbrq5OixG3R6ze24o3PcKN8IDW40S0Hj/1fRd/I3jwUz+a0Hq43xfLLdvQ2YvvRutxl6+77I3Jd/Omx37WuQ03Q87wO/in0Pb0MLTz4S9t/j1oN+413A57bGw93D2VTaa0BE9U7/CscXV1+Eb8j9b5ZN93OBTdcHbiNQnT1uJtKu1JBNrE2g8QDUePXozZne37LnaH9gxedkkFvXgb3NYN2yCG90CWZ4EdaAN+mO+72G3FewfvbXBgt5Xw9Ki+rTQA9taq3mzHEMwe4+70CL9+PGmdZ/u+w/FoTd7Cba238dZW7LoxjLA229uC2SN6tu+7+HeG/dmO8pvAJAdxeGJkAtoU92KC3O7YBz3mArejNDvuEV7FtI34ifgNHNod2hK8PEAVvHZooHdDgSDWQpTiSes82/cd/Hfw3oxW+FpUn8dTg0nC9D448KaHPbYNT4/FaJd7P/RUjnemoaMaG/C6mNtuK5twuxdx+Ho8aZ1n+76D/+ifN9uxBRMRTrIe1Q8OktJWgkUcnhixDfjz6PGve2wDvg63u5HYFTO87RWXo83vEPw+8dd/tMvWw73DY+sxzvN3ucV2AGfht5lFNd1pOzzN6P+9cHjSOvuLakzFJPd7myBswJhjd3qEXzcK83j86eFvtRoks638GT3sOxC/DxKNanAAUejxpHX2VzcaMUvSoxochKdFsIjDEyOnWuewQ/RgVnGEVzEVpqG+39cd7M0Fwh6VQBQN9a/oRO4RmMkH90xGd9Nd+MmI8ma0tmMeShqeHr+3zqfhJwI42zp7T+7fD23mdmImJMoTjRG39fiAr0/Pts5hT4VDFHpsw2zl4F2PQeicFQi/g4co9HgKHeM+FD8r+d6NdnrWoR847A1vDrE9WGoirFV8wSIOT4ycbp0fLXtVMbw7PNEY8Yes8wc9f/Jw9BTfTnRz94b3UavtAIYX8doN/M567V2PM6zzU5h8I3fUYJJSk2TEn0UnYA7Hzx4jdlt53PMn/Uc0xhLWRp0AD1rn9+E1G6QROMV67V+PJNUNgN9a57M9f/K96MhkG16T+yGZDmAHxgp618O2HU+UvaoY+2JSJd5y9Ymd6GEdpCPKIw5PTExFd7Y7iCbCE43RehidXjsNk+3vDruRLsTL88RskqqHbcT9OzyPeP5kC3rM24vblRYQhR596PoBXvUYjAnue9fDewdv57sNwmyyHzwvoDuVJoz74o4T0fk7a/Gz/i+JU1pg2socTKfrDrutPIqbJQsDSboeUdqOwlQJ98OsNE1ricMTE/aI9Y94HcGDqZjuvHAwEY0xhLkXwQZMcqq3kYmth/dGCsk1Wo+iQ9OH4yU5dS905g/40cN2/lrxMvkTjR52VMObEZ+F1uQtvDww1Mb7CL4Xsxg4iVGNwg7eO0mMaIBOvf47On71Pk+f9N/B741ZUJ00Pey6cRI6KuqOcejtLPqAxzx/p/e6AWZaSxweoST+p7NAz+0C/M31Jzagu95azNZS4eC9U2vCTHJ412MMevZ4N7Da9aeiMVodmF2o3Xdqs9FRjdXACs/feYh1XuXpU9Ho8Tg6fncg2gl0h/8ODeBg67za06eS7ABGrYetRbiDJfDjAO6Hjpbvxs/0nj0I2QR0uv5UNHXjDbR7X4/pLSpjX/ksbp6ENRBbj9WePiURHqEs1XXwdRiHx/2CVEVUnvhvrPMp6HU/lTkZPa5bhd4oyxv2vi6r8DIZFn4St43dqc11/YnqRvC2I/GKp09FY7R2YDILvOvhr4O39fAWG4pGjz+i152Nx2ybV56J6Brfi58Ofh/MxhTubcdGzFrQcPdbsdvKWbh9RI1dNxZjckncc4R19tdWwl+K7X1aq7q2Up0e4vAIRZmDzg/4O163yAf9POBGdOfhLfRod/Lesmu88ho6LjEI+JCrTwTToXlrpLYWIwhzKTYYB/Ak3KZIx6mHv0XBXvi1df64q6sPRK9Y68Gsa3JPDcYh9qfHxLJXVUs35n/ZnR523ViEWVnnHrturMY8MKIyCtOphavH0+hY9CjMGtbyxNFW7J3Pwm8rD1jnD+LGStWj10BCVvWoHnF4YuA86/zbsleVwq6UK/G6/649yVHdIwvdcLd1vrjilXXAudbr6vTw1ki3YbZFP8DX97rlTfS0Vi3wjxWvPho96bAT+IOv7/Onh/3IgHC1ALgP/eum4ua5a3bdeAodC/HGRHQ8tQuvD0WITo87rfOFuJkwsvV4qOxVpfBXNyAqPXqBe6zXF1W8eghmA4yHy11YEn96rEFb3iGE/dDMZ9F2vgn4SMWr56B3gG4Hlvr6Pn/R0OjaSvWIwxMxe2EClPf6uoO/ESuYihm+w3Mn2iScQqUx4Sx0bsBG/CyjhHTo8TPrXNmIX2CdH8btPriFDMb8Gn8OTws6lTM8OjBRHvd6/MLXdxUODrzt3hNd3ViA7qLGUGn/qjGY1Wr/5+u7qnd4wtfjDuv8ISrt7HI2uq6+hnkYgzf8TeH0YJaLRKeH+7byS7wOhUFvZdGM/nXe5h2iqxvVIw5PxHwAXa1Wof1379gdvLcN5cFUTH+b2XvhLcwExCfKXnm+db4fPb7zjn8jbm/KFX5DvQ89hTAF/dSf0thGy58zPBkdM9uE14cOdlifgihGarYR/zh6J+TiTEbHgHqAX/n6HrtD8762K7pRay/wc+t1+U7tI+j/3cV4TSu1qV6P8NvKUnT59sLEwotTXVsZhEngTrIed6Hdl9nApJJXNQLnWK/96WHb0dfwaolXW+ehhLmNQzCIwxMxdgfvb4QGcKR1TnIHDyaqcTGltm+rx4To/Y3g98WkUXpfzxSdA7gN02VfXPKqGWiTthWzZaE3/I1YbaIz4o+js0JGAmeWvOr8gqu9rziBavSwtRiH7nrDxXYAP4jOKitOdR08BKFHNLajclRjBGZFkv/BQT3a1Xe/X5VNdHq8jZncLj0lfjp6OustzMYg3vDvDHdh8niSHuURhydCmjDm3V8j3Ru9ywL4eeCA3UgnEcV//APopZ4HUmpfjVPRLksb5qEU3ni3dX4VL0mYNtEa8Z9Z53+g1L4adof2G8wDCr1h6/FXX5+OTo8+9MgV4NKSV33MOvvv4O1Herzg+ZOb0Q+KhHLj6qB4Ef1/1gh8pugVE9DPi+pDT1l4ZwJ6XVEvyY5ogM4B7EX/4uJ5XuegYzQv4ifWDdXUDYgyHxKM7fgc+lfvSaEz7H3zRTCRZ+9bWULUg2n/iMMTIeejXZaV+G1mx6FHJW/h9inphbSivfEGzMMHwmMn8BPr9RVFr7jYOt+HnzlnME/Q8TemiS7CA3qU9iJ6QvOSPf7agOng/UW7wOjh/ZGSYIxWNHrMR09WzaHYw2anoydvd2HWuXljX/QUIqSjftxknb9CsUdN/IN1fgo/8Qgwjyp+gWoGB+PRmWLhsg7TCi4reoUd6/DvDNt6+Gsr0daNX6Kt9zhMTTAMp9q8UEiXHv4RhydCvmCdb/V9h+o6eIXp1A4td2Fg3IheejsbE33QtAAftl7HpYe9beOBlBo3Bc13rPOXGdhtnItOSm3F7/47TcAx1mt/RsvW47CyVwXFW8D/Wq8v3+Ovdlu5Dy9bwhUy0zq/islO8oa9J1Q0etyDXtE3loF5b3XosT3AT33fv7oObSNGxWhsh91WPsLAuMERaIvSi4kTeqc6PaKtG91oWwrwdQamCFyMHki/CDzv6/77ozcr6cFvZmm0elSHkgPV3NyslFKqubk5lPsfD0qB2glqH9/3eVDp23zJdzl+YZXjXyPT9idWmX/teP/frXL8yfd96xVst+59qO/ybbLKcVQkWtQpeMMq8+cdf3vaKse/+773bOu+b/ou33FWGdZFVjcOt8q8W8Hk/vf3QbcTBWqG73tfb937Vt/l+4ZVhjsi0+PLVplfU1Db//6HrHKsB9Xo+97PW/f+qO/yLbTK8Q+R6fGwVeYfON7/gVWO+3zfd5R1X6VghK977AVqt3WTUZFoMUTBJqvMH+p/vwbUa1Y5PuP73h+z7rvEd/nOssrw18jqhvPw0H/HU8CkHWE7PD+zKsTtvu/RoGCz0rc51nc5rrLK8bPItJ2sdIemFExVgKoH9bZVjgt83/c91j03KqjxXb6nrHJ8PDI9vmCV+w0FgxSgjrbK0A2qxfd9r7bue4/vsu2NMeIjI9PDduJ/2v/e160yPFfVff9s3fdi3/f4oFWO5yPToknBBqvcF/S//7hVjut833e4gl7rvuN8l2+eVY7/ikyPk6wy71QwXgFqKKitVjlm+77vh637vlRV+WxH45TI9LjWKvdflG3z3m+VYTO6/fq774+s+97ou2yTrHLsQtv3aPQwhzg84Qnm+RiFGbEe5/s+pyt9i7Wqmg5+rlWOpZHq+wur7L9XgDrXKkMbqAbf9/yedc+7qirbfKss10emxV7W/6FScKUC1I+tMtxT1X1ftO55UVXl+xvVdiZejxlWuXcrOF7VglplleGTvu85zrqnUnZH6ec4EBOVrYtMj29Y5X5TQZOaYpWhF9T+vu/5CeueL1ZVts9ZZXk4Mi1Q8JRV9nsVoL5oleGlqu75c+ue/11V2X5lleVLkWkxSkGnVfZPKkD91irDjb7vWatgnXXP9/suWw2oTqssUyKtH/oQhyc8wTwf37EqwuKq7nOr0reZX1VZ4jHiE5WZfvqY+qtVhmuquudq635zqypbPEb841bZt6ux7K92WWV4r+/7HWrdr0vp0bz/sj1A1EYcBT+zyv8X9TFqlQK1AT1t4O9+X7Tu93RV5arBRBOiM+KDFbxulf96dYf1/Q9Udc/fWvf796rK9l6rLG9FWjeOUXZ0qp5T1GqrDJ/3fb9GZZyGGVWV7RqrLD+JVI9/scq+Xh3BcKXQUdlDfN9vlnW/jUqnCfgv2yJLj/Mi1UMf4vCEJ5inYySoDsuIn+n7PnUK3lGgFJxSVXlq0OFPBeqYSDX+NwVKNbJObWGo2gJqhO97HWtpsVXpDsJ/uezcqnci1QIFTypQ6hjuVwrU76u611WWHg9XXS57yvPnkWoxWsEWBUpdw2eVAnVFVfezowJfrrps9pTnRZHqcZZV/i71MocqBWq673sNU9oRVgqmVFWuIehIkwI1LlI9/p8CpUbwsuqiQb0NarDve33Q0mJN1eWypzxfjFSLeqWn4pQ6g3lKgfrfqu43z9LjtqrLZk95fi9SPfQhDk94gnk6zuZSNZ2/qD+xVxX3OUOBUtrpqau6TI/om6kvRKrxIAUrFCh1MT9V36zqXjdZetxbdbkaMNON/kdJfo4jFPQoUOrnfEy9p6p7vWTp8cmqy3WKpcWqSLVAwaUKlBrGZrWYg1ST7/tMUCZnbL+qy/Vflh7/E7keOrdpBovUvTRUcZ9PWlpUl69iH89bepwbqRbDFLQrUOoKrlOfq+pe91h6fK/qco2ytNgNalikeuioTA271aPMqcJuNShos/Q4vepyfdzSY1GkWuhDHJ7wBHN/T0ao0db86Piqck2eVgTUSMGM4qsbGXg/TmOWqrXC04P5Z5/3GaVgm6VH9Y0U4hrFoz7ItxQo1cg2pR0gP/eZa2nRqaqdzoL4RvGN1KnpVj0fyQsK3wMEe8T6RCDlmmtpsTziunE4E9Vwa1XOPtzi8z61yh5kwOWBlCuuUfwHOdf6HUrV8UGf9zlYmeTtdwVSLjvn7X0R63EGP1ag1BDWK/+O/WctLVoVVTnV+phkadFFNasJ/R3i8IQnmKfjAGapWmskD1f4uMfJ1md3KmgJpEwnE/1c/D6g2kFdz+XW7+lSeqWV13vZy42fDaxs9ij+tgj1OAVUL7VqDo9Zv2elgn193MtebnxtYGWzR/HnR6jHf4F6m3FqZP+I827lPTl/PwW7rM/PCqRco+nPflb7RqRFHahnQf2WM5X5ej/ROztXbIOCYOyaPYr/S4R1YyKobaC+wo3W79mi9JYGXu/1M+vzvw2sbHaO1bUR6vExUDsYrI5hqfV7lii9ws/LfQYpPa2nlI6uBlO2tZYeJ0WoB4jDE6ZgPo7PK/oN19c8fK5RmQ7N7yhvz2MvUDusAh0Zkb63Y+a7a7jP+k2dCk7wcJ/JykR3zgqsbKdaZVuLznEKW4u9QP3d+s7r2VeZBOwXlc5ncXuviwt03Cew8t1glS2q/WfeBarH+s6ZzFL0DxBuV4X70VQ+/tf63B8CLd8LVtkujEiPf7G+bzOoIVxj/abdytsKvKHKJD/7GWgVP1owDuDoiPR41Pq+J6hXJj+rXcGRHu5zvDLRnemBle0frLJFtXXBvuj9mBSoLzBJ6WRjpeBPyptTe4X1uVal+5lgynenVbbvRKSHfYjDE55gPg89faGP/1LuMuLnW9evV0FFd+zjQasw/xaBtrZDsRt7I7m9lZ5yUEqv3vqwi/vspczS62A7tEGYJZXHRqCH7VCsQU8haUfubeu3vargMBf3OUrBDuszwXVooEdnCp3IXRuyFnXoLRIUqHv73z9PGafnPqU770r3sgcVPara1TcDj2ut8lW3bYC740BQ263v+xQoHeWy7cBuBV9X7iJfD1ifWaX0pnXBlXGJVb6LI9DjH63v2omdYzdCwXPWb3tHuVvEMVLpZf5Kaac4uPLti9m7ar8I9LjL+q5l2Ft6HKfMhoRLlF4RW+k+s5Vx/i4OtHznWeV7OQItCg9xeMITrIrD9qrtKZmjS1zXoHRExzZy7wu8LJ8hmtD0OEyY8/uOvw1W8LsCPW5TpaMbY5XZSG6tgjGBl/M+qyD/GbIeZ2AM5BmOvx2kTIh5h4KvqNIjrxOV2TvjYVXNvkzFjjrMDtRhh6a/a33PRgZGDM5R0G39xlWq/B4hXy649quBl3GGVcYtVLM6qPIxGONM7Llq7/vW71MKHleFO1M7jyZl9pnZpYKMZtiHvUv6gyHXjUMtzRWoyx1/G6ZgcYEe31Ol89cOUbDMum6FCmpqr/Cwd0m/NGQ9PmF9Ty8DB2bvUmbDyi1KT3+WWtxyljIb2N4eeBmHYaK1h4asR+EhDk94glV5nKeMR64ULFB6990TFMxRep+FVwv+HrwBB73CoMv6krAeq9CIMeAvQpGVNw0KrlNmVc1OpR2ff1A6v+d0pY2ZHbbdrOC9oZT1o1Y53ya8/YkKDfiPil4zRsEjBf/3a5XOWTpLaSfnXKVXmdjRj2UqyKmswuNWwp/WskfvilKrft6t4O8FejyndITjZKVzdD6tTEK/7TQHX84azGaIYU5r2aP3DegE0D2v+YwyU7q7FfxKwT8r3SbmKL09wSrr791Kt6Nw6rFCd2xhJbYPB7XC+p6nKLZ7794Kfljwf9+pdCTsPKVtxweUfiSFvefOOuUv76fyYW+G+NcQ68YM6N+vq/j+ZQcoMyhUSu/kfo3SNvREpXfu/nXB359S/hcGlD/szRCjnNYShyc8wQI4xik9CrPDisWOTQrODLUc9nO15odw71pQd2MM+AFlrz9BwaIyWigFLygdBQlHiwZ0UrVC768R9P1H4jTgpXeYrlG6E7OjPaWOO5U2+uHoUfjsN//7JZU+3ovZDuBbZa8dovSW93ZHX+zoUnqzwXC0ALOy8amQ7n8lxomYXfbayQp+U6FutKqwBgb2Ya9svCqEew/C5O2sptKzqs5U2jaU02OhCjoloPAYganLx4dw/4mYKPkDlMszrFM6R7S9gh43qyBWZZU67P2J2q3/yzDroX2IwxOeYAEeExV8U+lpiTcULFc6XP3PKozQ68DD3nNlB6jxAd63DpO81gNqjuvPnqB05/ZnpRMun1f6sRQfUEHsP1TpsFdr/YVgk5fHoLfCV+i8HXcPG6xXelT2E6Vzl1Yq/Qyd76ugltRWOuzVWv6f4VT8OAmzg/EDrrXeV+lpvvuUfrjmy0onal6uqnk+lNtjHCYiOjvge1+B6Y0ucf25w5XOC3xc6bbyotJ25B9UmI6wfdirtTagn28V1H0Ho3c9V+iVWUe7/uz7ld6g8FkFf1PwV6VXZZ2igp7yLXb8zCrzbwO+70HQv7v0i9g5f5WOwUpPa92h4BWlZwyWKB0trm7zSTdHHag3rTJ/MeTvsg9xeMITLFOH/QTk2wO63xBQ91v37Ab1kQT8RrfHKEzy8scCuudkTGTnbevfcf9Ot8fZVrm3g5oQ0D0/hEnKfYxqHh8R/XGLVe4lBJPMXYt57IyCKjfjjPaoA/WKVe6gnkO3L6g/YOpcdA/lrP44GJO7cnJA95yGecjyq0S9u3V1h50j2k44EeKBhzg84QmWqcNOyFTozqiaex2Ozs5X6NHw3AT8Pq+HPXWxkepXXXwEVAcmNH9gAn6f18OeuniS6jr5BnTHqKzjIaLfnKzaY0zB/2e1Uzmj0Q6frcdlCfh9Xo+5Vtl7qeY5cPqYgYlkdII6MQG/z+thb8q4Bp2DVM29PoPJ2VlOdFsABHXUYxziX0bwfeLwhCdY5g57lLkVf4arCZ2HYYf83wb17gT8Lj9HA3rTN4U2NO6mn5zH/pgnKSu0szAmAb/Nz3EgJur1M/w5PbMwU3oKvUvvnkmo6TgutH7DbvSqGa+frwP1WcwquG2gLkjA7/J72BvvrQd1hI/PDwf1/zArF1eCmpqA3+XnGILZeflp3E4/OY8p6BV6yjp+TdSPrQjuOBYd5VeEn8AsDk94gmXuaAC1AJOk+mXcdUjjQH0DvV+Lso4HSd9oZOAxCRNKXoPeR8jN596FXt1kN/Ju9B4uae3c7WMuJlz/BO4iVfWgPoDTeLcT9TOYwjm+X/CbbgTV7OIzw9COzt8LPvscOioa9++p5hiCGSB0oB/P4iYn6wB0bpgdMVPoVWpB5gPFcRyFcWZfwX0S83vQ+zzZjt929AaUUWyEGubx6YL/3/vQG1eG8T1u++8a60XuaW5uprOzk6FDh7J169a4ixM5ewH3AHOtf68B/hd42nq9ExgCTALeBZwMnADUWdf/Hbgc+FVkJQ6XQ4CHgMnWvxcD9wF/AdahG80I4GDg3cBpwGEFn38C+ArwcjTFDZ1zgDvRdaAHeBB4GHgJ2AjUA2OBQ9H14v3AaOuz3cBtwDeAzZGWOhxqgBuAr1n/3gj8AvgDuh10otvTRGAqMAuYAwy2rn8H+DbwA2B3ZKUOjxHAA+jfCbASbUsWAW+i//+bgQOBY9FazCj4/IvAV9H6ZYHpwG+A8da//4DW569Au/XeSLSNeQ/wPrQ2Ng8A/wKsjqCsUfBpYD4wCNiG7mOC/r/20n/H7gUm4chzhKfw+CyoNsquaXQcC9ErNsLauybOYwiomzFTdZWOneil/mmdzqt0TAb1O5daKHQ9+h7R7EAbx3EmOpnUrR7L0dHTvRNQ9qCPOlBfRz8Ow40Wveio8lzSH8UodowE9VPMg3grHVvRC0fC2hMt7mMa+inq7xDOFJ1EeDyS9whPIXsBZwNnoqM544BGYAc62rMSeAp4nOyMQsrRApwPzEaP2EdZ728F3gCWA0+i9eiIvniRcxRwHnp0ehCwDzrqsxF4HViC1uNPQG88RYyMOnTE4kPAccB+6ChYF9AK/A34MzritzyeIkZKM/BhdITvGHTbqUPbjtXAq8BC4DF0pDTr7A9cgI5+HQbsC/Sh7cQb6KjPQnT92BFTGaPkILSNCBq3/bc4PBbi8AiCIAhC+nDbf9dGWCZBEARBEIRYyJTDc8kll7Bq1Sp27tzJ4sWLOe644+IukiAIgiAICSAzDs95553HjTfeyDXXXMO0adNYtmwZCxYsYNSoUZU/LAiCIAhC5ok9gzuIY/HixeqWW24x2dg1Nertt99Wl19+eaBZ3nLIIYcccsghR3IOt/13JiI8DQ0NTJ8+nSeeeKL/PaUUTzzxBDNnziz6mUGDBtHc3Ow4BEEQBEHIJplweEaOHEl9fT3t7e2O99vb22lpaSn6mSuvvJLOzs7+o7W1NYqiCoIgCIIQA5lwePxw/fXXM3To0P5j/PjxlT8kCIIgCEIqqY+7AEGwYcMGent7GTNmjOP9MWPG0NbWVvQz3d3ddHd3R1E8QRAEQRBiJhMRnp6eHpYuXcqcOXP636upqWHOnDksWrQoxpIJgiAIgpAEMhHhAbjxxhu54447eO6553j22Wf5yle+QlNTE7fffnvcRRMEQRAEIWYy4/D83//9H6NGjeJb3/oWLS0tvPDCC5x++umsX78+7qIJgiAIghAz8iwtC3mWliAIgiCkD3mWliAIgiAIgoU4PIIgCIIgZJ7M5PAEhey4LAiCIAjpwW2/LQ6PhS2Y7LgsCIIgCOmjubm5bA6PJC0XMG7cuMATlpubm2ltbWX8+PGSDB0ionN0iNbRIDpHg+gcDWHr3NzczNq1a8teIxGeAiqJVQ1bt26VxhQBonN0iNbRIDpHg+gcDWHp7OaekrQsCIIgCELmEYdHEARBEITMIw5PyHR1dfEf//EfdHV1xV2UTCM6R4doHQ2iczSIztGQBJ0laVkQBEEQhMwjER5BEARBEDKPODyCIAiCIGQecXgEQRAEQcg84vAIgiAIgpB5xOEJmUsuuYRVq1axc+dOFi9ezHHHHRd3kVLNiSeeyIMPPkhraytKKebOnbvHNddccw1r165lx44dPP744xx88MExlDTdXHHFFTz77LN0dnbS3t7OAw88wOTJkx3XNDY2Mm/ePDZs2MDWrVu57777GD16dEwlTief+9znWLZsGR0dHXR0dPDMM89w+umn9/9dNA6Hyy+/HKUUN910U/97onX1XH311SilHMerr77a//ckaKzkCOc477zz1K5du9TFF1+sDjvsMPU///M/atOmTWrUqFGxly2tx+mnn66+/e1vqw996ENKKaXmzp3r+Ptll12mNm/erD74wQ+qI488Uv36179Wr7/+umpsbIy97Gk6HnnkEXXRRRepww8/XB111FHqoYceUqtXr1Z77713/zU/+MEP1Jo1a9TJJ5+spk2bpp555hn19NNPx172NB1nnXWWOuOMM9TBBx+sDjnkEHXttdeqrq4udfjhh4vGIR3HHnuseuONN9QLL7ygbrrppv73Revqj6uvvlotX75cjRkzpv/Yd999k6Rx/CJl9Vi8eLG65ZZb+v9dU1Oj3n77bXX55ZfHXrYsHMUcnrVr16p//dd/7f/30KFD1c6dO9X5558fe3nTfIwcOVIppdSJJ57Yr2tXV5c699xz+6859NBDlVJKzZgxI/bypvnYuHGj+qd/+ifROISjqalJrVy5Us2ZM0f98Y9/7Hd4ROtgjquvvlr99a9/Lfq3JGgsU1oh0dDQwPTp03niiSf631NK8cQTTzBz5swYS5ZdDjjgAMaOHevQvLOzkyVLlojmVTJs2DAANm3aBMD06dMZNGiQQ+uVK1eyZs0a0dontbW1nH/++TQ1NbFo0SLROATmz5/Pww8/zO9//3vH+6J1cBxyyCG0trby+uuvc/fddzNhwgQgGRrLw0NDYuTIkdTX19Pe3u54v729nSlTpsRUqmzT0tICUFRz+2+Cd2pqarj55pt5+umnefnllwGtdVdXFx0dHY5rRWvvTJ06lUWLFjF48GC2bdvGOeecw6uvvsoxxxwjGgfI+eefz7Rp04rmUUp9DoYlS5Zw8cUXs3LlSsaOHcvVV1/Nn/70J6ZOnZoIjcXhEQShLPPnz2fq1KmccMIJcRclk6xcuZJjjjmGYcOG8ZGPfIQ77riDWbNmxV2sTLHffvvx/e9/n9NOO00eIREijz76aP/r5cuXs2TJEtasWcN5553Hzp07YyyZRqa0QmLDhg309vYyZswYx/tjxoyhra0tplJlG1tX0Tw4brnlFs466yxOPvlkWltb+99va2ujsbGxf6rLRrT2Tk9PD6+//jrPP/88//Zv/8ayZcv48pe/LBoHyPTp0xkzZgzPP/88PT099PT0MHv2bL70pS/R09NDe3u7aB0CHR0dvPbaaxx88MGJqM/i8IRET08PS5cuZc6cOf3v1dTUMGfOHBYtWhRjybLLqlWrWLdunUPz5uZmZsyYIZr74JZbbuGcc87hlFNOYfXq1Y6/LV26lO7ubofWkydPZuLEiaJ1ldTW1tLY2CgaB8jvf/97pk6dyjHHHNN//OUvf+HnP/85xxxzDM8995xoHQJNTU0cdNBBrFu3LjH1OfbM7qwe5513ntq5c6f6xCc+oaZMmaJ+9KMfqU2bNqnRo0fHXra0Hk1NTeroo49WRx99tFJKqa985Svq6KOPVhMmTFCgl6Vv2rRJnX322Wrq1KnqgQcekGXpPo758+erzZs3q5NOOsmxxHTw4MH91/zgBz9Qq1evVrNnz1bTpk1Tf/7zn9Wf//zn2MuepuO6665TJ554opo4caKaOnWquu6669Tu3bvVqaeeKhqHfBSu0hKtgzm++93vqpNOOklNnDhRzZw5Uz322GNq/fr1auTIkUnROH6Rsnx84QtfUKtXr1a7du1SixcvVscff3zsZUrzMWvWLFWM22+/vf+aa665Rq1bt07t3LlTPf744+qQQw6JvdxpO0px0UUX9V/T2Nio5s2bpzZu3Ki2bdum7r//fjVmzJjYy56m4yc/+YlatWqV2rVrl2pvb1ePP/54v7MjGod7DHR4ROvqj3vuuUe1traqXbt2qbfeekvdc8896sADD0yMxjXWC0EQBEEQhMwiOTyCIAiCIGQecXgEQRAEQcg84vAIgiAIgpB5xOERBEEQBCHziMMjCIIgCELmEYdHEARBEITMIw6PIAiCIAiZRxweQRAEQRAyjzg8giAIgiBkHnF4BEHIPDfeeCP3339/3MUQBCFGxOERBCHzHH/88Tz33HNxF0MQhBiRZ2kJgpBZGhoa2L59Ow0NDf3vLV68mJkzZ8ZYKkEQ4qA+7gIIgiCERW9vL+9973t59tlnOfroo2lvb2fXrl1xF0sQhBgQh0cQhMyilGLcuHFs2LCBF198Me7iCIIQI5LDIwhCpnnXu97FsmXL4i6GIAgxIw6PIAiZ5phjjhGHRxAEcXgEQcg2Rx55JC+88ELcxRAEIWbE4REEIdPU1tZy6KGHMnbsWIYOHRp3cQRBiAlxeARByDRXXXUVF198MWvXruWqq66KuziCIMSE7MMjCIIgCELmkQiPIAiCIAiZRxweQRAEQRAyjzg8giAIgiBkHnF4BEEQBEHIPOLwCIIgCIKQecThEQRBEAQh84jDIwiCIAhC5hGHRxAEQRCEzCMOjyAIgiAImUccHkEQBEEQMo84PIIgCIIgZJ7/D/62DrgOEGYRAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -183,7 +183,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "id": "86846611", "metadata": {}, "outputs": [ @@ -196,7 +196,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGwCAYAAACtlb+kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACEUElEQVR4nO2deZxdVZXvv5VUKmNVEghJZQASkDkMAqGRDiYiQcQWDPoAQQWablp8vLToaxponxFb5UkzpEFom/cQaJ+iqNAoCgYCibRhMEFiEmQQCIRKpcxcSSqpSiX7/bHPqX1O1R3OPK7v53M+5+bec0/t+8vea6+99tr7NAAKQRAEQRCEAjMo7QIIgiAIgiDEjTg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwtOYdgGyxKRJk9i+fXvaxRAEQRAEwQfNzc2sW7eu5jXi8FhMmjSJtra2tIshCIIgCEIAJk+eXNPpEYfHwo7sTJ48WaI8giAIgpATmpubaWtrq9t3i8PTj+3bt4vDIwiCIAgFQ5KWBUEQBEEoPOLwCIIgCIJQeMThEQRBEASh8EgOjyAIgiDkgBEjRjBu3DgaGhrSLkpiKKXYuHEjXV1doe8lDo8gCIIgZJiGhgYuv/xyZs+enXZRUmPx4sXcd999KKUC30McHkEQBEHIMJdffjmzZs3ixz/+Ma+++iq9vb1pFykxGhsbOfLII7ngggsA+N73vhf8XlEVShAEQRCEaBk5ciSzZ8/mxz/+Mb/85S/TLk4qvPnmmwBceOGF/OhHPwo8vSVJy4IgCIKQUfbff38AXn311ZRLki727x83blzge4jDIwiCIAgZxU5QLtM0ViXs3x8mYVscHkEQBEEQCo84PIIgCIIgFB5xeARBEARBKDzi8JSGwch/txPRQhAEoUyI1S8Fk4FNwPfTLkhG+BTQDVycdkEywl3Ae8DUlMuRBYYCLwNPAuXZzbY604HNwD+mXZCMcBWwAfjLtAuSEQ4BjkYPqLOPODyl4BPAaHQH/750i5IJbkVvQfUDpFMD+ALaKf5u2gXJAO8HjgfORLebsnMVMBb438D4lMuSBe4GxgH/lWopRqR0uBmErhvDgYkVy7l27Vquuuoq13sf+MAH2LlzJwcddFCg3x4GcXhKgdPJ+evUSpFNPpx2AVJmiuP1HCqZtXJxjOP11amVIjsc4Hh9eWqlyCbvT+WvjgB2pnS4rcMwx+v9K5b1+eefZ8aMGa73FixYwIIFC3j33Xd9//awiMNTCk5wvD4prUJkhGHoaIbNcWkVJCMc63g9CJnWmu54fXhqpcgOTgew7HpM7vfvw1IpRXYY7njdSKVprf4Oz2c/+1kOOuggbrrpJgA+9rGP8eqrr/L6669zxRVXxFxeebRESXB26v0bbdnoP988pdqFJWF6v39PAV5JoyAZwdnBT0TXlb0plSVtmnB36mVvK8f0+/eBqZSiCxiZyl/Wf9swvN+nTcAu1zvPP/883/72txk5ciT79u3jW9/6Fl/5ylfYsWMHgwcP5rbbbuNDH/oQnZ2dvPTSSzz88MNs2bIltvKLw1N4hgH7Of5ddqPV30iV3QE8pN+/y14/DnW8Hgy0Am0plSVtDgSGOP4tdcNNenoEe5JU1Azt9+8h9Hd4li1bxt69eznxxBM588wz2bRpU9/DP0855RRWr17NunXrAPjVr37FRz7yEX70ox/FVmJxeApP/7nV0ejxwc4UypIF9uv377IbcdHDTSU9yurw9NcinYhGdpC24qa/+9A04Iru7m5WrFjB+eefz5VXXsnHP/5xlFIATJo0ibY207bee+89Jk+OdwAqOTyFx3Z4OoBO63WZoxq2Hq9Z5zJrAcaI23qU2YgPBsZYr209ytzJ928rzUBLSmXJAnZbsR/iWea6ASY1YLd1HujwgJ7WmjdvHk899RRPP/103/uVnollO0NxIQ5P4bEb6Sb0XitQ7k7e1uMP1nkS5V6a3l+PMjs8YxyvV1rnMuth14216L14QPQAaSs2doTHnsYaUvGql19+md7eXv7hH/7B9X5bW5srojNlyhTa29tjKKdBHJ7CY4/SNmFC82VuqLYer6CTUYdQ7v1FxIgbbC22AWus16KHdnbswVKZoxr928pEyp0VYv92O6OocoTnkksu4e677+b11193vf/iiy8yffp0Jk2axKhRozjnnHP49a9/HV9xKff/VkmwO/jNgJ39LhEe+DOwHq3FFPSUXxnpb8SlQ5MO3qa/HschDiDoKa0edAc/ER0BKxsNmMi4HeExDk9DQwMHHHAAV1xxBUcccQRz584dcIe9e/fy5S9/mWeeeYZBgwZx8803s3nz5gHXRYk4PIXHOaW13npdeVfMcuCMeLWjHZ7W9IqTKkMwORmrrfMY6/09aRQoZZwdvN1WxqVUlizg1MPuzA6ocm0ZsPXYiB4wTUHXjzI6PLbroNCP6XG+Bx/84Ad5+umnefXVVzn//PPp7OzsfwMAfvGLX/CLX/wi1pI6EYen8Dg7+I3W6/6rDcqE04hvsl6PTaksaWP/7n3AO9bZ3i7+z2kVKkWc0VB7pCltxe3wiB6mfkyhvHrYrkOvdTjfgyVLljB4cPaeryU5PIXH6fDYU1plbaTg1qPsnZr9u7eijdbWfu+XDWc0tOx1AwZ28M73yojoYbCdmb24N+bMnpPjRByewjPGOm9BGimY3y56uA248yx6iBYgejgZiYlyiR7uCI9CR4dBHB4hZUZZ5+1IIx2EefxdJxLxsvN37Pn1steP0da5E6PFKKqtPik+th7bMG2lrNO/Y6zzHnSSbtlthzPCA5WmtbKIODyFx3Z4diJGy/ms351IB2/XjR3Wuex62E8o2oF2emxjXtb24tRD6oZG2orGdh3syI7dViTCI6SKs1NzNtIybrZna7EXvTuorUfZOzT7MSNlN+JOPRQyincOlqRuaKStaCTCI2QSZ0O1Dfhg9DbxZUOMlhuJ8LgRPdw420vZtZC64aZ/hEccHiETOBvqbswmUWWMaojRciMOoBvRwzAYGGa9dkaHRzjeLxNSN9zIlJaQSaShGvprUfYpi2p5CWV0hkHyNJyMdLzeic5pskfxZawfYkfd2K6DTGkJmWEQYsSdVIvwjKXcOU1ixDWih8G2G3sxO+mWeYAg0WE3diRHprSEzOBclWQ3VDFaAyM8gzFLtMuEjFrdiB6G/h08lFsPqRtuZEpLyBx2I92Hzt+Bck9b9I92dWMMWBkNV7VR6/4Vri0DooehfwcP5e7kqzk8w3APLMuCt6TltWvXctVVV7ne+8AHPsDOnTs56KCDYi1hJcThKTSVRmkS4XEb8a3WeTTlo78R32adyxjtAtHDSf/BAZS7rfS3HTswnX0a9WNESodN/2XplSM8zz//PDNmzHC9t2DBAhYsWMC7774b8LcHRxyeQlNplGbvqlvmZelOI27rIZ1aubVw7sItelQeHGy3zmI7NGnVjxHo/5c0DruNeJvS6u/wfPazn+Wggw7ipptuAuDhhx9m8+bN/OQnPwkuhw/E4Sk0lSI8YsQrO4Cih9FiKOV7nEL/Xbih3HWj1mBJ9NCUWY9qDo/bpXj++ec56qijGDlyJMOHD+db3/oWX/nKV9ixQ/dJd9xxB5/73OcSKTFkPaVaCIl08G4qjdJk1OoO09u0ABuTLU6qOPPd7L2qpG7IYMkmSxGvLtzbBiT9t2HgsvTKDw9dtmwZe/fu5cQTT+TMM89k06ZNfO973+v7fPHixcyaNSvOArsQh6fQiNFyIw6gm/71Y5/1ehTldXikbmikrbjJmi3tqn9JrPRflm47Pg3WoQDo7u5mxYoVnH/++Vx55ZV8/OMfRymVbFEdyJRWocnSqCQLSKfmplanVrb6IR28G2krbkQPN/2ntPY5PhuYxzNv3jyeeuopnn766SQKVxVxeAqNvQX8Lsd7ZW6kdp6Gc3RUZj3EiBtECzeihxtxiA1Ot8Hp6FROXH755Zfp7e3lH/7hH+IuWF1Sd3g+//nPs2LFCrZt28a2bdtYunQpZ599tuua+fPn09bWRldXF8888wxHH3206/OmpibuuOMONmzYwI4dO3j00UeZPHlykj8jowy3zuLwaMQBdCN6GGppMYzyJXHbtqPS4KBs0T+QtuLEuSt9fYfnkksu4e677+b111+Pu2B1Sd3hee+997juuus4+eSTOfnkk3n66ad59NFH+5yaa6+9li996UtcffXVzJgxg/Xr1/Pkk08yatSovnssWLCAuXPnctFFFzFz5kxGjRrFY489xqBBqf+8lLEb6W7He2VtpFBbj7IZ8cGYFD6pH5U7tO2O12WrH5Xaiq1H2eoGyODRid2v9s/FMSu1GhoaGD9+PNdffz1HHHEE8+fPr3inJ554gp/85Cecc845rF27lpNPPjmuQvehsnZs2rRJ/fVf/7UC1Lp169S1117b91lTU5PasmWLuvLKKxWgWlpaVHd3t7rgggv6rpk4caLq7e1VZ511lue/2dzcrJRSqrm5OfXfH90xX4FScJfjvWnWe9szUL6kj99av/08x3uft977aQbKl+QxyvrdSsEwx/s/s977uwyUMcnjfOt3/6bf+zus96dloIxJHt+1fvdXHO+dZr33egbKl/TxlvXbT3G89zXrve/E+rcPPvhg9R//8R/q4IMPzoAOKBiq4CQFJ/R7/0jr/dFq1qxZau/evWr16tXqlFNOieTv1tLBa/+dqRDIoEGDuPDCCxk5ciTPPfcc06ZNY+LEiSxcuLDvmp6eHpYsWcJpp50GwEknnURTU5Prmvb2dlatWtV3TSWamppobm52HcWj1ihtFBkI8CWMRLwMwxyvux2vyzqKr1Q3oLwRQIlouJGIl8Ge0trX730zpbVkyRIGDx7MMcccw4svvphg2WqTiR5v+vTpbN++ne7ubr773e8yd+5c/vjHP9La2gpAR0eH6/qOjo6+z1pbW+nu7mbr1q1Vr6nE9ddfT2dnZ9/R1tYW7Y/KBLbRqtTBgxhxKK8Rd9YN5XhfOng3Za0fMjhwI7bDUG9KK7sPEM2Ew/Paa69xwgkncOqpp/Jv//ZvPPDAAxx11FF9n/dft9/Q0FB3LX+9a2666SZaWlr6jmImOVfKS+jBjOjL1lDFiBvqRTRED43oYbC1GE75tnAT22HovyTdRhweT+zZs4c333yT5cuXc8MNN7BixQr+/u//nvXr1wMMiNSMHz++L+qzfv16hg4dypgxY6peU4menh62b9/uOopHpQgPyCheRmnSwfdH9HBTqa1IErc4PFB/SisTbkVFMlmyhoYGhg4dyttvv017eztz5szp+2zIkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a8pLpQgPlHfuWVZpGWQKx001PaStGPZi9qEpkx5DHa+THyzZMxWNjVmJqlWb0qr8eImosH9/mJ2aU1fwm9/8Jo8//jhr166lubmZiy66iNmzZ/ftxbNgwQJuuOEG3njjDd544w1uuOEGurq6+OEPfwhAZ2cn9957L7feeiubNm1i8+bN3HLLLaxcuZKnnnoqzZ+WAWTU6qbWqLUF55boxada3ZAO3k1Z20qt+jGScukx3PE6+QjPpk2bADjyyCN58803Y/1b3khnSuvII48EYOPG4I+8Sd3hmTBhAt///veZOHEi27Zt4w9/+ANnn312n7Ny8803M3z4cO6++27Gjh3LCy+8wFlnndX3tFWAa665ht7eXh566CGGDx/OokWLuOyyy9i3r/9/SNmQUbyhATNSq5bEPQp32L7ISAfvRlZpuallO1opV/2w68ZeoNfxfjJ1Y+fOnSxevJgLLrgAgFdffZXe3t4634qTscAEtOPbXeH9EUQ5cGxsbOTII4/kggsuYPHixXR1BX+OWOoOz9/8zd/UvebGG2/kxhtvrPp5d3c38+bNY968eVEWrQBIp2ZwhqWdenSjE7mb0HqUxeGp5wxLB68pY1sBsR1O6qUGjEB3pfE5Iffddx8AF154YWx/wzvNwH7oXbg3ON4fCYxD15nq+bNBWbx4cZ8OQUnd4RHiRDo1gzMsXUmPcWgjXsTtCSohHZob0cON6GGotvijfxL3lthKoJTie9/7Hj/60Y8YN24cDQ0N9b8UG58DbgB+Afwvx/sfBO4BVgJXRvbXlFJs3LgxVGTHRhyeQiN5GgZbi17MXLON0+EpC9KhuRE93EjEy1CtbuxB6zMcrUd8Do9NV1cX7777bux/pzY9aE06gXcc779tvd/S7/3skMlVWkJUiNEyVNMCyh3xqrUqKc1RZNLIKi03ktNkqDalBeW2pfkbHIjDU2hk1GqopgWUs1OrVzdAJ3GXBWkrbiQ6bKjWwUM560c1BzD7WojDU2gkh8fgJcKT3YYaPdWM1m50qB7KqYdENGAIZmlx/jq16Kk1WCpj/ajXVkaS1d2WxeEpNDJKM3gxWmXSw8uotUxGXKZ/Dc4Hy0rES6a0+uM1iTt7iMNTaEZYZzHiEuHpjziAbmRKy+B0eLr7fVZGPWoNDso8eOxvS/c43hOHR0iUJsdrMeISlu5PLQewzEa82qi1mfIkccvgwI0MDtzkN6dJHJ7C4iUsLR28JtuNNB7EiLupN6U1CJ2bUAZkcOBGprTc5HcBiDg8hcW50V5Pv8/K3Ej7h+gh6400HsThcVNNj12YHXTLoofUDTf5jWjEQ34dQHF4Ckul50bZlLGDr6VHthtpPEin5kb0MEjOihupG27y6wCKw1NY7A6+UkTDrpRNuJ8xVWS86JHNRhoPMm3hRvQwyODAjdQNN/m1peLwFBY7ablSpdzheJ3Nihk9+W2k8WDr0X+6E0SP/pRND2krbqRuuMlv/RCHp7DUqpT7cK8+KQP5baTxUMshLtu0xRDHa9HDW1spUxK3tBU3tepHtvUQh6ew1KqUkPWKGT219LAjXmVx/sCb0SqLHs5pXdHDdPCVIhq7MA/fLYse0lbceNEjm4+lEYensHh1eMrSUGuFpcumBYgRdyIOj5t6tqNsAwRpK27ya0vF4Sks4vC48RKWHgY0JlOc1BEjbrC12AOoCp+XVY96tiObo/jokbbixostzaYe4vAUllpeOMgozYnzGTBlM+KV6kdZ64a0FY0MltxIW3GTXwdQHJ7CIqM0N7X06MUsOc1mQ40eL6M0qRuasupRzQHMdqcWPV7aShPu5PciIw6PkDlqNVLIesWMHhm1usmv0YoeaStuRA83XqPDZdCjAePY5S/iJQ5PYZEO3o0kYroRh8cgbcWNtBU3tfTYS9afEB4tzodS5y86LA5PYREj7kbC9G7yu7Q0eqRuuBHb4Ub0MOR7RaM4PIVFGqkbr2H6snTytfZasbUoy+Zy0lbcSE6TG3GIDU6HR5alC5lBjLgb0cMw2Dqgsh5d6N24oRx6yBSOm1rOMJSrrUD9wVKZ6ocfO9oQf3F8Ig5PYZGltm7E4THUC0tDueqHRP/cSFtxIxEvg1dnGLIYHRaHp7CIEXcjRtzgxeEpU/2QuuFG9HAjehjqabGbLD96RByewiKN1I1MWxhsLfZhjFN/ylQ/JEfDjdgON6KHoZ4WkOXBkjg8hUUaqRvp1Az1on9QLj28tpWhlGNzOZkOdyO2w+DH4cmeHuLwFBZxeNzIZmqGfBut6PEa/YNy6CHT4W7EdhjqOX+QZT3E4Sks4vC4kcRDgzg8burpUbZHj4jtcDPMOst0eN6jw+LwFBavYekydPAgRtyJF4enjEbcy6i1DO1F2orBOYUpeuR9sCQOT2HxarRkczlNdhtp9PgJS0sHrylj/ZC2Iisa+5PvwZI4PIWlXuhxJ2ZzuTI1VEnEzHtYOnrE4XHjZ+PB7G0uFy31dhaGctWNfA+WxOEpLPn2xKNlENBovZZRq3Tw/RE93PhJ4i56dNjWohczQOxPmepGvgdL4vAUFjHihnpP+IXyaAFSN/ojeripp8cuzP5N2RvFR0u+O/joyXdbEYensOS7YkaLzMO7kbrhxkvSclmioSD1w4lEyt3ku26Iw1NY8l0xo8Xp8Oypco2txTDM9FdRyfdeGtGT791jo0fqh0HsqJt86yEOT2HxYrTKMjKxtdhd45oybS7nJUxfpm0L8m3Eo0emcQziDLvJdzRUHJ7C4sdoFb2henH+yrS5nHTwbkQPN6KHwU+0qwl3vmARybcDKA5PYZFRmsGLFlAePaRDcyN6uJG8FYOfaCgUX498txVxeAqLn91js1cxo0UcHjdSN9yIHoZBwGDrdT73WokWLx38XqDLel30+pHv/K7UHZ7rrruOF198kc7OTjo6OnjkkUc4/PDDXdfcd999KKVcx3PPPee6pqmpiTvuuIMNGzawY8cOHn30USZPnpzkT8kYYsQNXrSA8unhdZRW9M3l/Iziy1I3IK+j+GjxOlgqW/3IZ91I3eGZNWsWd911F6eeeipz5syhsbGRhQsXMmLECNd1jz/+OK2trX3HOeec4/p8wYIFzJ07l4suuoiZM2cyatQoHnvsMQYNSv0npoQ4PAa/Dk/RR61+6gYUf3M5eZaWwenwiO2QwVJ/8t2vpL7+9qMf/ajr35dffjkbNmzgpJNO4tlnn+17v7u7m46Ojor3aGlp4YorruCzn/0sixYtAuAzn/kMa9eu5cwzz2ThwoUDvtPU1MTQoWa5cnNz9v5zwiGrtAxitNx40cPeXG4wupPfUePavJNvIx4tToen2hYOUD49ZLCk8bNKaxQ6OqxiLZEfMhf+GD16NACbN292vT979mw6Ojp47bXXuOeeezjggAP6PjvppJNoampyOTbt7e2sWrWK0047reLfuf766+ns7Ow72traYvg1aeF3Hl6MlkYcQDeih0HaihvRw43oYXBGh7PlAGbO4bntttt49tlnWb16dd97jz/+OJdccglnnHEGX/7yl5kxYwZPP/00TU1a/NbWVrq7u9m6davrXh0dHbS2tlb8OzfddBMtLS19R7HyffyGpbNVKaNHjJYb0cONODwGL5FhEGe4P2WpH1702I3e5gOy1rekPqXl5Dvf+Q7HHXccM2fOdL3/0EMP9b1evXo1y5Yt45133uFjH/sYjzzySNX7NTQ0oFTlcFpPTw89PfUqcV6ReXg3YrTciB5uxOExyBSOG2krbvzoMRatR3usJfJDZiI8d9xxB+eeey4f+tCH6k4vrV+/nnfeeYfDDjus799Dhw5lzJgxruvGjx9fNe+n2Mg8vBsxWm5EDzd+8hKKvrmc1A03Mv3rJt/1IxMOz5133sn555/PGWecwZo1a+pev99++3HggQfS3q49x+XLl9PT08OcOXP6rmltbWX69OksXbo0rmJnGLtS7qF2wlg2K2X0yKjVTb6NVvT4zUsosh5SN9yIHm7yrUfqU1p33XUXF198Meeddx7bt29nwoQJAGzbto3du3czcuRIvva1r/Gzn/2M9vZ2pk6dyre+9S02btzYN53V2dnJvffey6233sqmTZvYvHkzt9xyCytXruSpp55K8+elRL4rZfSIHm7EAXTjRY+96JVrw9F6bIq7UCkhbcWNtBU3+d6XKHWH5wtf+AIAS5Yscb1/2WWX8cADD7B3716OPfZYPve5zzFmzBja29t55plnuPDCC9mxwyyVveaaa+jt7eWhhx5i+PDhLFq0iMsuu4x9+/Yl+nuyQZAwbLaWD0aLhKXdSGKqGz+d2nCKrYc4PG5EDzf51iN1h6ehofYurrt37+bss8+ue5/u7m7mzZvHvHnzoipajvH7KAWAEcDOeIqTOvlupNEjerjxo8d4iq2HDA7cSFtxk++IVyZyeISo8Vopu9Cheih2QxWj5Ub0MAxxvBY9gnVoRX70iLQVN/nWQxyeQuK1UkI5Rmpep3Cy2UijJ99GK1q8buEA5WgrfusGFPvRI9JW3ORbD3F4CokfhyebFTNa8t1Io0f0MPhxeMqkR73pcOfmcmXQQ5xhTb5thzg8hUQcHjf5nneOHtHDYGuxDzO9W40y6SG2QyNtxU2+HUBxeAqJTGm58dtIh+LO7Sga+TZa0SIdvBvRw02+IxrRk289xOEpJGK03ATJSxA9pG70R/RwIw6xoQx1A/Ie8RKHp5AEMeLZqpjR4lUPe3M5KLbhEiNuEIfHjejhxm9bGYJZJFFE8m07xOEpJGK03Igebvzu01QGLSSioZHBkhu/079Q3PoxCLN1nzg8QmaQDt6N6OEm36O0aJG64Ub0cONVj33ofc2guHrkf88qcXgKiRgtNzJqdSObyxm87tEEUjf6I7bDTdHrR/73rBKHp5CI0XIj0xZuZHM5g9fpPZC20h/Rw03R9XA6PHvqXJtNLcThKSTSwbsRo2XwMw+/m+I/ekTqhhuxHW6kfhhsLfZQ/0HTthYjyZKbkZ2SCBEiYXo3YrQMfubhofh6SN1wI3q4ET0MQbSALEWHxeEpJNJI3YgeBj/z8FAePSSioZGcFTdiOwx+BtLdmGmv7OghDk8hkUbqRvQw+JmHh/LoIXVDI3q4EYfY4EcLyGL9EIenkIjRciN6GPzMw0PxR/FB6sYQ3I5jkZC24kYiXgZxeIRMIkbLTZBRmhgtTdHrR5C6AaIHFL9uQLB8yKLq4dd2ZC/iJQ5PIZEwrBsx4ob8G61o8aPHXoq/uZzYDjdiOwxBB0vZGTyKw1NIgoZhi7q5nBgtg0R43IgebqStuJEIjyH/bUUcnkKS/+WD0SKbyxnyb7SiRSJebmRLC0Oj47U4PEWwHeLwFBI/HfwuZHM5J9lrpNGSf6MVLaKHG4kOG/xu4VB0Zzj/bUUcnkKS/4oZLeLwGPI/Dx8tooeboNHhIuohe1a5yX+/Ig5PIcl/xYwWWaVlkLrhRvRw40ePbG4uFx1Oh6fXw/VlcYa9zBxAFiNe4vAUEjHihkZMNZdRmr8cDSi+HtJW3EhOk8FvBy91w032HEBxeAqJGC1D0LB0U7/vFgWpG27E4XEjehhECzf510McnkKS/4oZHUETD6HYekjd0IgD6Cb/o/jokLbiJv96iMNTSMRoGfzOwxd9c7n8G61oET3ciB6GoM5wIzAs+uKkTv7rhjg8hST/FTM6/M7DQzn0EGdYI3q4kbwVQ1CHB0QPyGLdEIenkOS/YkaHXy2g2NMWUjfciB5uRA+DXy32ATut10V0iPM//SsOTyERo2UI4vAUeRQfJqJR5M3lpK1o8t+pRUcY2yF6ZFELcXgKSf4rZnSI0XITtG6AOIBQ7LrRAAyxXoseMh3en/xP/4rDU0hklGYQh8eNXyPejUn2LrIe0laMswN57tSiQ2yHm6AOz0iy4mpkoxRCxOTfE48OMVpuRA83EuEx+N3CAcqhh+T/afIfHRaHp5DIbroG6eDdSE6TGxkcGJwOz56qV7mRtuJG9DD0OK7Nhh7i8BQOmYd3I6M0N2LE3cgybIOtRS96xZEXyqCHDA40+bel4vAUjjDz8NmolNEiRsuNODxugkZ4hmAiqUVB6oYb0cNN/vUQh6dwyDy8m/w30mgRPdzI5nKG/I/go0Xaipv8Dx7F4SkcQRweMVpuxGi5kfph2EdxHz2S/w4tWsR2uMm/HuLwFA67Uu7F/zx8dpYPRkf+G2m0iB5uRA+DaOFGBgdu8l8/ita7CaEqJWinp0jkv5FGi4zi3YgeBmkrbkQPN35X/0LW9Ejd4bnuuut48cUX6ezspKOjg0ceeYTDDz98wHXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkaGCLI76G6Ku7mcjNLchDHiLRGXJQuIHoYwWkh0WNNpncV2aMThcTFr1izuuusuTj31VObMmUNjYyMLFy5kxIgRfddce+21fOlLX+Lqq69mxowZrF+/nieffJJRo8wIa8GCBcydO5eLLrqImTNnMmrUKB577DEGDUr9JyZMkEoJYsSdbLPORdMCwhlx0UNT1PoRpm6A6AHSVvpj6zE64rIER2XpGDdunFJKqdNPP73vvXXr1qlrr722799NTU1qy5Yt6sorr1SAamlpUd3d3eqCCy7ou2bixImqt7dXnXXWWZ7+bnNzs1JKqebm5tQ1CHecoEApWOvze29b3zslA78hyuNa63d9z8d3DrO+sy0D5Y/6eMr6bRf6+M4XrO/8JAPlj/IYZP0upWCsj+89an3nbzPwG6I8zrZ+1+98fq/L+t7BGfgNUR63Wb/rmz6+M9P6zmsZKH/Ux2rrt83y8Z2vW9+5M9ayee2/Mxf+GD16NACbN28GYNq0aUycOJGFCxf2XdPT08OSJUs47bTTADjppJNoampyXdPe3s6qVav6rulPU1MTzc3NrqMYBI3w2KPW0RGWJQuEHcFnromEJIweRa0bIHqA2I7+SFtxk/9oaOas+W233cazzz7L6tWrAWhtbQWgo6PDdV1HR0ffZ62trXR3d7N169aq1/Tn+uuvp7Ozs+9oa2uL+JekhRgtN0ES7bY5XhfFEbbJv9GKDnF43ARpK1D8+pHvKZzoyL8DmCmH5zvf+Q7HHXccn/70pwd8ppRy/buhoWHAe/2pdc1NN91ES0tL31GcBGdxeNwE0aMbk/QtRrz4dQO8PzsKpIPvT9HrR5C2Mgx3/SoC+bcdmXF47rjjDs4991w+9KEPuaIt69evBxgQqRk/fnxf1Gf9+vUMHTqUMWPGVL2mPz09PWzfvt11FIOgRquoIxMx4m7yb7SiQ+qGG7EdbsImcYseWasbmXB47rzzTs4//3zOOOMM1qxZ4/rs7bffpr29nTlz5vS9N2TIEGbNmsXSpUsBWL58OT09Pa5rWltbmT59et815UGMuBvRw02QaYtsGa3okLrhRvRwE0SPfciKVyfZqhuNaRfgrrvu4uKLL+a8885j+/btTJgwAYBt27axe/duQC85v+GGG3jjjTd44403uOGGG+jq6uKHP/whAJ2dndx7773ceuutbNq0ic2bN3PLLbewcuVKnnrqqdR+WzqI0XIjergJY7RGoE1Gb41r84TUDTeih5swejRTXD387PGWrenf1B2eL3zhCwAsWbLE9f5ll13GAw88AMDNN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mAf5XXPNNfT29vLQQw8xfPhwFi1axGWXXca+fV4fr1AUwhqtbFTM6JAwvZsowvSboitOqgRN0pW64UZshxupH4ZsOcOpOzwNDQ2errvxxhu58cYbq37e3d3NvHnzmDdvXlRFyykySnMjergJosde9O7To9CdWlEcHung3UhbcSN6GIY4XgdxeIYAw4FdkZUoCJnI4RGixB61+ll1AsVspCCdWn/EiBtECzeihxvRwxB0C4ed6AETZEEPcXgKR5B5VihmIwUxWv2RML1B6oYbqRtuZLBkCOrwQJbqhzg8hcOO8IjDoxE93EgnbwirRRN6v5WiIHXDjUTLDXbd2GcdfsiOHuLwFA4xWm4k4mVwjtJEj+DO8A6M0Rc9ilk3ILjtyE5EIzqC1g3IUsRLHJ7CEbRiFrGRgqzEcRImLJ0doxUdQQcHCrPXShHrh9QNjTiAhigcnvT1EIencIRtpEMd9ygCYfUokhF3/r+KES/KqDU6pIN3I3oYgjrDkKXBozg8hSNoxXQ+WqNIRlym+AzOnITaz6EbSHaMVnSEMeJFrh9Bo8NFshsgES8nEuERMknQirmPYnZqMkozSAfvphhGPDrCdvCD0Xs1FQWxHYZi2A5xeApHMSpmdEjSskE6eDeih5ugeuzCrGQSPWTg2J/sRLzE4SkcYsTdBE1azk4jjQ6pG25kcOCmGJ1adMh0uKEYtkMcnsIRNKIBWaqY0RE2LN0IjIyuOKkSRQdfpA4tjBEvYt6KOIAG2cLBjSQtC5kkaEQDpKE66cI8FbwonVoxRmnRIXq4icIBLIoeUWzhMAqd11QEitFWxOEpHMWomNEhRtxQjFFadEhEw43oYYhiCweA5gjKkgWK0a+Iw1M4pFMzDMKMsPLdUKOhGEYrOkQPN6KHIcwWDnswTwUvih7FmA4Xh6dwSOKhwTlKk1FrdHWjKGZDOng3YjsMYTp4KN7gsRhtpSiWS+hDwtKGMGFpKJ4eUdQNKM5eK9JW3IgehjAdPBRPjzCLYbLj/InDUziK4YlHgzPx0O8Tj6F4eoSpGz3Abuu16FHMVVqS72YQh8dNFIthhgNDoilOQMThKRzi8BjCGq2idWoSpncjEQ03YjsMYdtK0ab4onCGIe36IQ5P4RAjbpBRmhvRw4108G7EdhikrbgJUzf2YZ7VKA6PEClixA1RjdKKoocYcTdRtJUR6M0pi4DYDkNU0WHRQ5ONiJc4PIVDRmkG6eDdiAPoJootHKAYegwmmi0cijKFI23FTTEcQF8Oz5QpU+IqhxAZMkozhFlZAMXToxijtOgIo8deYIf1ugh6hNlZGLLSoUWHDJbcFMMB9OXwvPrqq3z9619nxIgRcZVHCE0Uz9IqSpg+zMoCkA6+P9KpuSmSHrKFgxsZHLgphgPoy+GZM2cOZ511Fm+88QaXXXZZTEUSwjHMOgfp5Lc7XhehoUqH5qYYo7ToED0MzghPb9WrqlMkLUDqRn9K6PA899xznHrqqVx33XV8/etf56WXXmLWrFlxlU3wjXOPgyAVsxfYab0uQkOVKS03xTBa0SF6GGwtdte8qjq2Fk2YQVeekcGSm2Is0w+UtPz973+fww8/nF/84hf88pe/5OGHH+bQQw+NumyCb8LOw0MxjbhooZFRqxtxeAxhtdiBXn4MaXdq0SB1w00x9Ai8SquhoYGFCxdyzz33cO6557Jq1SpuueUWRo0qyrbz+eKTwGdDz8NDVipmGIYA/wgcKREeAA4CbgaGF8RoheVM4J8AcQA1VwMfCa2FwkQ1xoQtUmq0AN8AJkndAOAY4NvA4IJsWuorM/Xv/u7vmDFjBjNmzOCoo45i7969/OEPf+Cuu+7i5Zdf5pJLLuGVV15h7ty5LF++PK4yC/04A/gp0E4T3wf0CpJ9tb5Sg/w31JuBLwKTGco8IHgj3Wqdh6LD9EHD/ekxCPgtMAV4hKE8BwR3eLZa5zFhi5UaBwFPWq//haFWzSivHp8G7gReYii/BoJrAVqPMeRZjweATwAbGcoCoMx1Yxjwe/QA8t8ZyltAcD22WOcxocsVBl8Ozz/90z/x/PPP88ADD/D888+zbNkyenpMZ3Lfffdx/fXXc//993PsscdGXlihMt+2zt2hR/BgKubYEPdIjwPQzg5AU2g9tqOdx8FoPdpDlS0N/hva2YEoRq35rhsA8x2vw49a869H9LZjKnnV42i0swMwJrQedt0YjR52BB2ApseVmKzQ/UM7PFutc7p1w5fDc9BBB9W95t577+Wf//mfAxdI8McI4P3W62iM1lbrnE+jdarjdU/oKS3QeuyPHpnkz+E53fE6fP3Yap3HBC1O6nzQ8XpvyfWYChxove4J7fxB3vVwtpXwemxxvB4DbA54n/RwLkdSkekxJnB5oiDynZb//Oc/c8YZZ0R9W6EKJ6LjDzswjbQhlNHKRsUMygzr3Imzg49Cj3w6gCdb561E4fDkW4sxwPus11uAnpLrEW3dgKLosYUo9OjFbEw5JkSp0sPWYxtRDpZyFOHxym9+85s4bitU4BTrvBAYYVXKRrrZE/iO+TZatsPzA6KK8ORXjyHACdbrHxPlqHWkdffgtSwNbAP+J+AN1xYO5ZzSstvKz9BTFqBtR5BdeDT51sOuHw8RZcRrFHnUYzw6320fOj+0KIMleZZWzrEb6e+AtVYjbZKIhquRNpZUj+nodOvNwNNEYbS2YXIR8qfHSdZ5GfBmJCsa81s3wLSVpcB6y3YMK2lbGYpuLxBVBw951sNuK68BfyAKB3CrdR4TvFARIA5PzjncOr8CrLUa6dCSNtKxwDjr9VJgm6VHS0n1OMI6rwLeJgqjpTCr+PKnx5HWeSXwlsvhybcRD4pTjzZLj5ElbSvvQ093bEGvarQdnuEl1eMo67wSWEOUEZ7BQHPwgoVEHJ6cY2/3+CdgndWhlbWR2vkZbegF5JssPUaXXI8/4TZajSVNarf1eBNYY9WNQfQSfAVNfuvGcGCS9fpPmAjPyEiSlvOnh21H3wR2AZ2WHvuVNOLl7FfeJgqHZzdmW48xwQsWEnF4coy9dgjgLaDdqpQjStpInR08wCZLj3BGa6t1zp8eTiO+Adht6TE+EgdwTIh7pIPTiL8baTS0BT1yzQ+HWOct1rHe0qO5pHXD6QwDbLH0GFdSPZy24x1MdHh4zm2pODw5xm6k76F952iM1lbrnO8OHmCr1Uj3L6nR6m/Euyw9JpXQIR4BTLRev4mZ/h1GNw2B77rV8XpM4LukgdP5A9hg6VHWaGh/27Et0sFBfvX4E+4Vr5Nzroc4PDmmv9HaFElYOv8dvK1Hp9VIx+S8kQalvxG3IzzROID50sOOaGxGuymbHQn+wfcU34vZMj9fevR3hrdZeowqoTMMA9tKV990eL4jGkEYDBxsvbb12NM3eMz3Pk3i8OSY/kbL7uBHRdKhDQdXYmf2GRjRsEet5TPi/SMaYMLS4YxWPvXo36H1Oqa0xlX8hle2Wucxoe6SNP312BHplFa+6gYMHDzusvQYW0I9DkJvOrEbWAc4H0p9QM71EIcnx9i7pK6xzjscS0uDP8LVfpwC5LGhgtFjt6VHGSM8U63zVswv2FPiCM9U6/x23zsmwhPO4cmnHtOs81vWeWckKxq3Wucx5KlrGYSJaNj1Y3df/l/5psPtuvE2el2mc+AbzuFZh07ASO8xG7FsPCgkg/2MpDbrvMcxat0fs8+nPxTmcQpjgfVhipgYgzARjfes8+6+UVr5wtK2M7zW8V5vJHkJW61zPvV4t++dqCI8+XR4+tePLseU1lCCrsVxPk6hBXeOU3aZgI5o7MWOaJhoaBlXaQ20HSbCMyGUHn8b4rvRkLobfvrpp/Pzn/+ctrY2lFKcd955rs/vu+8+lFKu47nnnnNd09TUxB133MGGDRvYsWMHjz76KJMnT07yZ6SC/Qvf63unvEZ8Atp73wt0WO919xmt8kU0bGfYGK1B7LPGNweUMMdroBEvb1uBgfWju99gKRh7gJ3W6/zoYdeNdZjY9p5IV2nlRwuoZDvs7Sz2cIAV88krqTs8I0eOZMWKFVx99dVVr3n88cdpbW3tO8455xzX5wsWLGDu3LlcdNFFzJw5k1GjRvHYY48xaFDqPy9W+kd4nGH64EYL8thQbeevHWO0ehxh6eA1of/jFPJBrVFaawmNeDU9wreVrdZ5TKi7JMkoTGnFAazUwRuHJ9wUzlbrnB8tIM7BQfqkPqX1xBNP8MQTT9S8pru7m46OjoqftbS0cMUVV/DZz36WRYsWAfCZz3yGtWvXcuaZZ7Jw4cKK32tqamLoUDM32dyc3u6PQRiBaUbRR3i2Wuf8NNSBzp+ZwhlGD2OBTYHuvM3xegx6R5vsU81oAUwUh4cyd/C2Flsw8Zhoc5qmkEc9nA7PXkuP6KKhDZCT6EitwUHeHZ5chEBmz55NR0cHr732Gvfccw8HHHBA32cnnXQSTU1NLsemvb2dVatWcdppp1W95/XXX09nZ2ff0dbWVvXaLGJHNHZgFsZKhMft8Nh6hOvU9mEcwP0C3yVpas/Dh3nop1038qPFYAbmd0Xn8Gy2zvnRo1IHTyRTWpDH+mHr8Z7jvb2OR20E37bArhvpPk7BLwP1KE6EJ/MOz+OPP84ll1zCGWecwZe//GVmzJjB008/TVOTNuCtra10d3ezdetW1/c6OjpobW2tet+bbrqJlpaWviNvOT8D83cgOqNlN9T8OTyV9AjvANqxofwZ8f4RjSa6OaDC9d7JnxYT0V1ODya/K7pRa/4cHjsa6m4rUemRv/pRzwEMrkc30GW9DmeBkqRaDk8RHJ7Up7Tq8dBDD/W9Xr16NcuWLeOdd97hYx/7GI888kjV7zU0NKBU9RBiT08PPT1hwpXpUjmiEVXFtI1W/hpp9BEe0J3aoeTRiJtOzXRoI9C7LO0KdGe7gx9l3TP7bcjWog3npEJ520p8HTzk0QGsrIfbAXyToGxCJyDsh3NThKwyEjPMrTSlFW6wlD6Zj/D0Z/369bzzzjscdthhff8eOnQoY8aMcV03fvz4qnk/RaBWBx/dqDU/RrxexKtMndpotOGCymFpCNMdbcOkheejU6sc0TDRv3C/In8dfC09htId8pfkq61AfdsRLs6dL1tq141tOLc1MVo0k4MoSQ1y5/Dst99+HHjggbS3twOwfPlyenp6mDNnTt81ra2tTJ8+naVLl6ZVzNip10iDzztDHsPSlR1A06mF0yNfnZr9FOwtOKM4WoshlsMTXA9F3vI07Pydda53TfQvmraSjw4NTP2oNliKpq3kQ48GTP0wegzGfhhs2WxpvboBeoelvJK6szZy5Eje97739f172rRpHH/88WzevJnNmzfzta99jZ/97Ge0t7czdepUvvWtb7Fx48a+6azOzk7uvfdebr31VjZt2sTmzZu55ZZbWLlyJU899VRaPyt26kV4ymbEKzuAplML10jzpYdtwNtd72otGi2jFb5+jCMvethG3O3wRDU4yFcHD9Xqh9Ej3ANl8tXBj0NvNrGPgfld+lW5HMBadcM5WNpMPknd4Tn55JNZvHhx379vv/12AO6//36uuuoqjj32WD73uc8xZswY2tvbeeaZZ7jwwgvZscME3K655hp6e3t56KGHGD58OIsWLeKyyy5j3770trCOm3gjPPlqpM4pnGo5TWWM8FTq4AeHjvBA3vSo5QA2WY9hGYyZqPOH3cEPI0xmVJLUcwCHhbp7vmyHXTc2AL197w51vCpnhCc+25EuqTs8S5YsoaGhoernZ599dt17dHd3M2/ePObNmxdl0TJNMhGefDRSW4vN6AfeGcoZ8ao1ShscWYQH8qJHvQ4edJh+C0HYgd5heAhaj/dqX54yjdCXeFrNASyT7ajVVgAa6S3V4LHW4KAhEtuRLrnL4RG00bIX3Mcb4RmLPZedZSpHuxqxq3fZIl6VO3httAZJhMdCt5Vo9MhPJz8B3Sr2ABtdn5QzOlyrrTSymwbKUzeg9uCgwTE4yCvi8OSQVozR+rPrE2O0RhHmP9c5Qzsm8F2SolbCMsioVeM2WhLh0Z3avkhGrfnp5O26sZ7++/5GleBfnLYS7eAg+3UDkrAd6SIOTw6xIxrr6G+0osqm34vZXTj7DbVWwjLIqFVj61GuDn4YZl+RSqPWfSWL8FSuGxDdqjW7bjSSh1hA7WholNO/2a8bUFsPJVNaQhpU3nQQTFSjXCOTWpswwl4a2RvRKq18GK3Ky7CjrBv50cPWogvnI1ggHocn+22l8gge+q/SCr5Sazdmd+H81I/4Ihr5saNQWw8lER4hDSpP4YDtie8p2cikVgJ3NIl2ttFqJg9PTLdHafEZrfwY8XoRjd6SRbzq6RHNXit516Ocg4Nm9P7pUNl2RDM4SBdxeHLIwI2ybHTF3FPSTq1yhCcKLbaid+qArBuuFvRG9lB5pcXeSDq0/BjxehGN3pJ1avX06BE9iHYKx7kAJNvdra3FNkyMTuO2HeLwCIlSeQQP/Y1WWTbbqz2FoxvpcMLEZpy7C2dbD7tubKX/jjBRjtLy5wxXi2hEEw0tgh66fnSXrH7Ush3RRkMHhb5T3NSrG9EMDtJFHJ4cUs+I7y7RlFYjMN56XXmU1t33Thn0qGzAIdopnHxoARLR6E9lPcxQYFeJ6sf+mFR+91MX3YODcAPHPcB2x1/MLtUH0lEODtJFHJ4cUs+Il2mUZu8r0oveLdVgprTsPbnLoEe96F80ozRbi+HWkV3qjVqjiYbmo25AvZyVctkOW4s/o90Sg3sKpxEzTRyMfETLqw+W3LYj+2vvqiMOTw6pF+HZFWmeRj4a6cB9RcwybHt1TnOov2Rv0xbuuetx49VojRrwuR+2Y08V5kWPaqPWHut3hNMjH3VjMNWiocbh2VUiPeoNHPfR3Ze5VwbbUW+wZOeGhtMiXcThyRnV9xWB/hGeMhiteiN4Z4QnXEO140cH1LwqbbyGpcMbrXzpUa+tlKFuVI+G2oODXrqsLr4MevixHeFsqa1Htm1pvcFBdLYjPcThyRl2pdyFzqY3mI32dkVSMfNhtOpFNKC7bwa9DA5gPT3sKZzhhH1oSL70qDf9G01b2Z8sP4ql3i7L0Q8O8lo3THTYth3RRHiybUu9Tv+Gs6PpIg5Pzqg/KoHd1iM0y+Dw1ItoRGe08qGH1yRdKL4ewzBps/US/MNp4XwUS3YTdetNhTvbSjSDg+zWDfAW4RHbAdEODtJFHJ6cUX0EP6zv1a5IR63jgOpPs0+b6kbLTqbdVSqjVa9T29eXtRJVmD67etgP2B0YDQXbiO+OZNS6F5Pzll096nVo0sHbmC0tyhTx8rr6dxg6kTuPiMOTM6pHNEwHH828sz1KayTLCxGrGy3bAdwdcVg620arukMctQOYfT2qG3Cw68euSKKhkIdOrboeUbeV7GsBXiI8u0sT8RpFtV2Wwa4f3VZbgfxGecThyRn1IzxRGa0ezNOHsttQvRjxaBMPs6tF9a3hIb5OLbt6VHeGwdajKzKHJ/udWvKDg6Gh7xQn1fUoX3TYtqOdwM4Bn+r6sbcvHprfPB5xeHJG9QiPbbSiaqSQp4YqU1rureF3Dfi0fKP46m2lAePwaKXCG/Ds14/kosO7MN1mdvVIzgHMflupPTiI2pamhzg8OaN+Bx9VI4WsG/FGTMmSG7WOJKub7VV+pphNXFOe2awbUP+ZcwA7rQjPYML+r+anUxuoR9RtBbKux36YWuDFASz6Ki0v07/R1o90EIcnZ3iZ0oqmQ4OsG63q+4pA9I20k6xvtpes0cq2MwxeBgew0xELK2+nFscIPtt6VN9lGSq1lWimw0cT5ol+cVLbdkTtAKaHODw5o/6UVpReeLaNVvV9RSD6iAZkvZOvXjcgvim+bDp/4CW/qxfYWwoHcDB6gABJ5P9B1vVIdnCwFV3XIKvtxa8eksMjxE7tXZYHdmjhN5cTo+Um2w5gsnrYWuxHVs2Il8EBUAoH0I6G7sH8zxlM/l9ZosNeIxrR1A1F1rctkCktIXNU32UZKlVKKPaoNflGWgwjHk2nZhvwQWT1eWtepnCAUuQ02VrUjobK4EAzMD1AbAdI0rKQKF4b6R6IeHO5bDbS5FcWiANocG62l736MZxa0dA4IzzFqBvRRYezVzfAfwdflunwgXo0YmpClA5gOojDkyOqJyxD/1FrGZ4BI1NabkQPg91WdmJ2kzLE0VaK1cFDORzAWns0laWtgJcNSyFaBzAdxOHJEV4bKZRj1FrbAYxz1Vo29Ug+LJ1dPbw6fxD14CCbm+0lHx3OdgcvbcXQgt5sA2rlu0F0jx5JD3F4coTXDh6iMuJ/ts7jQ90lLpJdlQTQYZ2zp8cYzC8eqMcQTFOP0gG09ZhQ86o08OPwRLfZnl3T8qZHHBGv7NYNSCOHJ7t62FpsodKGpXHUjfQQhydH+DFa0Rhxu5EOJ4tV3O8UTvjN5Ww9WmtelQa2FpvA8Tx0m8ph6TIY8eQ6eNApwZDl+pHcYCm7WjTgffAY3RROXttK5cFB9noDb4jDkyOSn9LahcmAyFZDrb3LMjj1cD4bJhojni0twKvR2gf0SAcfS1uBonRq0UZ4sjdYOgBtP/ZhSukmjuhw3m2Hu25IDo8QO8lPaUFWoxq1d1kGp9FSRB3xyq7Rqj29V74Ovt50J5RDDz8LHqIZxWd3is+uGx3otYYDKWd0ONloaDqIw5MjxIgbnFoM3FcE4h+1toS6U9T4cYYlhycuPbIZ8RqCyTpLdhSfzU6+dt0Apy3tcrxb1Jym5GcO0kMcnpxQe5dl+wqIvmJm04jX3oMHyjbFl84UTjbrBqQdDc1W3bD/d7qBzRWviDunKVt61G4rgzHPu9qNIioH0K4bI8iauyARHiFz2Aa8i0q7LEPZRvF+RmlQ/E4tiNEaQdjN5bKpBaRlxLOpR/22Ui4H0JszDNHq0UXWp/iSjYamgzg8OaF+RKNcK0/8RniKPm0RJMIDUa7iy84U3yhMaZIN02d7CsdvWym6Hsk6PJDPiJdEeIQUkFGaGz9haSi7Hm6j1UNUm8tlc4rPdoY7MZ23mzi2cIB8dmhQrVMrpx62He1Br+MSB1DjtqPhHz2SDuLw5IT0HJ48RzSgLBEvP0YL4jDi2enUZHDgRvRw42fxB8SRxJ0dPfZD7w0O/qKhkM8ojzg8OcHvlFbRc3hq6+HeDh2KbcT3B5qs1+srXuFelg7FdgDT7+CzNcWXfr5bduoG+B8cFHlKy9ZiIybq68ZdN5yPHhGHR4gNifC48RuWLnKY3tZiA9ogDcTWY+CotYgOYP2clbg6+GxO8fm1HdFF/7LXVgZjSuNl+heK7QDWTuCGWg5gHhOXxeHJCekswwbTSIein9iUPvV3WR5otIo8D++3Q4Ni77UStIMfjDs2GIzsOoD1Izxx7cOTHS3Go/+fq29YGmeEJ3t6+I3+Qb4Tl8XhyQnphaW7ga3W62w01Pq7LIvRchOnA5i9UbxfPZyJzeV2iOOa0srOFJ+txXrs2G9/4sx3y2NbidOWJo84PDkh6Kg1mrBjtoy4312WoRzz8OkYrWzVDfCvh/PRI0WbAh6GTkyFanoMdbyOOjrsnOLLhh5hIhrljIYOzP/L8wNEU3d4Tj/9dH7+85/T1taGUorzzjtvwDXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkLsDMPsslw/L8FttMJvLgdZM+LeE7jjmMKxtXD+r6RLumFp+39hUs2rkiSIEY9ej4k1r0qK+huWOp8QFeWztGyypUe6gwP7r2ZDC/CzR1McDmDypO7wjBw5khUrVnD11VdX/Pzaa6/lS1/6EldffTUzZsxg/fr1PPnkk4waZeResGABc+fO5aKLLmLmzJmMGjWKxx57jEGDUv95kTDFOu+gmtEahKmY+tng0W0uB6ahZsOJtPV4r+oVI6yzeRJOdEa8BzORlg097FKkk8PTZp2z4/BkQ49s1Y36Hdpe9CRx1B1a3vRIwhkeCowLfbcoCNNW8hjhaUy7AE888QRPPPFE1c+/+MUv8s1vfpNHHnkEgEsvvZSOjg4uvvhi7rnnHlpaWrjiiiv47Gc/y6JFiwD4zGc+w9q1aznzzDNZuHBhIr8jTg60zmurXuEcpelO3t5crgldMSs7Sl7JltGy9ajv8OzseyfaRroOnTY9GVgVyR3DUL9+xOkA2nVjAtqc9Ia+Yxj2x7SGtqpXDawf0euRjbZiDw781I3+0eHKTxT3Sv71iK5u9KKntSag9dgY+o5hCWI78uzwZDoEMm3aNCZOnOhyWnp6eliyZAmnnXYaACeddBJNTU2ua9rb21m1alXfNZVoamqiubnZdWSV+hGNkY7XxR+1hjHi0fwv500Pu37E4QBuQLvWg8jClKetxZ+xd2CqhK1HHPUjW3WjfodWXQsoXnTYewc/sK0ULeLViGmx9fuWOBzA5Mm0w9Paqv87Ojo6XO93dHT0fdba2kp3dzdbt26tek0lrr/+ejo7O/uOtrbq48G08ddITRpvUUet3o14XBGe7OgxFL3UFvxN8UWnh8KE6tPXo37dgHgjgNmpGxCsg+/B7OcUnR7ZmPIM4wAWzXZMQjsAPegBQmXidgCTJdMOj41S7rU4DQ0NA97rT71rbrrpJlpaWvqOLCc5e4/wdLneLboRD9LBF22UZteNLmBz1auqO4DR6JGdUbw3h6d6pxZdRKMlkruFxbvt2Ol6t6jR4TARnmgdnvQdQKcdrd5Txj14TJZMOzzr1+sVMf0jNePHj++L+qxfv56hQ4cyZsyYqtdUoqenh+3bt7uOrBKkkUIcDk/6jbQBYzr9RHjsaFcjUWwulx09/EU04gpLZ0eP+h18E2bdYhw5PDswS7HT1yNIjgYUc7A0FvNrq8fz457CyY4eYQcH4vBEzNtvv017eztz5szpe2/IkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a/JOkIgGxDFqTX91wQFWKfZRa2VB9Q4eimXE63fwUKYpPu9TFlCGaYsg078Q12CpIfTdwmBrUTu/K+4pnOxEQ73ZjjgT/JMn9VVaI0eO5H3ve1/fv6dNm8bxxx/P5s2bWbt2LQsWLOCGG27gjTfe4I033uCGG26gq6uLH/7whwB0dnZy7733cuutt7Jp0yY2b97MLbfcwsqVK3nqqafS+lmREiQpFaKsmHvQZmI8aa8usLVYT631QANHJfbmcqPQelTeodkr2TFa2Ril5bGD78FZg6LX4yjS1qMJsz2m3whPtBsx7gOGoIcr1bNF4iZsW7Gjw7sJQ57aCsQ7/Zs8qTs8J598MosXL+779+233w7A/fffz+WXX87NN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mDH7NddcQ29vLw899BDDhw9n0aJFXHbZZezbV3nz8DwxHL3UFtIMS4NuqLbDsyKSOwYhaFIqaD1GEWVewgS0Ia/8yM4kCJukW7ScprDTv0XSw/7ru/CX3wVR6tGLdnJa0VGe9ByeoBENpzLNlM3hiTunKVlSd3iWLFlCQ0PtUOeNN97IjTfeWPXz7u5u5s2bx7x586IuXurYlXI7JjNgIHEnLYNuqO8n7YZaP9oF1fSIbtS6ER0UH4reNfXd0HcMStAprWjD0tmJeAVN8C9inkbQ/C6Iw3a0ovV4OZI7BiFoRCPa6LBdN8ah7Uf1ybW4qa/HYMyjRySHR0gAbx18eUat9fOZIP4kbshKJx+0U7O1GEkURiAbScvO/C4/mw5CMaf4/HXwoocmblu6BfOYhnTbi7/93YqRwyMOT8bx18HLqFWTVMQLsq9HA7XC0hDlFF8zaZpBW4sOak0yJlE3suEMhxksie1IYrCUnsPThNl0sP70716ckag85/CIw5NxvDk85RmlBZ2Hh7hWW6RntLzldw187Aho82U7BeH16AK2Wq/Tqx/Zi4amO4L3ZzviWuEJWXMAw+hRFFvqzO+qvgSlthbRPJg6WcThyTgHW+c1Na9Kah4e0jZath7v1LwqCaNlm80pNa+KE2d+V/VnpTnD0rtcn0Q7ik9fj4Osc7r5XWC0mEiaXYI/PeIcLKVfNxoIN6UVT/04sOZVcRJFagDkL8ojDk/GmWqd19S8KolRmp2Ye1DNq+KkEWMy19S8MgmjZetxcM2r4mSqdV5T8yqnM+zeTzXaTi0veiTRwa9Hx9AaSXOAMNU6v13zqiQGS/bwJL26MQG9pLyXcNPh0djS9PWYap3X1LyqshbRPnokWcThyThTrfOamlclkYhpN9IxwOhI7uiXKejx8i50nkZ1kojwrLHOUyO5WxDsv7ym5lWVO3goqx5JTGkpTLeal04tzsGBXYL0tXiPek9/T9KWpq/HmppX1bcdEuERIqMBE08JMoUTrdHqwizITKehTrXOtbWAZDq1vBityiN4KKsetZ3hIZiFuOGw9Zha66LY2A/T7mtvmhD3Lu2g3Yx96Hyy8XWujYep1nlNzauGYqYgk4h4Ta11UazYf3lNzasq21HI79J0cXgyzER0Nn0vtZbZQjKjEki7U5tqndfUvTKJML1digm4E4OTY2q/klQmqQhPXhyeym2l/+Zy4bFLkW5bWUe9nV6SmOLbg0lczrLtGOF4Hefg0S5F1ttK5cEBiMMjxMBU67wWr2HYOEdpkPa0hf1Xa0d4Km+WBVEbra2YrSDTyWuaap3X1LyqeoQnHiM+NZK7+aUZs2ItSDR0H6bLL4IDONU6r6l7ZVKDJbskUyO7ox/sv7qmxjXVHjsCceVDjiat9ICp1nlNzauqR3jyuhePODwZZqp1XlP3ytph+mg2l3OWJMtG3DlKk4hX8hGeyaSxgbv9P7AJ9yqSgdQP00c7xTc1krv5xf6r9ad/k8h3c5Yky20lqSkcZ3rA1Eju6IfBmFVaa2peWT/CIzk8QmRMtc5r6l5Ze+NBKIYR97ZE326k++gfzC/SqHUYesrTWYrKJNXBd6D1Hkway4+nWuc1da9MKkxvlyTLHTwks6IR0rYd9l8NEv2DOG1H8vXDHpL0AO01r0xqsJQc4vBkGG97zoCpdu6xrXNzufIYcbv73jHgk+hHJemNWu1JtO3UejAkJGfEFWnqMdU6r6l7ZXUjHm0nb2txEHr5QbJMtc5r6l5Zf3O5vEeHG/A7WIp7+hey0Fbeof9GFf2pv+BBHB4hMqZa5zV1r2yxzgMfLxptJ2+XZGokd/ODM25Q2wG0tRg4sVGkUav9F9fUvbKyMwzFMuLeOjSopUf0G3XuReeTtda5NnqmWuc1Na8ajOnU3HpEv7lcenXD3oNnL/U22rN/adx2FLLg8NTenwmStR3JIA5PhplqndfUvTIpI2430nG4d/CNnynoMGw3elu36ti/tLrRKkJYemq/ElSnvjNchCk++y+uqXGNpn5biaZT68V0r1mtH85fGnd0OP3BwXv0T0XuT/XBUnw5TVMju6NX7L+4pu6V9W2p5PAIkeAMw9aOaDRZB8TviTsnUJI14lOtc/0wbFLOn10ayHtEo0ij1jV1r0zSAUxHD+978Nha7KbS41bjmeJrBsZGckevTLXOa+pemaTtsEuTh7aShB7JIA5PRpmMDobvod5W6M4qVz1vJe8jk0Otc5gwrP1OI1FtLrfGOk9Cb1mXHIf0K0F10nAAp0Z2R69EoUdRpvimWed2tCtTnepaON+NxiHejdkfPR091tS9srozXJS6AUaPoLmhznfE4REi4X3W+W3q7cFjN9KuilcWZWRi6/FG3SurG63oN5fbgNZ9EEk/CNDW4091r0zSiK+xzsnWjbHoqAbAm3WvLr4DGEXdgOJMeXrXI41o6AEknR5wmHXOlu1IBnF4Mor/RlrbaEW/+eC0WhdFThRGK/rN5cDocUitiyLHu9FKsoO3428Hk+RePHbdeI/+z4PvTwPJ5iXYeqRTN+oPDrxFeKKvH4fWvCpq/OtRvW5E9+iRbcAW63VytnQE5nG2YeqH5PAIkeI9opG00bLH0O+reVXUROHwON+NTg+7RIfVvCpKxqH3Z91HNBGN6IzWOrTL0UiSo3jvzl/1JF3nO9HVDbv1Hh7ZHb3gP8JTua1EP4q39UiurUA0ekQfHQZ43TonVz9sV3Mzxt2qTpL5bskgDk9GiWIED3EYreQbKUTv8ETXySevh1033qPec5IgWaOlSKNT8z/duYdK2S3xtZWDMAsL4se/7UgqOpx83RiF2aAzjB7xRIez3FZAcniExMhuRMNuKoeSVPUZjy7/XrwkLSedl5Ce0apfN8BLku4ootwaL3k9ohocRF83Oqy7DibJaS3/DmDStiO5umFHNDagJ5Fq402PPDuAUdsOcXiESIgqLB19I30XHVcYRlKJurY5eBe9HXptko54ZX2UVn9pKZTFiCcd/YOk9WhBDxAgughP9BGvA4Hhkd21FsE6+OIOlrznMw3DrDyVfXiEGJmITi7rxc/SwaQaqTNzJJmGGtWoxPlu9Eb8EJJK1PUe0YBa9WM3ZiO2PE/xRbGCD+IK0yerh63FeiptUtGfpHN4NmP28UomB9B7Bw/JR7zSayvenWGotd1JdA+mToY8lbU02JXyHSptB9afpCMakJYR99bBJx3xWodemp5coq53PYajp1OgqNMWY9BJ3BAugdv5brRtJVk94hgc5DniFWWEJ77ocGukd62F/yXpO6i01Ws80eH4EYcng0SVWOZ8Nx6HJ39GK55EXbtkyTiA3ketttFyply6ic+IH0wSibp23bDdztokHdGApDv4YBGNJCNeWdYjaQewE/iz9Tr+iNdwzPMIwyzRB53U0NvvyjwgDk8GyXZEA5JebisOoGF/dFQD4K26V9fWwvlJtIm6nWjTEv9+K8HqRlKrkiCttpLN6V8oQnQ4Hgcwfj3stPktmInF6qRhO+JHHJ4MYld9MVqaYDkrxRzFO5ek195kD/wYrbxOW0RZN+x3nU+nC4/dVqaQRKKuPz2KHfEaiX7oC3jRYwg6URfSyfFKrq1EEf2DfCYui8OTQY62zq94unqMda686DJeozWVuJ8hNQm9yV4vXo34aOuc5Cg+OQfwSOv8qqera3dozk/y2qkdZZ1fr3mVjbcOHvKbqGvr8Zqnq4udw3OEdf4zsLXu1c7/8WI6gLbt8NZWJMIjJMAQTNX35vDYTx6uHKSMp1K2o5t/I3Fvi247f2/gJYF7JMYBq7yPaN47+GOss7+6UX1P1bwntdv1Y7Wnq2vrsQ+TB5TH+jEe/UyxvXh1eGrrEW9biT9R11/dGGOdd1Dt6YV5tx3B2srWqlfkcS8ecXgyxvvQXXYn0ObpG96MVvTLB5OZe/YX7bK16KFakm68YemDiHvaIpge1R2eePU4ouZVYRns+AtRODwQdwTwyJpXhcV2ht+i3lPSbdJweDrRi+Yh7voRbHBQPbslz3UDoh8sSYRHCI2/Dg28Gi2I+pm8f7TOx9S8Kiz+Gqn9zOykIxobgI3o5nRUnWvD4W+UZutR34hHq4dduumR3rU/h6CzLnbiZb8q8GPEW6peEYRV1jlePfzZjkGY6d/KesQ3gk+mfvjTo77tiKduvIqesB+LyTiKHqdlitoBFIdHCEzUDk83ZnfiaBvqSut8bKR37U/UEQ0702l01SuCEr8eIzE7/WRbj1fR0wL7Y55kFD123fgjlXYKqUR9I77VOkerh+3wZKmtjMaY/8r1Y6t1HknUW2omazuiiv5ttc5jApanMj2YKE98ehyMjj3vxsvqTvDiAG61zmMClyp5xOHJGP6M1gjMepL6FXNs1SuCkE+HZ6t1HhOwPNWx9Yhv1GqP0DrwsqwUvOhhfxJt3diNmfKMTw//gwPvRjyetnIEcSb529FQfx38Tqo9sGVrhaujIf6I13DMMmx/EZ76zvCYYEWqQfx62HXjVXSuWn28244xAcuUBuLwZIxgHXwvtTaSj6dTs434kcT1SIUJmCRMbysL0urgIQkH0N+IFbwY8Tzr4W+6E9KrH2vRsbQhxJm3EvXgYB8mAjgmYJkqE3/dOALduW2wjvqUw3b4bytp2I74EIcnQziTMKMyWs5Po62Y76ITEJuIy4jbjTSqJEznJ8Mwu25EQ/zTFlFPdzo/id5oJaeHNwewAdNtp2HE49VjHHAA2knxtmVB/Q4N4tLD/h+biJ72jB5pK27yEw2NF3F4MsQhwFB0kPldT99I0+GBuBuq/4iGt0Q7e0v0eML0kzDGIlr8TVmAnym++Eat8YTpB2HWtUSVs+L8JG962HXjbbxsSAleOjSIq37sxGSSxKuH/w6+vjPsrEnRYNeNoyO/s00ctkMiPEIo7A7+VfwmYabl8MQbio1jlAZxGfEd6O4G4jLicYzS4puHt+vGMcRhZqah8zR2AWs8fcP+3+6iWs4KJJHjla+2En/9yNpgqf7gAKJOan8LXS+HEcfmlA34XaEFfqa0xgQoU1qIw5MhjrPOUUY0IIlRfDxGy75rlB2889M86TECvyu0IN15eNuIDyeOZ2rFkYTp/DS+aGhWIhppTmlB3NHh4BGe6vXDmSkZrR6KOJfqH4xeadcNvOnpG0Mwuw3JlJYQE++3zi95/kbaRjy+Dr4Bo8fvPX8rbT3iM+LHoxvrOvSOP/Vx5qzUj/A496iOhn2Y7iZ6I27XjRWev5GVDn4acTx9yNbjD56/keaUFsQ5xdeM2bfYux5p14/4bOkJ1vkVqu0h3R/nr6v8yCKQKS0hJCda5/w5PFOJepefw9DdQhdet8mH7OhxXM2rgmDXjeWev9GCToOHWno4nzgWnx7HR35n/3qkHf3bjNk7Pdr6MQjTqXnXIytt5Vii7oZOsM7vAJs8fysrekTfVk6yzsHqRvX4qTOnqSFAudJAHJ6MsD869AjwsudvHWCda4/542ukWzB73L6/1oW+cY7gvY1KwKz4qG3m4tPDNiknEPVSfdtoeXeG7Q6+Cx3Mrsw+4hzF23qcHPmd/Q8O0o5oQFx6HIGe8tyB1ydhg5ckXYgzT+M1dPJyM1Gv8vRfNyD9+pG/tmJ/Opj87LaceYdn/vz5KKVcR3t7+4Br2tra6Orq4plnnuHoo4+ucrfsYnfwb1Dr+bT9GW+d/1zzqnhDj7+zzqdEetdgRmuCde6oedVW6xy9Hn+y7j6cqEP1/vWwtahdNyDO+hFP3RgPTEE7a96ntOy2Urtu5LGt2M7w7/GazwTp2469mNo8I9I7+x8cjMBMM6alx0toTQ5EP1g1Ovzr4a1udGO2C8nLtFbmHR6AVatW0dra2ncce6yZ57z22mv50pe+xNVXX82MGTNYv349Tz75JKNGRT9PHidxdvD2GC6exdIvWue0HZ7hmHFG7YYanx4K06lFZ8SHYpIw/Rut2nUDTDwsej1WoFdEHYCJX4bHrht2jMAb3hxAW4tmzB7m0WG3lWg7+Dhth61HPLvlZEUPu63sot5wMz49dmJy3qLTYxL6f7oXP4MDb3UDzNxCPPUjenLh8PT29tLR0dF3bNxopnC++MUv8s1vfpNHHnmE1atXc+mllzJixAguvvjimvdsamqiubnZdaRJMKPlzRO31Rrn695eyZrR2o07M2Ug9s6r8egR/Sj+WPQE2QbgPc/f8h7hsevHATWvCkI3Jm00Oj385++An+ifvU9T9EZ8mXU+nCgnifyP4MFr/YivbkAcbWUEZn8m7/XDewefjO2IzpbadeOPeN28FbJhO+IhFw7PYYcdRltbG2+99RYPPvgg06ZNA2DatGlMnDiRhQsX9l3b09PDkiVLOO2002re8/rrr6ezs7PvaGtrq3l93PhfoQVeR/F2I92POP7Dl6MD6QdjGko4DkaXtQc/S/S9RzTibaTRO4DhOrS0jXhW9PBWPxRmFB99/diMWRgcTa6GczWj9w5+GGaRgTfbEW/dOJ6o4mnHo3NK1uGl5ttkpYOP3gGMc3AAcdeP6Mm8w/PCCy/wuc99jo985CP87d/+La2trSxdupT99tuP1lY919nR4f6P6ejo6PusGjfddBMtLS19x+TJk2P7DfVoRo/5wM8S7KGYUaK3KZxBxDFtsYOoQ7F2I10J7PH8Le9GK5lR2nT0eDM84aJ/aTuA8RnxuBzAPEVE34e2H7vw+kgJMHWjm1rLjsGtRfQrcd62/sJQolq5FnfdkMGBm3jbSvRk3uF54oknePjhh1m1ahWLFi3iYx/7GACXXnpp3zVKufclbmhoGPBef3p6eti+fbvrSIsTrPO7+FlGaXdPPbj3AB1IL8bpyUOnlu8Ofh16+fFgolq5lu9Rmm3ETyIKc7MfZgPGl319078eeWgrdofmbzWjf+evkah3F7axp/mi6eTz3cGvRDuh+xHVZp1JDQ5kSismurq6WLlyJYcddhjr168HGBDNGT9+/ICoT5b5gHVeVvOq/niPaEBSnVo0RvxU6xysg087wgOmU/uL0HcaitmKLI4cDYjbaL2KjgKOwmxwHxx7IuhP1ItNOHFGQ9Pu1KJtK7abEFeH1oPJiIt3CjgfesTbVvZgYvzh9ZgITEYnHLzs65tZGSxFT+4cnqamJo466ija29t5++23aW9vZ86cOX2fDxkyhFmzZrF06dIUS+mPv7TOz/r6lvdRCcTdUF+wzqdiNrsLRiPG4fkvX9/0P0obRhx73gI8Z51nhr7TDHR3vR7zpC5vZMVo7cPUj9ND381W9Le+vuU9GgpxOzwvWeWYhH5ccDhsPfxZO+91A+LWw24r4evGGMxmEM/VuG4gWRosRaeH3a/8AT+rGSE707/Rk3mH51/+5V/44Ac/yNSpUznllFP46U9/SktLCw888AAACxYs4IYbbuATn/gExxxzDPfffz9dXV388Ic/TLnk3mjAVEx/RjxYhCceh2cFuiMZTdhpnOPRTsgW/DwHB/zo0WUdEFdDXWydZxE288E2e/6cYcjOFB8YPWaHvpOthz9nOEttZRfGAZwd6k4jMFMWcQ6W4tXjt+hJ90PRe9AEx7ajr+H1f9rGfwc/Cj1gip7F1nl26DsFsx3BoqEypRURU6ZM4cEHH+S1117j4Ycfpqenh1NPPZV3330XgJtvvpkFCxZw9913s2zZMiZPnsxZZ53Fjh076tw5GxyJXv7ahZ+EZTCbU/kzWvGN4n9jvf5QqDs5R/Denhhv40+PeBvqS+j9PPYj7LNxbD38dfBDMOnpWRi1LrbOs0PdZQhmktCfEc9SRAOi0uMv0BHRtej8P+/4cwDj1WM7ZvJ6Vqg7BWsr4Kd+dKLjcxCXHr9B29OjCLvqNZjDYzvD3qKhMqUVMZ/+9KeZPHkyQ4cOZcqUKXzqU5/ij3/8o+uaG2+8kUmTJjF8+HBmz57N6tXeFzOnjd1In8fs/+GNg6yzN1MXvyf+jHWeHeouwY2WPz3ibai9mF8Q3AEcBNibK/gzWlOs8y68pMHbdWMsUT8Qw+ZFqywTCJPHcxJ6e8kN+Hm+GpjIgbddjOKNaEBUDk/w6J8/PZKzHeEGS8H1sNuLt61J4nUAt2IyboI7gC2YdW/+bKmtxTpPV8uUluCL8B38OzWvsonfiNtG63TCdJvB9GjAGPHiOIDT0cHl7fh56jOYXY29abEZs8InHj16MBO2swPfJWlneHzNq8LwHHo1zoGEWY2TlB52HCg+PRZb59mB7zAMk7Dsz+HZD5PJt9bTN+z6Ec2uY5VYbJ2DO4AfQGdTvgm017nWjW07vPUrdt0YR9jszWQQhydl7HnnuI3Weusc7VNanPwBHU1oxiwO9ceh6PJ1E2TFWhO62/Y2MrGNwERff8cPi63zBwmax+NMSPW+5Bj8Gi2FqR/x6zE78B2Cd/D+9LBrUHxahM/jGYxZ3ek/opE1Pew8nkMwds0fM9AWoB14y9c37b/Xgde9iOPXY7F1nh34DnZb8V83/A+ke9GORHwOYHSIw5MiE9Gd/F70lJY//I3i7UYa3/aKClhivQ42MrEb6e+o9XzvSthatOHVNbD1mOTr7/jhJfSM/37oVGz/JDWChyT0WGydZxPEAWwgjBEP1lb2R6dwxsNi6xysrZyASe73N4E/AhPH86dHfHVjB2aIMzvQHcLXDW8dPCShx7PoPJ4jCepWBUvuhyCDJXvwGJ8e0SEOT4p82Dq/jJ8npINeDWVvDe8tDGvPTsdbKZ+2zh8J9G1bj7hHJZCE0dqL6dQ+GugOs61zMYz4i+haPh6ztsg709EOyE78JveD3/qxFR2DgThH8Yus80cIYoZnW+el+E3ut6d+t+F1J6P46wbAU9b5nEDfnm2d4+7gIQk9tmIcQP+2YxhBk/vB7+AAkqof0SAOT4qcbZ2f8P1N24BvwJjm2theeDNx7T0D8EvrPBO/D7FowLhJv/b9d/03UtsBjPeBIr+wzuf6/ubx6M52B373FIFsOoB7MDXdvx52W1mM3+T+Rsz/cpaM+G/R2VPjMJNT3rG7wSd9fzOLHTyYtnI2ej2ed0Zg0nv965HFtgJGj4/7/uZstNOzFnjd97ezWj+iQRyelBiE6eCDOzzeDfhOzHguvoq5Bp3L04jfkcmJ6LH/dvxuogbZnMIBeMw6n4rfGW5bvacxy2C9k9VRWnAH0Nbjcd/fnIzOeOnGz+Mkk4kA/sp67U+PkZgpC/96+K8b9mBpJCauHD2/Q2eSjUbnvXlnNnrqcQ1+nidmk/W2chZ+d/wJ3lZAHB4hFk5Ej+22ESZ/x9t0lk0yUY2fW2d/RtwewT+FnweG2gQ3WhOJ46GINusxW+d/zNc3wxmtrI5af4Xu6E/AzyZzzZgcDf96OJ1h75M/yehhtxV/o/gz0Am6bxFkBO+/buxC5wpBnHoozADBn+0oZge/Al1nR6D/x71j21L/eoxBtzYI4hCLwyNUxdnB+wvRAxxhnd/w9a1kjfjZaLPsjeDTe2CeNf+m52+sR6cFNqFzQ+LDvwPYgtl/x78eU9Ajwj143WcFkqobmzDL07138h9GT3K8jt8VOKCfJw56/O+dZPT4NTp+dxRwmOdvhevgs6xHsGmccHrY2wJ4f3CLrUUrcQ6WIEhE9BC0NdyDyRLzjq3FeryuWAOJ8AgeCNfBH22d/1jzqv4kUzGXWX+pBa8rLsZgshj86zEEY8S9P4yiF7OHRDIO4Bz0tnn1ORM9KfgqfrslMHXjDfy40skZLVuP8zx/I1yHZuvhby1TMnp0YhLbvXdq0ejh78EtySUu7wKm4XWH8sPQ3XQ3ZsmEd1rRuYZ78RMr60APloYQ94Z7TgfQm2tl143/wu9CGIBjrHMW60Y0iMOTAvthHpAZzOGxd6v1VzHtKa0pNa8Ki8J0ahd6+sYcdJbFK/jdIh+0yWtEdx7edkq1sa8OtvOHV1ai4xIj8NrJp9Gh2VpMIK5nBNn8p3U+A695TeEGB8GMuK3HwTWvioL/tM4Xe7r6SGAquoN/pvalFRiMiQ77cwCT0aMLWGi99qaH3Vaexe8DMsG0lTfxsxHGXsw0Trx6PINesTUJr4PHNGyHHUeO145Ggzg8KXA+2vT8Hj+TDjYtmCwcfxEeO2gb/hnN9fh/1vkCdKpjbf6bdf5FzauqEayRgtFjWqC/64fvW+fL6l7ZCHzCev3LGtdVJ5gem9AuI8RtxN9Ep6U3ApfUvXoG2pDuxMRC/BFMD3vqLP668WP0tNaJmGd9V+eT1vlpzANwvXMoOr13J36HFsnp8R/W+bN46Z5sPZJsK5CUHj3o+gFwad2rR6OjwxBWD3/OsG1Hx2IeO5pVxOFJATvu8aNA37ajO22YLsobdiON3+H5LXpKZRTavavOKOCvrNc/rnVhVYJFuyBJPWwjfib1Ar8fRofJO0i2g4ck9XjAOtc34hdZ50fxk1VgMwrjvgVzeCbjJxMtCJsxrr53PYK1FedUuL/de5KrG4+hNZmM2ZmrMpMx67l+EuhvBYv+QRpt5ZPUGzx+Au3OriLIL4KgenRhdmqP3yEOhzg8CTMes7fqQ4HuYHfw/qI74G6k8SbbAdxvnS+redXH0ZktrxNkQzkI08HbKc7xG6230E9BHgx8puaVdof2E/w+TsImDw7Pj9Huy3HoFVuVaSCqwUE7Zp2RNzag90AaRBLTWnan9hlqPZHoGHQMqBszEeYPu0Pz/3Dl5OpGD/Cg9bq2A3iBdf4NfiezbYJFNCBJPZ5DW8dRmHhWZWzbEaytjEBPlkK2bUc4xOFJmE+hTdoLBElIBZPM579SvotOYx1GnDvI2nwfndp3BrW6jHAjVjBGPLgDGPzxjX6wO7XLql4xFJhrvQ5mtCaiA8v+kjBtkjNa29AxG6ilx0z0KH4rQTajhDAjeEhSj8fRKfSt6H1XKnOR42pveyT3J3xE40D8bgsYBLutzKXWzj+fts7B2grkI8IDJkJc3QEch5nOCqbHkWh34M+YRyt7RxweoSLhRqxg0p1/5/ubezG7TcRfMddiFkZ+vuIVozEJqcH0aMEYreW+v51sI/0JOnfiKKrtq3E2WpO1BNl8EUzdeAW/TyODpPW43zpfitn7w43dwT9MkM0XwWyw/3KgbyenRy/wA+v1/6h6VbgRPITRowM9dZFMxOt36Do8Arii4hWHovO79gI/DfQ3DkVvSNFNkMFScvmQ4B48Vs7z+iQ6K+53+Nmcw8kp1nlFoG8nFy0Phzg8CfI+9JzzPoLOOQ/FPIk8WJdoV8xkohp3WuerqDRS+zQ6PyL4nPNfoKvwm/jZRdfmXbTBHE4SEa/twL3W6+sqXvE56/wQfjMsbOzde35b86pqJFs3fo3uaMYAfzfg06GYKYvg0b9weiQbAbwTXRs/ip7qc/MBtP3YSdDk/lZ0d7SPIFudQtJ63G6dv0SlmJI9MbwIPf3on7+0zssJMzg4CO1oxMu7wM+s19dWvMK2HcGdYVuPPLSV4IjDkyB2nONXBJ1zPhHdFXQQZAs2gD9Z5yNqXhUVj6HdmdFop8fNf7fO/yfw/e0OLZjz14sZqR0ZuAx+uM36q3Po/wDNAzGL1r8X+P7hjJa9jeVh1MokiQoF3Gy9vob+qcEXosP072AeK+mP0ZjRcDA97EnBo2peFRVvY7L6/nHAp3Zb+TFBVmeBqRsr8bvYwcbWI5m28h/oHV6m0H+J+hCMi5xWW2lHD2Ea8bNlZBi+bZ0/Tf8F4CegLWEPJk7on3B6JNtWgiMOT0IMBy63Xt8d+C729nzBOnjQ7gd43dYrLArTUK/BucPL6ejuaCdmxt4/4UbwoM0/JKXHO5iETHen9ndoJ+Npgka7wkf/1qATdYdhtnKMlx+gN2aYhF6GbLA7+H9DxyT8cyravP0Js8WkP+y2Un+xeFTYDuCFmARSvdDB3rrhO4HvHa5Dg6RtRw+wwHp9Lc5lFnPREdn16OnOYESnRzL1Yzna9W9ER70Mdlv5KUHi3KDVnIaOMAaL/tlp31PI/tJ0JQequblZKaVUc3NzLPe/DJQC9SaoQYHv80ulb/M/A5djplWONYlp26jgbavc/73v/R9Z5fhu4PsOVbDduu9xgcv3dasc9ySmx3SrzHsVHKkA1QSqwyrH+YHvO8u6b3uo8j1vleNTienxJavcrysYogA1wyrDblDjAt/3m9Z97w9cttFWOZT1Ohk9Hrf+5Hf73vsnqwxLQ913mXXfiwPf41NWOZ5PTIsWBVutcn+y7/0lVjm+Fvi+4+z/VgUHBC7fPdZNvp6YHmdaZd6hYIIC1FhQXVY5Tgt834us+74UqnxrrHLMTEwPc/jov5MvXBaPuB2eZVZl+IfA9xitoFvp2xwZuBxjMEa8JTF9r7L+5AYF+6mJoHqsMhwX+J4ft+75roKGwGX7b1Y5nktMCxQ8YpX91wpQF1tlWAtqcOB73mHd875QZfs/hO1M/B6jFHRYZf+yAtQDVhkeCHXfV617fjpU+d4lbGfi95hplbtXwftVo1UvlFVPgt3zYMc9xwcu25FWObaDakhMj69bZX9bwXB1rFWGPaAmBb7n31r3XBaqbPOssjycmBYoeM4q+wMKUF+2yvBSqHs+ZN3zplBl+4VVls8nqoc+xOGJTzDfx0etirAT1P6B73OJ0rdZHbo8thH/y8T0HaxghVX+f1cLrL+/JNQ9H7Dud3uosqVjxA9RsEuBUg18Uq20yvBPge/XoKDN0uOcUGX7e9Iw4pdZZd+uDmRynzM8I/D9jrXut0tphyp42X5JGkb8h1b5l6rLaFAK1Hp0JDDY/b5s3W9RqHINRkfdFKhDE9NihIJ3rPLfqB60/v6PQ93z19b9/jFU2T5kleVPidaNk5WODivVxEzVZpXhilD67rT0ODFU2W6yynJ3onroQxye+ATzffyWQUqB+pdQ93lYgVJ6xBOuPI/qG6kvJqrxX1rlV2oJf6EUqDMC32uIgi3W/f4yVLkGo50dBeqYRPX4mgKlRvCu2s5ItZkw0yZ2VGCLgqZQ5bKnPNsS1aJBwW8VKHUKDyoF6olQ97OjAo+ELps95XlfonpMUtCpQKmbuUwpUF8Kdb/nLT0+H7psL1h6fDpRPc5XoFQDu9SfOCRkZHh/BXssPQ4JVa4xmGh58IFskOO7CpQaxwq1h8FqDWGc4U9ZP+HN0OWypzyXJ6qFPsThiU8wX8fJzFaH8Zp6iSPU+MD32V9BlwKl4PjQZfpHfSP1k8R1vk+BUsewUv2KESHuc56lxToVZjrLPp6y9PjbRLUYpuAtBUpdyXfV9aHudZelxwOhyzUMM914cKJ6nKD0lItSP+GTIaI7DQpes/QInq9iH2dbWryWqBYoO7dpLJvU8xyshgW+zyGWFnuVnfcR5rjN0uPOxPXQUZmZ/Eb9PxpD3OfvLD2WR1KuVZYef5WoFvsp2KhAqa/yNXV5qHv9zNLjf4cu12RLi15QIxOuH+LwxCeYr2MGTyhQajyrlU7CC3KfbygibKT2KH5dwhofzAGqlXUKlDqAH4a41wuWHuEbKaQ1ikd9hDNVQ194+tKA92lVxhk+I5Jy2YnLyY7iUefyvxUoNYxOBUcEvI89Yt2iIHxbHoMZxQdPoPZ/DKdRnWDV8wP4ndJJ+kHudY9V/McjKVdao/jjOES1WAnMY7k14H0aFfzJ0uOLkZTLznn7VsJ6nMfF1u9QahAfDXifo5U9PaYXU4Qv1xqrULMT1kMcnvgE83XszwQ1mrVK14PHFL5HJ2MUbLO+/4lIyjQMVDdJz8WjngT1G2aqwfRYv+fLAe7zEeu7O1WYFRbOwx7Fv5mgFgeA2gjq63zF+j1dCk4JcK/brO//V2Rls0fx/5agHmeD2sNgNYunrd+zWsFYn/dpULDS+v5XIyvbakuPuQnqcSuodzhQjWWD9XvuU/6jmVMVfW3tA5GUaxJmFJ/UoodGUL8H9UhfZFcpndPo916XWd9drwgVYTbH5VaB/ivBunEoemXWVX2R3c0q2ADhQev7P42sbD+09PhqgnqAODxxChbgOEmZUfjPlL88C7tS/0FFMX1jH8/om6r/kZC+l1p/rwvU/vwP6zf5HWkNUyb5+ZbIyjYKk4x5REJ62IZhGQ2qgZ9bv2mrglN93OdoZerVnMjKdo5VtncS0mKU9bcUqK8xXsF71m96SenpXK/3utL63halVzVGU74FVtn+T0J6zEA7FArUyZyp7Kk+Ha3xYwN+an3viUjL94pVtqS2LrjO+nsbQQ3nJus39Sp/U5ZjlUl+/lJkZTsQ4wDul5Aei6y/+RhNyqzaaldwlI/7/KUy0Z3g23r0P/7aKtsLCWlhH+LwxCdYwOMcZa/M0QZonIfvXGBdH22HBjoJUoFamIC240Ftsv7e/+x73zZcSsE/K72Sq969/q91/XoVZnltpeOJAeWL7/gYxkieCApGKlhs/bZOBed6uM8oBX+0vhNthzYMvaJQgTo2AT3+FRNhGwFKO3Lt1m9bpbyNXk9Upn1F16EB6kzMFHDcK/mGgPqD9fe+3/f+xco4PQ8qb1N1f29d363Crr7pf3zbKt/9CdSNw0Htsv7eZ0DBIGXswF6lB0z1nMAGpaPrSukprWiiO/bxslW+SxLQ4wrrb+0ANQ2U7kdetn5bh9L7cdW7zwRlVnXeH2n5WjFTwBMS0MM+xOGJT7AQx4eV3jTK9sjPV9Ub62XKGPBvRF6Ww/SNVTd686q4fnMjZkSynP77zHzV+n1KwVJVfR65SdkrE7ThjyZXxXlcbRXktzFqAXpEuN76W992fTZcwUKHHv+uqk/ZTVFm5c27ypvz7O+wV/LFHZo+1/xg9WHXZ4crE+nZqeBqVT0y+iFl9vL5TxVlJBS0E9JplfHUmPWwnb8/03/lzwXKrC56U+lN6Krd58uOa/974LJUO07HRFyCrw6qfwxH2wwF6nHXZw0K/k2ZqvO4gvdVuU+zgh9b13WpKBZ99D++YRXkpzHXjWMw9fAa12f7KbOx5F6lcxurRTiPUHoQYQ8mRkZezhetMv5dzHo4D3F44hMs5HG8MhXOzlW4XmkDNkvBpUrvl2F//lPlLfrh//i99Ufmxfh7F1h/oxPU0RWvuViZJeZKwa+U3qhwptIO4v9UZtXNXqU7vujLORG9mZkCdVRMWjgN+O+tf7uvaVLwbYcWXUqPZi9RcJqCs5Xed2iz9fkmFSzvp/5xiVWItwmzM3jtw2nA76h4zUTldgLfU3oH5Y9Z9eOTSndmdvTjJRXlVJbzuJ/4p7Xs0btCO4IDr/lLZXYtV0on7/9PBbOt40plpjiU0k5B9OUcjNkM8b/FqIe9G3sHqCkVr7lKmSndXqVt5d9YOp2p9IDKnsbqVnBhLOW0N0PsRufmxfE39kNHQBWop6nUJkcq+D+O//ttCu5UOon/NKXbzHeV2Z2+TelBRfRltTdDTHJaSxye+ASL4BiqdNRmq8LYuH5Hr4L/paIerTqPq6w/tjqm+1/p+EHn1bz2QAU/UqbjqnRsVDphOb7/l0esP3ZbDPcejN4sTaEN+EE1r5+tTASn2rFM6aTUeLQYBmqz9cfOjuH+49Ebtil0BLCx6rUNCr6gTLSn2vE9pXO84tHDXtm4g3iSdWdhFhLU3oCyRcG/KtPRVzp2K738Oh4twKxsfCqm+8/HOBG1N0g9SsEv6tSNdxX8Rax62Csbr43h3kMxUfI3qbfnz7nKJO5XOxapqFMCnMc4TF0+IUbNnYc4PPEJFuHRorQxf1DpKMYfld6Abb7STkC8f78Fs+le1CtQnM7OfM/fO8T67Y8rHbb/g9L7b1yhwu6Y6+WwV2vtQM9FR3XfRujbIbYHP8+amaX0KqznlM49+L1VVz6q4or6OQ97tVa4ZzgNPCaB+qN177fwumlbk9KRru8pHSF9VcGLSke8op+mqHTYe67Mj/i+H8bkTHnfQXicgmuUXgTxhtKR4t8oHfFpjV2LgzER0ah3bP8qxnb8jefvTVd6ELlI6bayQmlH6GKlp4vj1eMyq7zriXYPmuHoPEuFjoZ62xy1QWkbcaeC31n14yWlV/rNVnEOou3DXpTxs5j/jn2IwxOfYIU6bkRXzFeJbj7+eozBiiNaEuex1Cr3v0d0v2ZMPkw3qE9k4Dd6PVoxHfEnI7rnUZjIzhqS3RYh7PFJTMczMaJ7fgqTlPsrCLHBYPLHv1vl/i3RTHsORi/HV9ZxXQZ+o9ejEdQbVrm/FtE9DwD1G+ue20F9MAO/0+txFGalYRKPMBKHJz7BCnU0Y5Jobw95r7HoZzAp6/jfGfh9fg87IVOhl2eHudexaEdSoTu1j2Xg9/k97KmLPxM+6nURJqL4J+pN62XzeM4q/0LCrdhqAnULpq49QrwJwHEckx3/n/8Y8l6t6NwUW48vZuD3+T3sTRn3gDol5L1Ow+RJbQX1gQz8Pr+HvSnjm8S/Z5M4PPEJVrjD3ndFoR8e6ff7Degk1w7rHrvxE4rO3nG79Tu2gfqLAN8fid551X5Ew7uEN4BpHU3oJzErdKJ1kL1GpoH6OaaOPUV8yZ1xH4ejpzwVqHsI5vScgZnSU+jVeoMD3CcLh73x3l6CPc29EdQX0J26QkfPooompnHYU9fr0Q8m9vv9/dAP39xr3ecV4ltEEfcxGr3oQYFajL3lRDyHODzxCVbIYz7GAN+Dt6XqI9Fz16sc310F6uQM/J4wx1DMaLML1H/HW4c0GdT/Qi/XtfV4mGQfSRDHcSiodkzOzWyP3zsJ1PcwuR7d6HB/Xjt3+/gUJlz/a1BTPXxnCHrl1WJM3WinXjJ/Po5/w+28eclhGYN2dN5yfPcFktv4M66jBTNA2IreO8iLU3yopZ29alGh286oDPymMMeJGGd2Jaj3x/R3xOGJT7DCHv+EGVlsQzs+F6Iz7Q9BjzTmoMPNj2DC2QrUFvSc+5AM/I4ojhGgHnP8vrfQ+218FL28/lD0E5vPQ+dBPevQTqGnsiovLc7ncSQm90aht9K/Bp1XcJh1nIIe5d+JO4Kh0Bs7BhnxZvW4AJPf1I1+EO/laGf/EHTHPRu9F8n/A7XBocVu9DL80Rn4HVEcDZjtJ5T1W+8EdT66jUxDt5mPolcx/Qqzs7lCR0OuIr7tD5I+9ke3D/v3rUYPhM5Et4FD0Tb1fFA3YfatsY+X0Kv20v4dUR1/gRkw7SWe3CxxeOITrNDHbMzOoV6O19Dz90k9VyfJowEd3fmzDz0Wo53Eohhv59EC6juYqbp6Rxd6tUbwJ59n+zgKHeHxWjfaQd2MXqWWdtnjOM4F9boPPVagN/wcuB9V/o9G9OKNbR616EVvrpjsU9eTO8ajHX+Fzk+K+v5e++8G60XpaW5uprOzk5aWFrZv3552cVKlAZgFnA+cAhwEtADdwDrgT8BSYBHwUkplTJIRwCeAs4ETgVZgCLAbeAd4FVgCPAm8m04RE2UicBG6jhwDHGC9vx14C1gBLAaeAjpTKF/SnABcAJwGHAKMBfYAG4E3gRfQejwL7E2lhMkxGDgLOA84GZgCjES3lTbgdeC36LqxOqUyJkkL8Em0JicAE9Aa7QTWAK+gbcdCoCOVEibL+9D9R9R47b/F4bEQh0cQBEEQ8ofX/ntQgmUSBEEQBEFIhUI5PFdddRVvvfUWu3btYtmyZcycOTPtIgmCIAiCkAEK4/BccMEFLFiwgG9+85u8//3v59lnn+Xxxx/nwAMPTLtogiAIgiCkTGFyeJ5//nleeuklvvCFL/S998orr/Cf//mf3HDDDXW/Lzk8giAIgpA/SpXDM2TIEE466SQWLlzoen/hwoWcdtppFb/T1NREc3Oz6xAEQRAEoZgUwuEZN24cjY2NdHS4F/Z1dHTQ2tpa8TvXX389nZ2dfUdbW1sSRRUEQRAEIQUK4fDYKOWenWtoaBjwns1NN91ES0tL3zF58uQkiigIgiAIQgo0pl2AKNi4cSO9vb0Dojnjx48fEPWx6enpoaenJ4niCYIgCIKQMoWI8OzZs4fly5czZ84c1/tz5sxh6dKlKZVKEARBEISsUIgID8Btt93G97//fZYtW8Zzzz3HlVdeyUEHHcR3v/vdtIsmCIIgCELKFMbheeihh9h///356le/ysSJE1m1ahXnnHMO775bhqcbCYIgCIJQi8LswxMW2YdHEARBEPJHqfbhEQRBEARBqIU4PIIgCIIgFJ7C5PBEhey4LAiCIAj5wWu/LQ6PhS2Y7LgsCIIgCPmjubm5Zg6PJC07mDRpUuQJy83NzbS1tTF58mRJho4Z0ToZROdkEJ2TQXROhrh1bm5uZt26dTWvkQiPg3pihWH79u3SmBJCtE4G0TkZROdkEJ2TIS6dvdxTkpYFQRAEQSg84vAIgiAIglB4xOGJme7ubr72ta/R3d2ddlEKj2idDKJzMojOySA6J0MWdJakZUEQBEEQCo9EeARBEARBKDzi8AiCIAiCUHjE4REEQRAEofCIwyMIgiAIQuERhydmrrrqKt566y127drFsmXLmDlzZtpFyjWnn346P//5z2lra0MpxXnnnTfgmvnz59PW1kZXVxfPPPMMRx99dAolzTfXXXcdL774Ip2dnXR0dPDII49w+OGHD7hOtA7H5z//eVasWMG2bdvYtm0bS5cu5eyzz3ZdIxpHz3XXXYdSittvv931vmgdnvnz56OUch3t7e0DrklLZyVHPMcFF1yguru71RVXXKGOPPJIdfvtt6vt27erAw88MPWy5fU4++yz1T//8z+ruXPnKqWUOu+881yfX3vttWrbtm1q7ty56phjjlEPPvigamtrU6NGjUq97Hk6Hn/8cXXppZeqo48+Wh133HHqF7/4hVqzZo0aMWKEaB3h8Vd/9Vfqox/9qDrssMPUYYcdpr7xjW+o7u5udfTRR4vGMR0nn3yyeuutt9TLL7+sbr/99r73Retojvnz56uVK1eqCRMm9B3jxo3Lis7pC1TU4/nnn1d33323671XXnlFfetb30q9bEU4Kjk869atU9dee23fv5uamtSWLVvUlVdemXp583yMGzdOKaXU6aefLlrHfGzatEn99V//tWgcwzFy5Ej12muvqQ9/+MPqmWeecTk8onU0x/z589Xvf//7qp+nqbNMacXEkCFDOOmkk1i4cKHr/YULF3LaaaelVKpiM23aNCZOnOjSvKenhyVLlojmIRk9ejQAmzdvBkTrOBg0aBAXXnghI0eO5LnnnhONY+Cuu+7il7/8JYsWLXK9L1pHy2GHHUZbWxtvvfUWDz74INOmTQPS11keHhoT48aNo7GxkY6ODtf7HR0dtLa2plSqYmPrWknzgw8+OI0iFYbbbruNZ599ltWrVwOidZRMnz6d5557jmHDhrFjxw7mzp3LH//4Rz7wgQ8AonFUXHjhhZx44onMmDFjwGdSn6PjhRde4HOf+xyvv/46EyZM4Ctf+QpLly7lmGOOSV1ncXhiRinl+ndDQ8OA94RoEc2j5Tvf+Q7HHXdcxYR70To8r732GieccAJjxozhk5/8JA888ACzZs3q+1w0Ds+UKVP413/9V84666yajzYQrcPzxBNP9L1etWoVzz33HG+++SaXXnopzz//PJCezjKlFRMbN26kt7d3QDRn/PjxA7xbIRrWr18PIJpHyB133MG5557Lhz70Idra2vreF62jY8+ePbz55pssX76cG264gRUrVvD3f//3onGEnHTSSUyYMIHly5ezZ88e9uzZw+zZs5k3bx579uzp01O0jp6uri5WrlzJYYcdlnqdFocnJvbs2cPy5cuZM2eO6/05c+awdOnSlEpVbN5++23a29tdmg8ZMoRZs2aJ5gG48847Of/88znjjDNYs2aN6zPROj4aGhoYOnSoaBwhixYtYvr06Zxwwgl9x+9+9zt+8IMfcMIJJ/DWW2+J1jHR1NTEUUcdRXt7eybqdOpZ3UU97GXpl19+uTryyCPVbbfdprZv364OOuig1MuW12PkyJHq+OOPV8cff7xSSqkvfvGL6vjjj+9b6n/ttdeqLVu2qE984hPqmGOOUT/4wQ9kaWmA46677lJbtmxRH/zgB13LS4cNG9Z3jWgd/vjmN7+pZs6cqQ4++GA1ffp09Y1vfEP19vaqM888UzSO+ei/Sku0jub4l3/5F/XBD35QTZ06VZ1yyinq5z//udq2bVtfv5eyzukLVOTjqquuUm+//bbavXu3WrZsmWtZrxz+j1mzZqlK3HfffX3XzJ8/X61bt07t2rVLLV68WB1zzDGplztvRzUuvfRS13Widbjj//7f/9tnHzo6OtSTTz7Z5+yIxvEe/R0e0Tqaw95Xp7u7W7333nvqpz/9qTrqqKMyoXOD9UIQBEEQBKGwSA6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwiMOjyAIgiAIhUccHkEQCs/tt9/OI488knYxBEFIEXF4BEEoPDNmzODFF19MuxiCIKSIPEtLEITC0tjYyM6dO2lqaup774UXXuDUU09NsVSCIKRBY9oFEARBiIu9e/cyc+ZMXnzxRY4//ng6OjrYvXt32sUSBCEFxOERBKGwKKWYNGkSGzdu5A9/+EPaxREEIUUkh0cQhELz/ve/nxUrVqRdDEEQUkYcHkEQCs0JJ5wgDo8gCOLwCIJQbI499liZzhIEQRweQRCKzaBBgzjuuOOYOHEiLS0taRdHEISUEIdHEIRC85WvfIULL7yQdevW8dWvfjXt4giCkBKyD48gCIIgCIVHIjyCIAiCIBQecXgEQRAEQSg84vAIgiAIglB4xOERBEEQBKHwiMMjCIIgCELhEYdHEARBEITCIw6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeP4/cZ4Fv1Dm5tcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGwCAYAAACtlb+kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACF10lEQVR4nO2deZgdVZn/P72lA53OAlk6CSFhCwHCYgLEKJBAQEHAiCigzAiOOiriNqMsIyODMjDiCPgjUUdEZHHAEUQRhAAqQSQJEiSEJUEhCdBJd8jWnbWX9Pn9car63Orcpapu7fV+nqeeurldt+6535zznve85z2nagCFIAiCIAhChqmNuwCCIAiCIAhhIw6PIAiCIAiZRxweQRAEQRAyjzg8giAIgiBkHnF4BEEQBEHIPOLwCIIgCIKQecThEQRBEAQh89THXYAkMW7cOLZu3Rp3MQRBEARB8EBzczNr164te404PBbjxo2jtbU17mIIgiAIguCD8ePHl3V6xOGxsCM748ePlyiPIAiCIKSE5uZmWltbK/bd4vAMYOvWreLwCIIgCELGkKRlQRAEQRAyjzg8giAIgiBkHnF4BEEQBEHIPJLDIwiCIAgJp76+nrFjx1Jbm684hVKKDRs2sGPHjqrvJQ6PIAiCICSY0aNHc+211zJ48OC4ixIbTz75JLfffjtKKd/3EIdHEARBEBJKTU0Nn/70p9m2bRv//d//TVdXV9xFipT6+nqmTJnCeeedB8BPf/pT//cKqlCCIAiCIATL8OHDmTJlCj/4wQ947bXX4i5OLLz++usAnH/++dx7772+p7fyNRkoCIIgCCmiubkZgPXr18dcknhZsWIFACNHjvR9D3F4BEEQBCGh1NTUALB79+6YSxIvvb29gNHDD+LwCIIgCIKQecThEQRBEAQh84jDIwiCIAhC5hGHJzc0xF2AhCFVXxAEIU+I1c8FZwPdwD/HXZCE8P+AjcBhcRckATQAS4E/AXUxlyUJTAE2Ad+MuyAJ4VPotjI75nIkhbuBVwH/K4WyQy1wBHBA3AVxjTg8ueAG6/w/yH85wBeB4cDtMZcjCRwBTANOAD4Sc1mSwKeBEcA1wNiYy5IE/gfYB/hj3AVJAI3AhWin+NuxlmTvmA4nzcBgdP0YUrScb731Fp///Ocd782cOZPt27ez//77+/rt1SC9X+44Ne4CxMzogtcz0I02z0wteP2F2EqRHMYUvP50bKVIDoVLgGfEVopkMKXg9cdwahMdewPbYzqcTk/hYy5GU4wlS5Zw3HHHOd67+eabuemmm3jzzTc9//ZqEYcn8zQABxb8e3pcBUkIRw349yGxlCI5HFnwekrJq/JDoQM4ObZSJINROLuIvOtRWDeGofXJM3sVvC7+jK/Fixc7HJ5//Md/ZMKECVx//fUAnHnmmaxYsYLXXnuNT33qU2EWFpBHS+SAKcCggn+Pj6sgCWGgw7Mf8HwcBUkIhUZ8FDpsn69n9RjqcDp9+8VVkIRwxIB/ix5OJgDR7368A2iK/FvNdxsKHZ7ii2IWL17Mf/3Xf9HU1IRSiuuuu46rrrqK7du3U1dXx4033sjJJ59MR0cHS5cu5YEHHmDTpk2hlV8cnswz0MHJu9GaMODfeXcADxzw7/HAG3EUJAGMwzlSzXtbOWjAv0UPJ/uhE/6jx9+TpIKmseB1PToa2Oe4YunSpfT19TFt2jROPfVU3nnnHW6/XedOHn/88bz88susXbsWgEceeYT3ve993HvvvaGVWByezLPvgH/nvYPfZ8C/827Ei+mRV4dH6oaTgXoMHCzkDakfTgau6mxgYHR4586dLF++nHPPPZfPfOYzfOADH0ApBcC4ceNobW3tv7a1tZXx48PtnySHJ/PYDo/9lN28Ozy2Hiutc971sI24rUeejbitxd+s82DyvfzYbisrrHOe6waY+mHrkWcHsDBWsss6Dyp2IYsXL+aLX/wiCxYsYOHChaGXrBzi8GQeu5G+aJ3HkO/A3kA98mzEmzF1QfQwdaPNOkD0AKkbNqKHwY7u7Ebv8QalHJ5ly5bR09PD17/+dcf7a9eudUR0xo8f3z+9FRbi8GSewohGN/q/PM/7i9h62EYrzxEe24DvxEQ18mzEbT02AW9br0UP01ZGUWo1Tj4Qh8dgD5R6MQ5P8cTlCy64gHnz5vH666873n/22WeZOnUq48aNo6mpiTPOOIMFCxaEVmLI91A/J9gd/AZgLTAJ3cm/FVeBYkaMlqFYB5/nMH2hHgo4FtED4HV0muzeaNvxeslPZJd6YKj1epl1znPdKIzw9FivTYSnpqaGUaNG8alPfYpDDjmEuXPn7nGH3bt386//+q/88Y9/pLa2lhtuuCHUFVogDk8OsI3WRozDk9cITw16F12Al63zEPQiz+2xlChebGd4I2YKJ897ixQ6PHbyZZ5zeAptRxt6Rd8o8unw2HajD5MPmee6URjh6RnwHpx00kn84Q9/YMWKFZx77rls3bq16F1++9vf8tvf/jbUkhYiDk/mKezUNlivB642yAvDMCOTt9CdWiPamOXR4Sns4DcNeC+P2G2l0OHJsx4D68eB5FcP+3dvAd6xXg9Fd6G9cRQoZgodnt4B78HChQupq0ves/kkhyfzFDo8m63XeTVathZb0fPOee/kxeFxUhjRED2kfhRSqEUHZr+ZEcUvzzyFU1q7B7yXXMThyTzDrfNmxGjZv9t2/EQPjXRoGtHD0IjZz1f0cNaNPnSkp/D9vFE+wpNUxOHJPPZTbLciRsvWotM65z3iZSdhdmLqRgOlnnycfYZZ50I98l43QOtht5W8RjSGW+cO65x321EY4RGHR0gEgzBLBbcjRssesdr5Onnv1GzHZht6abq9gVhe9bDrxzakbhS2FYXoUVg3QPSwXYc+zJRWLXE9Qd4t4vBkmsKR+nakkRZ28GD0EAdQk/f6UahH3rWw24rUDY20FSfFcngK308m4vBkGruR7kJXyrw3UjFaTko5gKKHaCFtxYm0FSeFER5Iy7SWODyZZmAjzfuUlhgtJ9KpOSnUw24r9ehHcOQNaStOpK04GejwpGOlljg8mUYaqZOBeuQ98bBUXkIeHeJGjLHeho6K7rD+ncf6IbbDiejhxHYdbEdHIjxC7JQapdkbZuUNGbU6kTwNw8B8N8i3HtLBOxHb4cQeHMiUlpAYBjbSLQV/y+MoXjp4J9KpGQrz3Wwjnmc9yiX4J3slTjhIW3EiU1pC4hjYSAs3zMqjwyNLS52U6tT2LXJt1hmoBeRbj1IdfB3OPXryQik98lg3wG3S8ltvvcXnP/95x3szZ85k+/bt7L///qGWsBji8GSaYkY8z3krAyM8W6zzsD0vzQUDjbi9qZp0aBrRw9iObvReTZDP9jLQdsRdN/aO6QAd4bOjfLsHnJ0RniVLlnDcccc53rv55pu56aabePPNN/3/fJ+Iw5Npihlxe5fhPK48GWjEC7XIc5h+oB7SwWvyrMfADh70bu0gtgPirRt7o/9f4jj2xuk2lJ/SWrx4scPh+cd//EcmTJjA9ddfD8CvfvUrNm3axC9/+Uv/cnhAHJ5MUyzCI0bcGHFbi1qMQcsLA3fhBqkbUHxwkEc9yg2WRI98a2G7DargvdIOz2GHHUZTUxN777031113HVdddRXbt2sdv//97/OJT3wi9BLbJDulWqgSMeJOBo7SdqHnnu29VrYV+1BGKXTwxIgX7+AloiGDJZuBttSuG01oB6Bvj0+Exw7iG6DtAAZbrwt3WLZ/vzOGsnTpUvr6+pg2bRqnnnoq77zzDrfffnv/3xcuXMisWbPCLLADcXgyjRgtJ6UcwH3QeqyLvETxYdeNLkzCoW3E81g3pK04kcGSk1JTWqAd4g6iZUflS0JjYMIylIrw7Ny5k+XLl3Puuefymc98hg984AMopYgLmdLKNDIP70TC9IZyHVoe64Z08E6krTgZqEc3erAA+dNj4KaDha/3XJa+ePFivvjFL7JgwQIWLlwYduHKIg5PprFDjzsL3suz0bJXGRSOjvKqh3RoTkQPJ6KHoQGd8waiB3iJ8AAsW7aMnp4evv71r4ddsIrE7vB87nOfY9myZXR0dNDR0cEzzzzD6aef3v/3xsZG5s2bx4YNG9i6dSv33Xcfo0ePdtxjwoQJPPTQQ2zfvp329nZuuOEG6uqSvQFSNOxlncXh0YgDaCinRR6TuKVuOLFtR7HBQd4igIMLXkv98OrwXHDBBcybN4/XX3897IJVJPYcnrfffpsrrriCv/3tb9TU1HDRRRfxm9/8hne961288sor3HTTTZx55pl89KMfpaOjg3nz5vGrX/2KE044AYDa2loefvhh2traeM973sPYsWO588476enp4Rvf+EbMvy5u7Ia6q+C9vDZSKK9HXo14oRY7MUncQ3GOZrOOODxOitWPvOZ47VXwuqvgdV7rR7FVWs6k5ZqaGkaNGsWnPvUpDjnkEObOnVv0To8//jhHH300TU1NvPXWW3z0ox9l8eLFoZXcLnWijo0bN6p/+qd/UkOHDlVdXV3q3HPP7f/boYceqpRSasaMGQpQp59+uurt7VWjR4/uv+azn/2s2rJli2poaHD9nc3NzUoppZqbm2P//cEdf1SgFHy04L1PWu/9NgHli/JosH63UjCs4P17rfcuTUAZozzOsn734gHvb7TePzQBZYzy+H/W7/5WwXvHWu+tSUD5oj5WWL/9hIL3/s1678cJKF+Ux/7W794x4P0nrfc/Eur3T5w4Ud15551q4sSJCdACBSMVTFdwUMF7NdZ70xXUqlmzZqndu3erl19+WR1//PGh6+C2/459SquQ2tpazj//fJqamli0aBHTp09n0KBBPPHEE/3XrFy5kjVr1jBz5kxAb1O9fPly1q9f33/NggULGDZsGEcccUTJ7xo0aBDNzc2OI3vIKM1QGJaWiFfxugFSPyT6p5HpcIO0FSf2Jq2FU1q2TwFQx8KFC6mrq+OII47g2WefjbZ4ZUiEwzN16lS2bt1KV1cXP/rRjzjnnHN49dVXaWlpoauri44O55K/9vZ2WlpaAGhpaaG9vX2Pv9t/K8WVV15JZ2dn/9Ha2hrwr0oCttGSDl7C0gMp1qFBfjt56eCdyHS4oVJbyZsexaa0IA0PEE2Ew7Ny5UqOOeYYZsyYwQ9/+EPuuOMODjvssFC/8/rrr2fo0KH9x/jx40P9vniQvARDMS1A9Bg4ahU9DLYWdZgVfnlBHB6DtBUnxZKWIQ0OT+xJywA9PT39GdzPP/88xx13HF/+8pf5xS9+QWNjI8OGDXNEecaMGUNbWxsAbW1tHH/88Y77jRkzpv9vpeju7qa7uzvon5IwykV4ZASvyavREiPupJgeO9BG3H5CeJybvUVNuYhX3myHtBUnxaa0wDg8iYijFCWRJautraWxsZGlS5fS3d3NnDlz+v82efJkJk6cyKJFiwBYtGgRRx55JKNGjeq/5rTTTqOjo4NXXnkl8rIni2JRjbzOO1cyWnkz4uIAOimlRx7bSx3mOWsS4Yk7OmzvTJycrVZKTWnZDlA45ayv1/GZanZqjj3Cc9111/HII4/w5ptv0tzczMc//nFmz57N+9//fjo7O7ntttu48cYb2bRpE52dndxyyy0888wzLFmyBIDHHnuMV155hbvuuovLLruMlpYWrr32WubPn5+DCE4lyoWlG9GbaeVFI+nQnEgippNyDvFw8qVHY8FrWfBQPFIOUTk8W7dq3UePHs0bb7wR6ne5I54prSlTpgCwYcMG3/eI3eEZPXo0d955J2PHjqWjo4MXX3yR97///f0rs7761a/S19fH/fffT2NjIwsWLOCSSy7p/3xfXx9nnXUWP/zhD1m0aBHbt2/njjvu4Jvf/GZcPylBFOvktxa8Hgr4rzzpQsLSTkQPJxIBNBQm+EuEJ+66sWXLFlasWMF5553Hpk2b6OrqqvyhUBmPHgSA2YEaYAwwDB35GUJQ1NfXM2XKFM477zyefPJJduzwP7Ucu8Pz6U9/uuzfu7q6uPTSS7n00ktLXvPmm29y5plnBl20lFMqLN2HfgDeEMThgfwacVml5USm+Ax2W+nGOYq3tahH6zVQq6xSakormoiXUopbb72V//zP/+Sqq64K9bvcMRK9E/smnAPofdB2YwthPEz1ySefdDxp3Q+xOzxCWJTaDh204RpCvjo16dCciAPoRPQwlNJiO9oBqkXrkReHJ94pLYB33nmHSy65hJaWlgTk8swDjgf+HfhlwftfAz4N3AZ8N7BvU0qxYcOGqiI7NuLwZJZSG+1BPufipUNzIno4ET0MpQYH4Mxpai/y9yySjLrR29vL22+/Hcl3lacerUkbsKbg/Xbr/foB7yeHRK7SEoLANlpd7JlNL0bcYGsxGDMFmAckiduJ6GEo1cFDPqc8ZQ8vJ/FHvPwiDk9mcWO0klsxg6eUHtsKXufRiKfPaIWD6GEoZzvy6ACmt4MPh/Q6gOLwZJZKYWnIVwdfSo/dmKeCJ7ehBk96jVY4VOrUpK1o8lg/KjnD9ThTCLJOegcH4vBkFhmlOZGIlxPp4A2F+86IAyhtZSClBgd2EjfkS4/0RrzE4cksMkpzIno4Se8oLXjKJfjnWQ9xeDSlOniFmRLPkx6VosPJHSyJw5NZxGg5kURMJ5WSdPciP0ncdt3oA3oG/C2P0VAZHDgRW+pEIjxC4pAO3okYcSeVHi0B+akfUjeciO1wUiqiAVI/Ckn+4EAcnsxSyguHfDfSYtuyJ7+hBk8po9WLeSp4XvSQEbwT0cOJ2FInlaa0BuHMi0sO4vBkFrvCSQevsfUQo6WRTs0gWjgp18Hn0XZI/TCUemQROLf4SKYe4vBklnIOT94aKYgeA5FpC4No4UQGB06kfhgKIzcDbaki6fVDHJ7MYj/FVjp4jTg8Tmw9uov8LW96uNFib/LzJB5pK06krRjKOTyQdD3E4cksboxWXkYlIEZ8IOUc4rxNW7jRAvLTXqStOJG2YrDrxm7rGEiy9RCHJ7NIDo+TcnrYc8956dAGFbwuVz/yoke5utGLmcrIix52/SgW0chbWwF3tjQvepTTAoweQyIoi3fE4cksbhppMitlOJQLS+fVaIEYcXBvxEWP/GkBokch5ewoJF0PcXgyi5tGWofOTcgDbsLSeXEACx0ecQDF4RmIDJaciMNjKGdHIel6iMOTWcp54jsKXiezYgaPGC2DrUUPemXFQPI2bVFp1JpXPcTh0ZSrH1I3nCTblorDk1nKVUxF/gyXODwGt6M0qRuavOpRLvpXCzRFU5zYkeiwQRweIZGkO/QYPOLwGNJttIJH2oqTcnrsxKzOyYseYjsM6Y6GisOTWaRTcyKrtAxSN5yIHk4q6ZGn9lKD2VlYHJ60R4fF4cksYsSduAnTDyYfm8tJ3XCS7pUnwSP1wyArGp2ku26Iw5NZ0l0xg8ft5nLJHJkES7l9ViB/dUPaihPJaTLIikYn6W4r4vBklnRXzOCRzeUMUjecyBSOE3GIDYWbdJZbpTVowLVZJd22QxyezJLu5LJgqcdU9XQ21GCRDt5JuvMSgifdnVqwuNUC8lE/0u0Mi8OTWcSIGyrNw0PSG2qwyJSFE+ngnYgehkpa7EavXAPRA5I+WBKHJ7OI0TK4cXiS3VCDxW2Sbt4cnnSOWoNHbIehkhYgehSSbNshDk9mEaNlKHzCb1+Ja/Kkh9voX142l5O24kSmww2VtIB81Y90txVxeDJLuitmsFTq4CFfelSqGzvI1+Zy0lacyHS4QWyHEy/R0Jrwi+MRcXgyixhxg5ewdB6MuBs98jiKl+lOjdgOg7QVJ26dYUhidFgcnswiYWmDzMM7ESPuxO3Kkzw4wyAOTyFiO5xU0mMXepsPSKIe4vBkFjFaBjFaTrzkJeShk5e2YijcS0b0kOjwQNI9WBKHJ7PIPLzBTQef3EYaPJKX4MStw9OIea5SVqm00R5I3RhIHvVI52BJHJ7MIqNWgxgtJ6KHEy+by2VdD9nCwYms0nKS7sGSODyZpBbzEExxeNLeSINHHB4nsrmcwdaiB1AlrknuCD54xHY4SbftEIcnk3jZWTgPRkvm4Z2k22gFT6WkZchPVEPqhpN056wET7rrhzg8mcSLw5OHzeXS3UiDR8L0TsQhNkjdcCK2w0m69RCHJ5MUOjy9Ja7Zgdl1OHkVM1jS3UiDx02Y3h61Zr2DB6kfhXidwkne5nLBIs6wk3RHQ8XhySR2pdxV4bq8dGqySsuJdPBORA+DFy0gP9FhiXhp0u0AisOTSdyM0iA/DVUSD51IB+9E9DC40WIX+Xn0iNgOJ+luK+LwZBI3YUdIcsUMFjFaTtzUD9HDSV708Go7kjeKD5Z0d/DBk+6IV+wOzxVXXMGzzz5LZ2cn7e3tPPDAA0yePNlxzR//+EeUUo7jhz/8oeOaCRMm8NBDD7F9+3ba29u54YYbqKuri/KnJAhxeJx46dDytLmcGHGow5hBWYkj0eGBeMl3y7oWkHbbUV/5knCZNWsW8+fP5y9/+Qv19fVcd911PPbYYxx++OHs2LGj/7of//jHfPOb3+z/d+Hfamtrefjhh2lra+M973kPY8eO5c4776Snp4dvfOMbkf6eZCAOjxMvDg/oUevm8IoTOxLRMLjZWRjyE9EQ2+FE2oqTdOsRu8NzxhlnOP598cUX88477zB9+nT+9Kc/9b+/Y8cO2tvbi97jfe97H4cffjinnnoq69evZ9myZfz7v/873/nOd/iP//gPenp69vjMoEGDaGw0q5mam5P3n+MfN2FHyM/IxE0jtTeX2wutR94dnrwktHt1eKStaEQPg61Fg3V9Je3SjKzSCpRhw4YBsGnTJsf7F154Ie+88w7Lly/nuuuuY6+99ur/28yZM1m+fDnr16/vf2/BggUMGzaMI444ouj3XHnllXR2dvYfra2tIfyauBCj5cStHsltqMGS7lFasBQ6PHsOjAx500Nsh8ZLBw+iByS5bsQe4SmkpqaGm2++maeffpqXX365//3//d//Zc2aNaxdu5ajjjqK73znOxx66KGce+65ALS0tOwR/bH/3dLSUvS7rr/+em688cb+fzc3N2fI6ZHEQyde9BhFEhtqsKTbaAWLdPBOJDrsxG10eAewN1qPjWEXKka82I7k9SuJcnjmz5/P1KlTOeGEExzv33rrrf2vX3rpJdatW8cf/vAHDjzwQN544w1f39Xd3U13d1ZDj2LEnYgeTrw6PDWUfq5S2pG64UQGS0686GE7PFkm3YOlxExp3XLLLZx11lmcfPLJFSMtS5YsAeDggw8GoK2tjTFjxjiusf/d1tYWQmmTjhhxJ6KHE69J3FneXE6mO51IW3Ei9cOJODxVc8stt3DOOedwyimnsHr16orXH3PMMQCsW7cOgEWLFnHkkUcyatSo/mtOO+00Ojo6eOWVV8IocsIRo+VERq1O3Oixk3xsLidtxYno4UT0cOJ1SitZjx6JfUpr/vz5fPzjH2fu3Lls3bq1PzLT0dHBrl27OPDAA/n4xz/O7373OzZu3MhRRx3FTTfdxMKFC1m+fDkAjz32GK+88gp33XUXl112GS0tLVx77bXMnz8/w9NW5ZBG6kT0cOJFj+Fk2wEUZ9iJtBUnUj8MhfuTudmXCLQeW0tdGDmxR3guueQShg8fzsKFC2lra+s/zj//fEDn2px66qk89thjrFixgu9973vcf//9nH322f336Ovr46yzzmL37t0sWrSIu+++mzvvvNOxb0++kDCsE9HDiSSmGqSDdyJ6OBE9DG63cNiFeWh1svSIPcJTU1M+5PX2228ze/bsivd58803OfPMMwMqVdrxultqlkclIEZrIKKHQbRwIoMDJ1I/DG4dHtB6jCBpfUvsER4hDKSROhE9nIgeBq9aDMJp+LOG1A0noofB1mI30Ffh2mTqIQ5PJpFG6sTtFE4e9Cichxc9vEc0QPQAiQ4PRNqKk2TqIQ5PJpFG6kT0MHgNS0M+9Kikhf3oEciHHvLwUI1M8RnE4RESiZ8OPlnLB4NFRq0GPw5PHvTwYsRFj6R2aMEjtsPgpa0k0wEUhyeT+AnTy+ZySW2kwWJr0YfZZ6cUedIjvaPWYBGHx4noYUh/WxGHJ5O4rZg7kM3lCklmIw2W9ButYBE9nHgdHCRvc7lgEdthSH80VByeTOIn9JisihksYrQM0sE7ET2ceG0rILYDpG4MJJl6iMOTSdJfMYNFjJbBbVIq5EuP9OYlBItbPQo3lxOHR9rKQJKphzg8mST9FTNYxGgZpG44ET2ciB6GWszevJL/l4W6IQ5PJkl/xQwWP5vLNZS7MMWkfx4+WNzu0QT50ENsh8HPnlVSNzTJdADF4ckkYrScyOZyBqkbTmSKz4nUD4PsWeUk/XVDHJ5Mkn5PPFhkczmD1A0n6TfiwSL1w1Do8PRUuNauGw2YqGHWSH90WByeTCJheoOXeXjIfqcmHbwT0cOJ6GGwtegBVIVrJTrsJJl1QxyeTJL+ihkcXubhIft6SN1wIhENJ+kfxQeHFy36gO3W66zWDz8D6WRpIQ5PJpFOzeBlHh7yo4fXDi2rm8tJW3Eiehi8aAHZd4jTXzfE4ckk6a+YweFlHh7yo4eXugHZffSIRDSciO0weHV4sl4/0l83xOHJJOmvmMFha9GLDjtXIus7T3upG4Wby2W9fkhb0YgeBi9TOJB9PfxM/zaRJDcjOSURAkTyEgx+R2mih0bqhyHrdQPEdhQitsNJ+qPD4vBkEjHiBjFaTkQPJ9JWnIgeBmkrTrzo0YVJIUiOHuLwZBLJSzB42VgOxGgNRPQwZD2iATDYOovtkLYykPTrIQ5PJpHdYw3pb6TBIno48TM4yOrmcvUFryXCI9O/A0m/7RCHJ5NIWNqQ/kYaLLLyxImfCA9kUw/ZwsGJ2A4n6ddDHJ5MIg6Pwe8oLYsdGmTBaAWLFz12Azus11nUQxweJzI4cOI1PSB5ES9xeDKJbC5nkKWlTkQPJ+IAGgodnt6SVxmS16EFi9QNJ+l3AMXhyRx1mP9WCdOL0RqI5CU4kfphkAR/J1I3nKRfD3F4MofXsPROdKgeklQxgyP9jTRYRA8n4gAa/NaNZG0uFxzSVpykX48s1tKc49XhgSSGHoMj/Y00WEQPJ6KHwa8WkKTN5YJDnGEn6W8r4vBkDq/z8JDEihkc6W+kwZL+efhgET0MXqe0krm5XHCI7XCSfj3E4ckcXo0WJLFiBoeM0pyk32gFi+hh8KoFiB6FZNkZhizYUnF4MocYLSd+jVYDzmhZVpAO3onoYfBjO5LXqQWH1A0n6ddDHJ7MIQ6PE7+jEhA9INt1A0SPQsR2OJFVa07SH/EShydzyCjNiVc98rK5XHo3DwuOGnQkD9Icpg+Oahye5HRqweG3g6/HPJMsS6R/cCAOT+YQo+VERq1O0m+0gqOh4LXoIW1lIF712F7wWvRIYt0QhydzeN1JF5JYMYNDjLiT9Ielg0O2cHAibcWJVz36ME6P6JHEuiEOT+YQo+VEpvicVOPwZO3RI9U4PFI3NKKHE3GIDcmzo+LwZA4xWk7EaDmpZnO5rOlha9GLHp27QdqKE9HDiehhSJ4W4vBkDmmkTkQPJ171yPLmclI3nEg01InUDyd+HZ69SYqrkYxSCAEiRsuJGC0nUj8MooUTiYY6EdvhJP3RYXF4Moc0UieihxPRwyBaOBE9nIhD7MSrHt0F1yZDD3F4MoeM0pyIEXci9cMgWjiRtuJE9DDUWQekWY/YHZ4rrriCZ599ls7OTtrb23nggQeYPHmy45rGxkbmzZvHhg0b2Lp1K/fddx+jR492XDNhwgQeeughtm/fTnt7OzfccAN1dXXkD3mWlhMZpTmpxogPDbgscVONFg1kb3M5qRtO/OjRaZ2zZjv8rGiEpPUtsTs8s2bNYv78+bz73e/mtNNOo6Ghgccee4y99967/5qbbrqJs88+m49+9KPMmjWLcePG8atf/ar/77W1tTz88MMMGjSI97znPVx00UVcfPHFfOtb34rjJ8WMGC0nfvTosM6ih8Y24lnTo5q2AqIHZLdugOhRiF+Hx9ZjWIBlqQ6VpGPkyJFKKaVOPPFEBaihQ4eqrq4ude655/Zfc+ihhyqllJoxY4YC1Omnn656e3vV6NGj+6/57Gc/q7Zs2aIaGhpcfW9zc7NSSqnm5ubYNaju+IoCpeAuD5+ZaH1mRwLKH/TxO+u3fcLDZz5jfeY3CSh/0Eev9dvGePjM/1mf+UICyh/kcYr1u5Z5/FyH9blDEvAbgjz+y/pd3/XwmeOtz6xKQPmDPp63fttpHj5zlfWZ/0lA+YM8Rlm/S3n83FPWZ86t8vvLH27779gjPAMZNmwYAJs2bQJg+vTpDBo0iCeeeKL/mpUrV7JmzRpmzpwJwMyZM1m+fDnr16/vv2bBggUMGzaMI444ouj3DBo0iObmZseRDaqJaOyFc7v9LFCNHsMCLkvc1OJvHj6revipGyB6FJJVLUD0KKTatpKMiFeiHJ6amhpuvvlmnn76aV5++WUAWlpa6OrqoqOjw3Fte3s7LS0t/de0t7fv8Xf7b8W48sor6ezs7D9aW1uD/jkxUU0YFrLXUP08aiPrRgtkig/E4RlINW0la3UDqrOlWasb2WgriXJ45s+fz9SpU7ngggtC/67rr7+eoUOH9h/jx48P/TujwU/F7MPkJiSjYgaH5PAYqnV4pG5osl4//NSNOqAp2OLEjkR4DOLwBMott9zCWWedxcknn+yItrS1tdHY2Ng/1WUzZswY2tra+q8ZM2bMHn+3/1aM7u5utm7d6jiygd+KKSMTQ7IaaXAUOjw9Ja/ak6zrkW4jHhx+9NiJfjQHiB4gdWMgyepXEuHw3HLLLZxzzjmccsoprF692vG3pUuX0t3dzZw5c/rfmzx5MhMnTmTRokUALFq0iCOPPJJRo0b1X3PaaafR0dHBK6+8EslvSA5ixJ2I0TL4mbKApBmt4JC24kT0cCLRYUM26kZ93AWYP38+H//4x5k7dy5bt27tj8x0dHSwa9cuOjs7ue2227jxxhvZtGkTnZ2d3HLLLTzzzDMsWbIEgMcee4xXXnmFu+66i8suu4yWlhauvfZa5s+fT3e31/+gtJONihkc1RitevRzYHYEWqL4kLrhRPRwUo0e+yJ6QPbrhpf93SBpDmDsDs8ll1wCwMKFCx3vX3zxxdxxxx0AfPWrX6Wvr4/777+fxsZGFixY0P85gL6+Ps466yx++MMfsmjRIrZv384dd9zBN7/5zeh+SGKQvAQnfvTYDuxG5yUMQxyerBpxiXg5EdvhpNqNB2vR+ZFZIBu2I3aHp6ampuI1XV1dXHrppVx66aUlr3nzzTc588wzgyxaSslGxQyOauaeR6D1WBdoieJDOjQnoocTsR1Oqlm1Brp+bAmsNPGSjbqRiBweIUjsRuolKRWSVjGDQzo1QzaMVnCIHk5ED0NhLMCLHt3ALut1lvSQpGUhkVQ715qMihkcYsQN1RqtZqByRDY9SN1wko1OLRj8buEAMlgqJFltRRyezGFHeMTh0YgehmqNVi1JeQhgMGTDiAeH6GFoLHgt0XJTN9KthTg8mUOMlqEG86gMcXj8O39dBZ8RPbJZN0D0KMS2o32YfYbcksWIV7V1IxmPLRKHJ3P4rZhZbKTVhKWzrIefrRokTG/IYt0AyXcrxK8dhWw6gNX2K5CE+iEOT+aQUZqhMCyd7v0jgkGMuJNq20qW6gaI7ShE2ooTv85wH7DNeh2/HuLwZA4ZpRmCSDyMv5EGRzVGPItRjWrbShMJ2NkjQCQ6bJBoqJNsOIDi8GQOGaUZCpfoK4+fzaIeQRjxLOmRjTB9cEj+nyEbHXxwZMN2iMOTOcRoGfwu0Yds6iFG3IlfPXrRu3GD6AFSNwaSxYhXELYj/sGBODyZo1qjNQT9SIUs4PfRASBGfCBZ1CMbo9bgkJwmg9QNJ9mwHeLwZI5qNx6E7BiubDTS4JC8BCdBjOKzokfhFg4SHRbbMZBqbEdyIl7i8GQOv1GNXsxDMuOvmMEQRCPNSocGYsQHInoYChP8/eY0NeJcGZlmJMLjJBttRRyezJGNihkMooWTbIzSgkM6NUM1Kxq3Yp4KnhU9spGzEhzZsKXi8GQO6dQMkrTsJBtGKzhED0NhZMar7VBopweyp4fUDU02psPF4ckUdZiEYxmZBJO0PBjn6DfNiBF3InoYCtuK1y0cIHu2QwaOTrLRVsThyRTVhKUhSRUzGKpppFsLXmdFj2yM0oJDprQM1WgB2dNDprScVBMtT44DKA5PpqjmUQqQPaNVTSPtI0kNNRiyMUoLDlmlZahGC5C2UojdVurQ23xkgWxs8SEOT6awK6WfJ/xCkipmMFTTSCF7nZqE6Z1IhMdQrcOTNT2qqRs7MPY3K7YjG4MlcXgyhYSlnYgRd5INoxUcoodBbIcTsR1OsjE4EIcnU0gjdSJG3EkQHXw9sHcwxYkdcXgMYjucyBSfk2zkNInDkymkg3ciRtxJNfVjOyZML3pkr24E1Vbi79SCQWypk6Dy3eJ1OTx9+3777RdWOYRAkA7eSTVJy5A9PYIatWahU5MtHJxU28FLRMNJ1mxHEIMDgOYAyuIfTw7PihUruOaaa9hrr73CKo9QFUF18Fkx4tUmLWdVDwnTV7+iMUtagHTwA5GIl5Nq9OgGdlmv460fnhye0047jfe///387W9/46KLLgqrTIJvglqVJEZLkzU9JExvCGrPqmb0gzfTjtQNJ6KHk2w4xJ4cnkWLFvHud7+bK6+8km9/+9s899xznHDCCWGVTfBMNiplcMiUlhOpH4agtnCoJe4wfTBI3XAigyUnQTmA8Ua8fGUQ3XXXXRx66KE8/PDDPPLII/zyl79k0qRJARdN8I6MSpwENaWVFT2kfhiq7dC6Cj4reiSlQwsOcQCdZEOPqlKmH3vsMX7yk59wzjnn8Morr/Cd73yHpqamoMomuKQO+BdgamCVMt1h+hbgP4EhEuEBYBbwTSArRqtaPgecVbXzB1nQYwjwbWBCYM7w8GqLFCtTgBuAehkcAPAh4F+BrCS113u5+LOf/SzHHXccxx13HIcddhh9fX289NJL/OhHP2LZsmVccMEFvPLKK3z4wx9m6dKlYZVZGMC1wBXATxjEZ4DqG6kdpu8sc20yqQWeAg4BHqORhYB/PbZY5+HVFis2xgNPWq+/SyM7Af8OzxbrPLyaIsXKucAPgZdo5CHAvxag9RhNmvW4FbgA2EEj1wN5rhuDgKXoXaZ+SiMrgDzrcQTwAPpRst+rerC02ToPr7JU1eHJ4fnGN77BkiVLuPPOO1m8eDFLly5l165d/X+/9dZbufLKK/nZz37GkUceGXhhhT0ZDlxmva4PJEy/E9gLGEEaHZ65aGcHYGxgjXREVWWKk6sKXjcwyHJ4/DqA6dfjBuvcHUiEJ916HIx2dgCaA2sre6EjidU4kvHwT5gtNUdV7fCku26AjvwB9FKPmQyq1gGMVw9PDs/+++9f8ZrbbruNb3/72xWvE4LheAqrYrVGC3TFtB2eNVXcJx4KU+i7q57S2mKdh/stTuycWPC6r+r6scU6D/dbnFgZDxxovQ6urUBa9SjeVvw6gFvRCeC1aD3a/RcsJmYVvN5dtR7pd3hsPbqrXtEISYnwBL7t4fr16znllFOCvq1QguOt81aCHrUOr+Ie8XGcde6ksFPLp9FqAg6zXm8hiE4+3Xoca503E5TDkw09thCEHoqkjOL9Emz9SLcdPQDYB+gBtlS9ZxUkpW6Ess/zU089FcZthSLYDs9diBGvA6ZZr39OEBEeW4sGtPuQLqahG/hbwJ+BnpyPWm1n+NfAdkuLhhxPadl6/AKxHcPRU3wAvySIweMW65w+LcA4fy8Ar/TXjd3W4Ydk1A15llbKsSvmfZhGOiinRnwK2i3pBB4niAjPjoLPpk8Pu278Bfi7IyydzwjPdOu8BHjbqhuNOe3g64GjrdeFtiOvOU123fg78FeCjPAMwWPmSCKwbcdzwBtW3airqm5ssc7Dq7hH9YjDk2KGAGOt10uBTVYjbc6pEZ9snV8B3kBGrYda55eAVYHOw6dPC9AOMcByoNWqG3vnNIfnAHRq8XZgIbDL0qMpp22lsG6sIgjbsaXgdfr0sKfClwOrLS0aMlA3xOFJMQdZ53fQUY0NVqc2LAMV0w92SPp1dLq1iXjlW4+/A6syNA/vh0GAveTidWCdVTf2zmlEw7Ydr2PnaWg99glkFJ9uPVYTRMSrD7PNR3r1+DuwJtBo6PAq7lE94vCkmMIODWCDVTGH59SIF+qxBdhp6TFGjHi/0aqnB51g6ge7bjQCg6sqW9RMQhu7bej1Q205j4YW1g0w0eGRGejU/DBwsGRHeIbmUI8azGrG14G3LeevMQN2VByeFFPYSAE2W41030DC9Ok34jushjo2h0ZrYETj7YL8Lv8ZBVsxz51KV/0YWDfaA+3Q0qUFOEfwAB2BOjzp1eN19HO97Sm+8TnUYxx6ONODdv7WBjL9a2sxjDh38ReHJ8UMNFqdVqcWTIRneBX3iIeBEa+dOTbik3BGNDYVhKX3rerOW6xzuvQY6PB0WG1lSM6joQMHB3mMDg+MaICZ0to3A1ENr9htZQ16TdYmS4u96K7CVdlinWuJ83lr4vCkmD2Nlu7U8pjDMwiYYL229ejqj3jlz4jbRusN66wKIjwjq7pzuvWw68a2QKa0tljn4VXcIx72jIba0+H5sx0DIxpQQ6/VXvI4WNpzcGAGS8N937UbveoV4tQjfevlhH7sDn61dd6Z41HafmjvfSew3nqvp3+Ulj+jdYB1fqP/naAiPOnUY5J1XmWd7X14mgNpK03ovZp6qrhXtEyyznb9sKdw9snhdLjdVt7C3mXGrGgcncPp8IG2o6/AdozE/CrvrEHv4h9f/p9EeFLMfta51TrbRmtEDjv48db57YL3eiw9RuUwLG07w2/1v+M0Wv7ZYp3Tqceb1nl7QV7CEN937UCvxoE06bEv5plRdnvpDmSVVjo7+IF1o9Dhqc52pNOW7mk7gooOH452p1ZUdZdqiN3hOfHEE3nwwQdpbW1FKcXcuXMdf7/99ttRSjmORx55xHHNiBEjuPvuu+no6GDz5s385Cc/oakpfTvjemEfjJ+81jp3BTJKS2cjHej8gXkezqgc6xG80Up3p2br0RuIA6hI49Jju260YxZdd+c4363U4ABgdA4dnj1tR1CDpfiJ3eFpampi2bJlfOELXyh5zSOPPEJLS0v/8bGPfczx95///OccccQRnHbaaZx11lmcdNJJ/PjHPw676LFiV8p3MLuqdFmd2tB+8+WHdD5OYc8ITy3KmrEdk8OwdHgRnvQZ8UZgtPW6mAMYTBL38KruEiV71o3CaGj+HJ5SHXwD3Yz2vYUDpD0amkWHJ/YcnkcffZRHH3207DVdXV20txd/+u6UKVM444wzOPbYY1m6dCkAX/ziF/nd737H1772NdatW1f0c4MGDaKx0bgFzc3NPn9BPBSbwtk9IE9j7cAPuWIHOhehAd1Qt/suY5TsGeEx/7fV7cOTTiMuDo/BrhvbKcw/CFKPA0iTHsUcnt6CVUl1+H1ikq1uM7pr6S1zbXIIbwonfW0FwtQjfmKP8Lhh9uzZtLe3s2LFCn7wgx+wzz779P9t5syZbN68ud/ZAXjiiSfo6+tjxowZJe955ZVX0tnZ2X+0traWvDaJFJvCCW7Umr6GajuARg8zDx/MPjz7lL0qSdRQfkormLqRHj1sLd52vBuUw7PJOqdHj2IOT2Fiqv9fsqXgdXpsh62HqR9B1430aLEPJr9r4OAxCxGexDs8jz76KJ/4xCeYM2cOl19+ObNmzeKRRx6htlYXvaWlhfXr1zs+s3v3bjZt2kRLS0vJ+15//fUMHTq0/xg/fnzJa5NIsQhPcCtx0tdQ99TDRHhaqlo9s9E6p6dDG412b/oojPIFZbTSp0exDj64UWv6HJ7iDmAQevSRRoc4vGioXTeqs8ZRYteN9RQ+gCY7Dk/sU1qV+MUvftH/+qWXXuLFF1/kjTfeYPbs2fzhD3/wfd/u7m66u6uZ6oiXPSMaEHynlr6GOjDCM8jKbBqKft6Yd2yjNQid05T8KT7bgLdROKmQ3w6+uMOT37YSrh6b0AOldNSPSvldMjiAQj1GRVyeoEl8hGcgq1at4p133uHgg/W2e21tbYwePdpxTV1dHfvssw9tbW1xFDESKk1p5WlkUot5anyxsDRQhR470JvNQ1r0qBT9q878pq+DLzelNYjuKvVInwNYaYovT/VjnHXegfmfLNRiMNXsGmPfcQiFU+xJplLdSE/Mvzipc3jGjx/Pvvvu25+MvGjRIkaMGMG0adP6rznllFOora1lyZIlcRUzdCp1asOqunu6RiZj0KHK3eilthr7YZk6iledHunq1GwjXir6lyctwDjDziR++4GIQbWVdHTwUKp+mMFSMPUjHXrYWjjrhnOw5F+PDkz6dzraS7h1I35id3iampo4+uijOfroowE44IADOProo5kwYQJNTU3ccMMNzJgxg4kTJ3LKKafwm9/8hr///e8sWLAAgBUrVvDII49w6623ctxxx/Ge97yHefPmce+995ZcoZUFKkV48mTEbedvHYWrS7QWDZbRqu7pLenSw+7gnbU/6LqxD3E+BNALlTq1PHXwQzFJqaZ+1FlH/gZLdt0o1lbqqh4sKUxOUzrqR3HbEVRbiZ/YHZ5jjz2WF154gRdeeAGAm266iRdeeIFvfetb7N69m6OOOooHH3yQ1157jdtuu42lS5dy4oknOvJvLrzwQlasWMHvf/97fve73/H000/zz//8zzH9ovDZG5NOHE6EJ11GvFw+U33VozRIW1SjUgc/iCDC9HXE+RBAL0TnACYfu25sxkzUFib45812FI/+aT3qArEd6awf4QwO4if2pOWFCxdSU1N6pHj66adXvMfmzZu58MILgyxWorE7+G0MTMTNpxEvF+2qDWRKKwsRHrOZGmg9duGHbnTNG4LWo6P85TFTQ/lOLa8dfDHnT7/Kl+0o11ZqAp0OT3/9GEQ3zeg2Vc12jHESe4RH8E7x/B3IqxEvl89UG2iEJx16FB+l2Z1aviJe+6K30OyjML8L8prvVm4ED33U0yttpX+wJBEejWkrtVDFs+fiRxyeFFI8olGP/d/ZSFdAOSvpaKTF9QhylJYuPcqNWoNxeNIT8bIN+DsM3Pc36CTdEdh5MEmmXN2oo5sapK0Y25GvwVIdZol+8foRhB7xIg5PCike0QgjLJ38Rgrl9cib0apHr1qD4qPWvpyF6YtPZ0HhqHUo1aRfbyp4Pdz3XaIi/IhGeuoGlNdD5WywNAbtEPSiBwgGrcfuQPSIF3F4Uki5JF39Kp9TWsX1CHKVVjqMFuinoW1w/EXr0ZezMH3xVTgQXJh+N+aRCslvL+FHNNJTN6C8HipnDqCtRRsDc3S0HrslwiPEQbkkXeijjt0BGS17d+FkU06PYEZp6TFadgcfrtFKnx57RnjsCGA+60fx/C6tRXWDg/RoMRjjlhXLWcnr4KBUNLRXHB4hDmxPvFREo4ZqjdYOzJNUkm24hmJcMjFa5aZwdKfWE0inlj49SkV4unNaP8LP70r+7sL2kxZ3MnCtYZBTOOlxAEu3FaftEIdHiJTiYXqn0aqj2thMOvJ47Ea6Be2mGeyIRr6MVqUpnB6J8FhoI74rp/Wj2OAgmCmc9OwuXCmiEUw0ND3OcCU9ghkcxIs4PCmj9L4iJixtr0bJQ0Mt3cHbo7SgjVaydxeuFOHpzlkiZqUIT1eOOrVmzCCo2D4rdkL7EKpZb1a4u3Cy9ahUN4KZwkmfM1zKlnZJhEeIGntfESi+rwh09W9GmIeGGs28c3p2F5YIj5PyOSuwK5Ck9nToYWuxBT2NY3BO/0K+9Ihm+jfZWkDlFY3dgbSVeBGHJ2XYjXQ9eiWOwUR4bIcnDw210rxzr2W0mqv6li707sJQzXPXo8Ct0apu8zB7/VeytajB5GmU2ll4V0FUwz/p0KNSREP1x7tEDzCDg+psh63FYJK+AKTSYKk7ED3iRRyelFGpQ4Mutlqv8mC03EZ4qt8d1N6ZYlTVdwoTt2Hp6oxWOrTYF+PatDn+YrZw2BWIEU+HHpUiGtDdbzvyrYfT4anOdmzHxNOSbUsrDR6DsR3xIg5PyqjkhefNaLmNaNQBe1X1TelwACvp0RXoqLWZQuchadharGfgLst2mXvYbi3ez1NbKW07uvrjmMHokY62UqqD7w6sg7fbS3LrRx2lNiwFu37sCmzwGB/i8KSMSqMS2JUrh6dSRMOeh4fs61F6a3gI1uHZgplQTW6nFl1EIx3OsBc9gokOJ7etQGVb2pWj6PBotDOwm4G7LMNAh0ciPEJklB7BD7bOOwMepSW3kUI5o2XHc3bmxgEsvTU8DFyGXb0RT36n5iWiUZ0eya8b4E6PvLQVcLOCT7eVOmDvqr4p+RGvwg1L+/b4q7YdO2VKS4ia0hENu4PfFdAoLfmNFMoZLdsBDCrilfxRfKEWao+/6vqx08onCC5Mn1w9SjvDQdcNu63sQ5JNavR6JLduNGKWY5SeDt/V3/lnPeJV2o7WYhyeXYA4PEKEVI7wBN3BJ7eRFu6yXM7hycsovrQzDLYeOwIzWsnXIzpn2F7RWId+anoyiX5wkNy6Ya/e24V5EprBRIfzEi2vnCphbIfk8AiRUbpTM1NaeRmlFe4rsmOPv+ZvSqt0hwYDHZ69qGZzOUhT/SgdDQ2qbvRiNttLbv1wo4cMDiCPEa/StsMs9dguER4hSkrvsgzFprSCaaSDSOremm46+DyNWm0j3rrHX0xYenvBlnN5CdPvqUfQ0T9Ieqc2BPMbZUqrXN2A4CM8yW8rlac7e9hmPTJEHB4hEgp3WW7b469BG/Eu6Dd/yTRcpRsp5NGIVzZa0NOftpz9iFd0Ce2Q9E4t2miorcVeJHWzPa+2I+v5kG7ait2vDAbqIyhTGIjDkyIKd1nu3eOvQXfwkHQjXj7CI2F6Q+EORPlwAMtHQ8NoK8muH9EODgo32xM9kl43wFtCO6Q3j0ccnhRR2oBDOKPWZDfUaI1W8jfbq2y0uoG+XEzx2bss9zHwmXMQrsOTTAfQXVsJanAA6dYjrIhXMtsKuHN4eqD/0SNpndYShydFRJtoB+LwFLKFpG+25yYsDeQi4mVr8Q7FoqFBR/8g6Z1aedsRdP4fpEWPSrYj2FVaI0jiZFA9ZsPSSrYjuPoRD+LwpAivjTTrozS3U1p5MOL1lNsa3tQNCMpoJbtueHWGq3/0SDocwGgGB5Du+rGn7ajOlm4GK+E3iQ9jLr9hqdN2BOMAxoc4PCki+imt5HbwEIcRT64e9r4i3ZhdYQxhODy2FvuiM2aShdsObXvBu/l1APM7HV5612kIznb0AZus18nTw82GpQMjPJLDI4SOTGk5Ke8AhhnxSp4ehXXDrdEKxuGpQ+8wnCzcOsOKoCNeyasbEEd0OLmDg70w20OWnsKBvDiAbusGyJSWECFuO3i7Ula/udx66zy67FVxUH6X5RqC34gRTPpr8vTwYrSC6dR6MbGkMeUujIXo9bDbSvK0gDgiPHZbSZ4eth3dDnTu8Ve7buwGegOcwkmuHm7rBojDI0SI24q5reDd6ox48hvpFijYSs8mjLA0GD1ayl4VB/EYreTXj+j0sHfGGkP6pvjCiA7beqStrRSPaFQf8UprW5EcHiEGCvcVqTSl1Q0BbS5XaMSThTstIBwjnjw94glLZ6tTq04PO8JTT9Km+IZjXDy30+HVR4fT2sGHNTjIlu2QHB4hVMrvsgzhGPFCo5WsUas7o9VLYVg6D6O0SivWIF8Rnuj0SO4Unz042IjZR8VJ8ehwcLYjWcQzOJDocBIQhycllN9lGcKpmMkdtYrRcuI2vwuCylmBpHZqtZj/oWj1SGbEq3xbgVLR4eCmw9M4WHLuWZXfwYEkLQsxUL5Dg3AqZi9mtUWyjLjb6T2QsHTeprRGoadjdmNcdidhO8TJqh+VHR4ZLBnCmsJJZlsBifAICcTLKA2yP4r300ir31yucJVWeketeeng2zHbvTnJpx7F60Y9JlsnSAewh6RP8ZVvK/lwhgdhFspHGw2NB3F4UkL5iAaEn2yXrJGJlwhP4eZywSw9ridJO6YOwmx3JxEe74ODrE95upuygOBX4iRbj0rPFYMw2kqyBkvlNywFifAIsRC/EU/WyMRLWFoRlBEvnOJLjh6287cLvYn9noS1W2oa6waE82wxSOqUp7voH4Q3jZMmPYpHNKqPDtuDpQaSNMUXX78SD+LwpIR4wtKQzlG8s0ODbOvhd7oz2I0YkzNqlcGBEy8dPGRbjyHoTUvB3Qq+4KLDyVzFJw6PkEjcPSgTgh+1Js9oDQX2tl67mdKCbBtx9xGNoI1WMqf44nd4kuMMQ5yDg+TpYdvRTpzOjGHP6HCWFz34jYaKwyOEirtRGtg7beQhorGFYrssQzmHJ4th+vI5GlAqL2Fvqt1cLplTfJX1yNfmcl4jPMF1asnTw2sHD/lwAL0ODiRpWQiNGkwTiS+ikbxG6rZDg2wnYvqNaIB5Hpl/0q9H8NHQ5Ezx7YtOaodSG5Y6o3+Q7Rwvr3UDJDqskaRlISLcG60wc1bS1EjFaDlx1o9u9KJhyGv9CMuIJ2+Kr3DD0p6iVzijf5DtwZIf25HviFfxwVL1jx6JB3F4UkDhviLFd1ku3UiDG6WNIinVJV6HJ7lTfPE6gMnQox7zLPvietRihg9B5/Akb6NOaStOqpnSCs6WplEPZzQU0hnlib0HO/HEE3nwwQdpbW1FKcXcuXP3uOaaa65h7dq17Nixg8cff5yDDz7Y8fcRI0Zw991309HRwebNm/nJT35CU1P1wfqk4D4nIQyj9Q7Qh/bnR1W4NhrcT2mFEaa3v3Vs2auiJN68BFuPcWWviooxaKPWi665e7LnvjPBhumTVT/81I3gIhq2FqNJSjwgXgfQ/tZktBXwnv8X3KNH4iF2h6epqYlly5bxhS98oejfL7vsMr70pS/xuc99jhkzZrB9+3YWLFhAY2Nj/zU///nPOeKIIzjttNM466yzOOmkk/jxj38c1U8Inf2s89slr7DXLJl1B8E10t2Ykcn4qu8WBO712NH/TnBGvNU6J0MLMCXxY8SrN1q2Hskw4rYW69ArbPaktMMTjAFPVv0o1KM4YdYN+8l/dSRlGqeyHmEOHpNVN/bC7AgUjwMYPfVxF+DRRx/l0UcfLfn3r3zlK1x77bU8+OCDAHziE5+gvb2dD33oQ/ziF79gypQpnHHGGRx77LEsXboUgC9+8Yv87ne/42tf+xrr1pWu2mlhgnV+q+QVe3bwwVbKVvSIdTzwfCB3rAZbj3gcQNs07Is2BrvKXBs+zcAw67WX+pFVB9B9W+nCfvCErUU9QfyPJksPe3AQj+3oQ7sWE9B6lO5Wo8KPHsG1Ffv3J6tubEOveC1O8fqxL+l0eGKP8JTjgAMOYOzYsTzxxBP973V2drJkyRJmzpwJwMyZM9m8eXO/swPwxBNP0NfXx4wZM0ree9CgQTQ3NzuOpFI5omFP3+1ptLI4ao3XiG8puG/8UQ1bi82U2lcETP0IwwFMZt3w0laCzUtIlh6VHcDStiMYi5icTr6moBSVbceebSW4aOjwgu+Jj8ptBcq1l+T2mKVJtMPT0qKTu9rb2x3vt7e39/+tpaWF9eudz0TevXs3mzZt6r+mGFdeeSWdnZ39R2tra8lr48b9qNU00mArZXKMeB0mO6KyEQ+jg4ck6VE52gXhOoDJ0QL8tZXgHj0CWdAjHNsR/+BgDDpdfTflprTCdAC3Ftwt/vpRuW7UYxL8w3AAoyfRDk+YXH/99QwdOrT/GD8+/gpYimoiPNVvLgdJMuLj0L+nG7MIeE9Kd/BZi3hVNlpQzgEMLol7MEl4RpCfiAYEqUdyIhrgxXaE1aElr62sxZ7MLEaY0+GQJAfQvTMM4ekRLYl2eNra9LLGMWOcCW9jxozp/1tbWxujR492/L2uro599tmn/5pidHd3s3XrVseRVPyM0gp/TXCh2PiNlm3AWymVlArFjHhWR62V60YNJhEzjLB0F2Ypdvx6+EnwhzAiPPFr0QSMsF7Hm/8HSbId8U7hJEcP94OD3Zi1WeLwhMaqVatYt24dc+bM6X+vubmZGTNmsGjRIgAWLVrEiBEjmDZtWv81p5xyCrW1tSxZsiTyMgfNcIzDUnrSbU+jFezywTQ1UhAjXkgUo7Tk6OHeiDsdnuCn+MYQ95oQW4stOPOUnJSO8GQtOuzNdoQV8UpOBDD+wUH0xL5Kq6mpybGvzgEHHMDRRx/Npk2beOutt7j55pu56qqr+Nvf/saqVav49re/zdq1a/n1r38NwIoVK3jkkUe49dZb+dznPkdDQwPz5s3j3nvvzcQKLbtSbqDUc6OglBHfhp5kyFJegt9RWlYTMd138BDe0tJW4Gji1qMOE1fxO6UVzL5V3ejchxYq1dQw8Ts4KHSOhgAdVZUiTW0FwrcdybGl8U//Rk/sDs+xxx7Lk08+2f/vm266CYCf/exnfPKTn+SGG26gqamJH//4xwwfPpynn36a008/na6urv7PXHjhhcybN4/f//739PX1cf/99/OlL30p6p8SCn6NFuiKGazDM9z6rh2lLw2ZZIzS0mS0CrUwk4BZ1GMs2unpwewctSfFR63B6aHQeU0T0XrE5/B4GxwYPbrQGjYQhMOTnCk+d3pElcOTNtthSPOUVuwOz8KFC6mpKf+gvauvvpqrr7665N83b97MhRdeGHTREoG7VThhj1o70eO+IeiG+req7+iXykvSIY/z8F6SUiFoPZIxirfrxlr0DjDFKd5Wgq8ftsMTH8kaLA1Da19684Sw8RvhyaLtcJffFXa/Ej2JzuER3HbwYY9aISkN1dsy7D1HafbmctWRjFHrMMz/rZekVMjmyhO/0T/I5ije7wo+CFKPbegBEyRfj0ZMl5jt6LDdr3TiXODiJIrBUrSIw5Nw/O6zAtkcmVQ7SoMgnxHUCIys+m5+sbXYiPf8Lungw3QAkxXx8uMAZs121OIlvwvCz/8bi15BGQ9BDA7SmMMjDk/C8Talle1OrR7znOHSetSjsw+g1OZy1TfUHswuQPFFNbx1aGEmHsZfNyCJ0dBkRLyqmQ7PysqkFrRlKJ/fZWthHjsCQUeH29ATrg3E+TDm5AwOokUcnoQz0TqvLntVlNMW8Rmt/dAVdiflNh0sPkqDoPWwu5H9yl4VJvtbZz9TFsGO4G0t7L1s48GbHmFGQ209JpS9KmyqqR9ZbSvl87uKO8OF/6pej1600wNx1o/kTP9Gizg8CaYW01BXl70yilHam9Z5/7JXhckk67ym7FV2I+2lcLMsCLpTs/WYWPaqMJlknVeXvSoKZ3hjwf3jM+KTrPPqsldF0cHbNTS+ulGYcOyuvYRZP+LXY5J1XlX2quJ2NNjoMCRJj9Vlr4picBAt4vAkmLHo8XIPlZ4zHIUnnu5GCkHrYZdiUiB384P9zavLXlW+g28iKCNgl2JSIHfzg/3Nq8teFcWUlt1W9iOIrfv8MMk6r0VP0JQmigjg6gGlih77m1eXvap43YC821LJ4REiwG4Ob1Pu2S8QjSe+2jpPCuRufrC/eXXZqyobrXyN0sqP4ME5CeifePVoBvYdUJLiRJGXsA6zk008eTyTrPPqslcVf+wI5LWtRDVYsvWYFMjd/GB/8+qyV8mUlhAhk6zz6opXRhnhGQEMDeSOXplknVeXvap4Bw8S4SnE3lwOsjFqtb91I+WW2UI0q5L6iHvKc5J1Xl32quKPHYG8RjRKD5bCGTzGo0cdZuJ5dZnrKg0Ognn0SLSIw5NgJlnn1RWvjGIlznbMQyLjNeJ+RvAQtNGK14gPRk95gn8HMEsRQPtbV5e5RhPVypN468ck67y67FWFDo9zY4Ng9XgL7QTuTVwrkyZZ59Vlr6oc4clCxGs8esVZN2aDjeKUHxxA+qa1xOFJMJOs8+qyVzVi/OywjbhdkjQY8ajm4VsIYrGqV+zU8a3AprJXFo/w2J+FbDiAk6zz6opXRrW3SLzTFva3uhschF03CrvW6OtHDV5Xu0bVViYFcjev2N+6hsKHzRSjuANYGB0Wh0cIjEnWeXXZqwpHaWFn08fXUOswC+JXl70yqnn4TQV3jH7l2iTrvLrilVHnNE0K5G5esb91dcUro4rw2CVJsgMY1RQOxFk/xqCHJLsxm2sUJ+ocnuHEkR4wyTqvrnhlVA5xdIjDk2BsU1l+lGZXuV3opdiGLBnx/dBh2F2U2zgMTPe9bY+/hDeKj16PSdZ5dcUro161Np44ZvYnDShFacqvSmpAx0yrJw0Rr6imcApLEl9beZuBFnIgUU2Hx5seMMk6r654ZVT5kNEhDk9CcR+GtUcInXv8JTyjNSmwO7rF/sY3qRSGtfXYM3U1S6NW+xtXV7zS/rVh69GGDnbXE8fmlO7aCpjW4NQj2EePQJx1o3APnjfLXVimbmQpp2mSdV5d8Uq7bkRhS+PXo/yeRBCd7YgOcXgSSgt6pNlLpa3h4zBakwK7o1vsb1xd8Ur715Y2WlmIeE0aUILSVHaIg9FDYbrXSYHc0Qv2N64ue1XhuhJne+nDxHyC6dTskuxP1M9MmmSd16EjoqUR2+Gk9GApn3pUtqWSwyMEwiTr3EqlPXgqe+HBby6X5A4+H6NW9xGNynqkfdQ6BPMI1/LTv3aHVujeGIJ/nMJudPbI6EDu6JZJ1nl1xStLO8PBj+Dt0ojtcJYmyXpE6QBGgzg8CeUg6/x6xSsrN1IIOjF1FM5k6fCx9agmDJulKb4DB5SgNNkfxR9gnSvvwVNaCwi6k+/F7I8ebadm67G64pXZd4bBix5ROoDx6FGP2YOn/OAAorUd0SAOT0I52Dr/veKVpb3w4DeX6wQ2W6+jbai2Hn+reGVUUzgQZ0TDfmp8ZYc4+6N493WjvMOTFQfQu+0o3VaCiw7bWgxDr06KDvd6xOEATgrsjm6YhHZ6dlBpD54GzHYbUdiOaBCHJ6F4b6R7VkoIM6pxQLmLAicIoxV8I7XjTeMJam2PG2wt3gE6Kl4d5SjN1uOgslcFTRAdPITRVmw9Dix7VdAcYp2rcQCDjw7vxDwlPLr60YBxv93rEcVgKZ66UdhWyi/+KPylUTiA0SAOT0JJ7qjVjikcXPaqIBmG2Z81iCm+4LR4B20ca4nScLmvG4OsA6IxWrbLcUjZq4LG/rZqnOHCd4OrH/b/0OTA7uiGoKLD9hLu4PWIrn4cgE5T30al7Swg2pwV+39nX/S6umhw31ZsLXZQLItUprSEQAnKiAcf1XjNOkdnxO3xYBvFdtcZSJRhaYhDD+9GC8rtSxR83RhPlDleQUx3QphtJboOvhGTo5G86HD0Do/7tgLl9Ai+buzArL+NTo/kDqSjQRyeBDIC4/O/UfHquEatSWyk4CYvIbjN5SBOPdx3aNvQK5OcBG/EN6NThyHKCGDyIzzR1Y0D0Ua9Ax1/LE/piEbhu2nWw5/tiGqwlAbbEdVAOhrE4UkgdqVspdgelwNxZ7SCa6hJjmhAuYa6vchV1ZNkIx51hwZR67EXehduCM7hCT6iMYaoHiHgvkMDtxGeNEeH3etRi9lpOYocHogz4lVtNFRyeITASLbRspvK/kSVqOtPjz07tcLdV9JsxL1HNKI0WtHqYWdObaLSQ1TBrREPrm5sxSTqRtOpue/QoJJDHPwoPskdvLsk3WCjw9G2lXrMmrDkRUOjQRyeBBJUBw9hGK13gC3oqhPNagv3etSjx/wQ/Sg+GiPeBIy1XifTaEWrR1DRv8J306xHkLYjvKT2fYgqUdf7FE4X+unuTrIQHZ6Idth2YnaIKk0c0eHwEYcngXibd47DiEebjOndaEH0eQnjMSHx8LBdzA1ot7M8USfpQrI7+KgjGhCXA1htvhuE0VZ2EmWibgMmolFtkm7wjx6BONtK+SXpUCk6LDk8QmAEacTDTbYLPxRbuMmee4dnF2bLRSfBG/HNmCcfh5+oG0ZEYwhBPu0p2jC9v8FBlFN80S5NDyPCE85gKXw9JmGWpLeVv5RKdrTwL8Hp8QbalRqKzvMKl+TXjfARhyeBHGqdk1sxozNadge/nlLdVCHltYD0j+LDcHggyNiUrcVookjUTf6UVnTR0EHozDpwo0cNWY94BbUk3Sb4+tGF2XE5Oj2CjP5J0rJQFaPQW1H1AStdfWK4dS6+527ajdZh1vlVV1cPs86VjVZaE3WnWOcVrq4u36HtIozN5QrH09HVj9fKXmWT7VVrk9EGfQt6gFCeQhc3juhw+HrYbSWIugHpt6Xe9HA3OAju0SPRkKay5oLDrfMb6A6pPIMwG7wVX6OS9giPrccrrq4eYZ03l7wi7Z3aEdY5KD3CMeLR1I8RmATuIPQIR4voEnXttvKyq6ttLboptflF2iNe3vQYbp23lLwi7bbDX/3YUvSvhduYpinKIw5PwvDXwfdRKsIT7ihtLGHP4vrTo/QC5XCN+KFlr6qWGkxEI9kOYDR62Fqswc0O3FBJj3Dayk7gLev1lHIXVk3QznD4dSO4zLFi+NOjsu0IJzocbt0YitmB2120vHz9CCc6HD7i8CQMfx18B6Xy7sMxWp2YhY2Hl7uwarwZLXsEHXVEwy7dEWWvqpb90SHkbtzmJdh6RO0A2mPIqYHedSDe6ga4dXiCzzx6yTqHq0fQ0dBw2srr6NyVIZjHeoaDNz0q245w6kc0dcMeHLTi5oHDEN/gMVzE4UkYQRstO5sleCO+3DofGfidbRoxy7CD0sNu7MNKXuGHlWg3ZChhGnG7g19Jscf5FSMuPWwjHl7dAK8h+r0xD1ItbsS3WOcGzG5OwRCtHt46+NId2hbrPNxneYrTi4kxhKfHeHRr7MFtkm7ltrLFOg/3Xapi2Hb0IMJ8/py3tgJuHMAt1nm4j/LEhTg8CSNoh2fLgCuDI3yHZzJ6Welm3CwrhfiMVi8mjTi8kZq3ugFu9LD/Emz9sOvGwcDgQO9ciL8OvgfnNnKG7ZgwfTh6hFc3GjBZIN5yNKKuGxBFVMMeHPyNUhtUDCQuB/AddIp5LSYOEzxBR0ML/zLcT4FiQhyeBLEPZs8Zd6twvFXKYGfMw3d40tPBQ5R6eB+llTbi4ejRjjbktYQ55Rl0zkrhX8NxeMKrG4egnZ5O9LRFZeLs0JLYVvJhO9y1lVpMzDdq2xEu4vAkCNu/X02pMehA3DfSOoKea01aI4VkjFpFD024egxDT1tAcEmpEJYeK9CTkPti1pUFi/+6EUeHJrbDSdJsxzCMaxDH7EF4iMOTIMJopF3odSKFVwfDq2gjPhITlwoW/6O0bBtxd3rshXnMYZxTnuFMW9iDg7cot3NKIZVzEgr/GqweuzCZJOHoYUe7wsjRKKxJwWB38Iei41LB430KJ65oKITdVgrTw70NDrZTbkJQIjxCVdgdmrtlgxBvmH4XZq1QOJ18ukZpttGaQhhGfAI6QteD1xVavZRbtJ3WaYswchIgzETMcPUIo610oje8gKD1eAudLt9AWFsXhDGltcU6D/dRnvKEWzfswcE6KtV+G2/R0OE+yhQX4vAkiKOsc5ARDUhn4nIjJgnT+ygtDofnTXQX0UAYG+7ZHfxrmMTa8sQ5hQNpdXjSmqjrX4/S9UMRpu0IbxpnHLoT7sXtCq0aTLcdh+2w/9fGoqc9g8V/tMvd4EAiPIIv3mWdn3f9ibiNeHid2pFo1+Ed3CZhgpcITz1h7BAanhG368Yy15+Iu27Ybvs4wthh2L8e2XMA98JsW/ei60/F3amFN41zjHVegd4sojLuclbCqxvb0HvrQ5h6uK8bcduO8BCHJyFMQlecLtI0ag3PiE+zzu6dv8GYJdCl9diJ1hjC1OOoslf5wdZjqetPxN2hbQNWWa+D1aMG4/AErUf4beUI9BKC4DjKumMbZjvQyiTFdhwd+J2nW2f3daMwZ6W0i2RrMQQ9YAqWJOohU1pCSNgd2ku43TcC9KNGATaUvSo8o/VX63wkZlO3YPAe7bJDwT1USmMNTw/bpBwb+J1to+Vej8pJmBD2KC0cPQ5Ej8l34iXfLW4H8HV03speBL0jt/fBAXitH8M93dsNdt04LvA7e9fDXd0o3KE4LbajFhPhCVoPifCEwNVXX41SynG8+qoxc42NjcybN48NGzawdetW7rvvPkaPHh1jif3hz2jZv7P8s5HDq5ir0c7WIIIemXjXY4x1Xk+px2zYbLHOwevxF+t8HEHuejQCOMB6/ddyFzoo1KM04RotW4/jA72r7fy9iNsdp8G0lfayV4WnhwKes16Ho4f7EXw9plOLq368gB6cjEY/NCU4vA8O3LWVwicWhmc7gq0bk9ERqe3oHdrd4a5f2WKdxeEJmJdeeomWlpb+44QTTuj/20033cTZZ5/NRz/6UWbNmsW4ceP41a9+FWNp/eG9g6/HRDXKG3F7DBfOs5qftc7BNdR6zCSIez3cNVIIU4+X0HGH4ehdhoPBjnbZMQJ3uOvgN1rnRsLY2N6uG8GO4v0NDtx1arYewaeOQnL0sOtGL5UiPOHp0YXJKglOj1HoFY19aJfKHe7aCoSph+3wHEqQD3qx68YLmBV3lbHbSnk97HmFcNpKOKTC4ent7aW9vb3/2LhRV7uhQ4fyqU99in/5l3/hj3/8I88//zyf/OQnee9738uMGTPK3nPQoEE0Nzc7jjjxbrTs6azKRsuumCO9FsoVwRvxw9DZOFswqXyVcddIQSdCQxh69GJiMME5gGF28NvRGwyAqVHBsRRtZicFenfv+Uzg1YiH01aCH8U3YtJcvUc03qFSNNTWI/i6AWHoYdeN1yi3GcNAkmA7NmKs3fRyF3rCe7QL3NoOu240E/Q+TeGRCofnkEMOobW1lddff527776bCRP0g+6nT5/OoEGDeOKJJ/qvXblyJWvWrGHmzJll73nllVfS2dnZf7S2ul8LFDRj0VWsFy+Z9PaopLLRCq+RQhgRHttouZ++AS+jtHCNePAOYHVGK04jvhXzkJQ49ajD/LryethahNvBTyWox5NORa9m3IDeGMEd7ttKNLYjuLoR5uAA0usAhjE46MDkm4ZTP4In8Q7PkiVLuPjiizn99NP5/Oc/zwEHHMCf/vQnhgwZQktLC11dXXR0OAP97e3ttLSU3/33+uuvZ+jQof3H+PHjy14fJnalXIEZbVcmaY30MIJ6JnvYRitcIx6e0fKX3xW3AxisHhPRU5HdeNmvyv5luzGTEsWxtRhBGCtx3kZv/1aPSSWtjuraSlLqxrEE1RWFrUeaHMAaorMdaXF4gm/TAfPoo4/2v16+fDlLlixhzZo1nHfeeezcubPMJ8vT3d1Nd7e7XRrCJuxKGe6odQN6+fEBaMP1h6rvmO4O3jZa70I3L3fbBJaiGbONYXqN+EUEZcQLVzO6b72FUzjlMxk2WVfUonMTKqvnlb8AH0Q7gIuqvlvY0b9wO7RX0ZOqzejcFfdr7krhT4+kdPDBDg4OQg9Bd+FF2Trc5oaC1mMsYdnS4El8hGcgHR0dvPbaaxx88MG0tbXR2NjIsGHOJK8xY8bQ1tYWUwm9Y0++PVf2qoF4j2jsS9BPTLcJblqrAT+rTiA5EZ6/o9e2DCaI/WdsLd6k0uYDhRRO4SQlAhiMw2PfJawOvg+TEZeGKeCw9Qh3sLQb08qr12Nf/KxmhOREvJ5Ha7IfQTxk1q4bL+Jl2DUK7RZUjoZC2LY0eFLn8DQ1NXHQQQexbt06li5dSnd3N3PmzOn/++TJk5k4cSKLFlU/eoqCWozD8ydPn/S+sqCOsJYQLrHO7636TtPQ2Q0b8LKMEpIT4QFYbJ1PKHuVG+w7POPpUyPRNasPN25SuEZrGXrl2ijMfsD+sfX4s6dPuV/BB2GP4m27dGLVd2rGbAbhrX4kJcIDQephW59XMEum3ZGUwdJ2TBZncHr4qxuVo6GQvimtxDs83/3udznppJOYOHEiM2fO5IEHHmD37t3cc889dHZ2ctttt3HjjTcye/Zspk2bxu23384zzzzDkiVLKt88ARyBXsS8FbPXpjvcN9IejAEIp5NfaJ1PotpdZO0O7WnPn0yK0QJ40jrPrvpOttnz5wxvwM1ONeE6gN0Ykzu7qjs1YuIA3uqH+w4ewo5qLEJrMgG9haJ/3o1ubavw8vgV8DM4GERQGXoDedI6z676Tv7aivuEdoiig3/SOs+u+k7+9PDWVsIfPAZL4h2e/fbbj3vuuYeVK1fyf//3f2zcuJF3v/vdbNigpf7qV7/KQw89xP33389TTz1FW1sbH/7wh2MutXvsDn4RXjZRA7CTsr0Z8XAa6gvoaZyhmCwLf/hzeGoxTS4JEZ4nrfMsqplErMNE//x18O4iGmlxAI9FOz1tuH1ivI0/Ix6OHjsxEdHZVd0pisHBTnTcAcLS42n0hMtBaCfQP/708BYNjc52zK7qLsMx2xVEMThIS4Qn8UnLH/vYx8r+vauri0svvZRLL700ohIFi3+jZe9O6m4x6gb008fDaah9wFPAXHRD/UvZq8vhT49x6Krcje4Oy2M30r3R02f+U99L8Tw6ZrcPOo/H/SMuCzkKPW2xBfNYUnfYHcfbrq5OixG3R6ze24o3PcKN8IDW40S0Hj/1fRd/I3jwUz+a0Hq43xfLLdvQ2YvvRutxl6+77I3Jd/Omx37WuQ03Q87wO/in0Pb0MLTz4S9t/j1oN+413A57bGw93D2VTaa0BE9U7/CscXV1+Eb8j9b5ZN93OBTdcHbiNQnT1uJtKu1JBNrE2g8QDUePXozZne37LnaH9gxedkkFvXgb3NYN2yCG90CWZ4EdaAN+mO+72G3FewfvbXBgt5Xw9Ki+rTQA9taq3mzHEMwe4+70CL9+PGmdZ/u+w/FoTd7Cba238dZW7LoxjLA229uC2SN6tu+7+HeG/dmO8pvAJAdxeGJkAtoU92KC3O7YBz3mArejNDvuEV7FtI34ifgNHNod2hK8PEAVvHZooHdDgSDWQpTiSes82/cd/Hfw3oxW+FpUn8dTg0nC9D448KaHPbYNT4/FaJd7P/RUjnemoaMaG/C6mNtuK5twuxdx+Ho8aZ1n+76D/+ifN9uxBRMRTrIe1Q8OktJWgkUcnhixDfjz6PGve2wDvg63u5HYFTO87RWXo83vEPw+8dd/tMvWw73DY+sxzvN3ucV2AGfht5lFNd1pOzzN6P+9cHjSOvuLakzFJPd7myBswJhjd3qEXzcK83j86eFvtRoks638GT3sOxC/DxKNanAAUejxpHX2VzcaMUvSoxochKdFsIjDEyOnWuewQ/RgVnGEVzEVpqG+39cd7M0Fwh6VQBQN9a/oRO4RmMkH90xGd9Nd+MmI8ma0tmMeShqeHr+3zqfhJwI42zp7T+7fD23mdmImJMoTjRG39fiAr0/Pts5hT4VDFHpsw2zl4F2PQeicFQi/g4co9HgKHeM+FD8r+d6NdnrWoR847A1vDrE9WGoirFV8wSIOT4ycbp0fLXtVMbw7PNEY8Yes8wc9f/Jw9BTfTnRz94b3UavtAIYX8doN/M567V2PM6zzU5h8I3fUYJJSk2TEn0UnYA7Hzx4jdlt53PMn/Uc0xhLWRp0AD1rn9+E1G6QROMV67V+PJNUNgN9a57M9f/K96MhkG16T+yGZDmAHxgp618O2HU+UvaoY+2JSJd5y9Ymd6GEdpCPKIw5PTExFd7Y7iCbCE43RehidXjsNk+3vDruRLsTL88RskqqHbcT9OzyPeP5kC3rM24vblRYQhR596PoBXvUYjAnue9fDewdv57sNwmyyHzwvoDuVJoz74o4T0fk7a/Gz/i+JU1pg2socTKfrDrutPIqbJQsDSboeUdqOwlQJ98OsNE1ricMTE/aI9Y94HcGDqZjuvHAwEY0xhLkXwQZMcqq3kYmth/dGCsk1Wo+iQ9OH4yU5dS905g/40cN2/lrxMvkTjR52VMObEZ+F1uQtvDww1Mb7CL4Xsxg4iVGNwg7eO0mMaIBOvf47On71Pk+f9N/B741ZUJ00Pey6cRI6KuqOcejtLPqAxzx/p/e6AWZaSxweoST+p7NAz+0C/M31Jzagu95azNZS4eC9U2vCTHJ412MMevZ4N7Da9aeiMVodmF2o3Xdqs9FRjdXACs/feYh1XuXpU9Ho8Tg6fncg2gl0h/8ODeBg67za06eS7ABGrYetRbiDJfDjAO6Hjpbvxs/0nj0I2QR0uv5UNHXjDbR7X4/pLSpjX/ksbp6ENRBbj9WePiURHqEs1XXwdRiHx/2CVEVUnvhvrPMp6HU/lTkZPa5bhd4oyxv2vi6r8DIZFn4St43dqc11/YnqRvC2I/GKp09FY7R2YDILvOvhr4O39fAWG4pGjz+i152Nx2ybV56J6Brfi58Ofh/MxhTubcdGzFrQcPdbsdvKWbh9RI1dNxZjckncc4R19tdWwl+K7X1aq7q2Up0e4vAIRZmDzg/4O163yAf9POBGdOfhLfRod/Lesmu88ho6LjEI+JCrTwTToXlrpLYWIwhzKTYYB/Ak3KZIx6mHv0XBXvi1df64q6sPRK9Y68Gsa3JPDcYh9qfHxLJXVUs35n/ZnR523ViEWVnnHrturMY8MKIyCtOphavH0+hY9CjMGtbyxNFW7J3Pwm8rD1jnD+LGStWj10BCVvWoHnF4YuA86/zbsleVwq6UK/G6/649yVHdIwvdcLd1vrjilXXAudbr6vTw1ki3YbZFP8DX97rlTfS0Vi3wjxWvPho96bAT+IOv7/Onh/3IgHC1ALgP/eum4ua5a3bdeAodC/HGRHQ8tQuvD0WITo87rfOFuJkwsvV4qOxVpfBXNyAqPXqBe6zXF1W8eghmA4yHy11YEn96rEFb3iGE/dDMZ9F2vgn4SMWr56B3gG4Hlvr6Pn/R0OjaSvWIwxMxe2EClPf6uoO/ESuYihm+w3Mn2iScQqUx4Sx0bsBG/CyjhHTo8TPrXNmIX2CdH8btPriFDMb8Gn8OTws6lTM8OjBRHvd6/MLXdxUODrzt3hNd3ViA7qLGUGn/qjGY1Wr/5+u7qnd4wtfjDuv8ISrt7HI2uq6+hnkYgzf8TeH0YJaLRKeH+7byS7wOhUFvZdGM/nXe5h2iqxvVIw5PxHwAXa1Wof1379gdvLcN5cFUTH+b2XvhLcwExCfKXnm+db4fPb7zjn8jbm/KFX5DvQ89hTAF/dSf0thGy58zPBkdM9uE14cOdlifgihGarYR/zh6J+TiTEbHgHqAX/n6HrtD8762K7pRay/wc+t1+U7tI+j/3cV4TSu1qV6P8NvKUnT59sLEwotTXVsZhEngTrIed6Hdl9nApJJXNQLnWK/96WHb0dfwaolXW+ehhLmNQzCIwxMxdgfvb4QGcKR1TnIHDyaqcTGltm+rx4To/Y3g98WkUXpfzxSdA7gN02VfXPKqGWiTthWzZaE3/I1YbaIz4o+js0JGAmeWvOr8gqu9rziBavSwtRiH7nrDxXYAP4jOKitOdR08BKFHNLajclRjBGZFkv/BQT3a1Xe/X5VNdHq8jZncLj0lfjp6OustzMYg3vDvDHdh8niSHuURhydCmjDm3V8j3Ru9ywL4eeCA3UgnEcV//APopZ4HUmpfjVPRLksb5qEU3ni3dX4VL0mYNtEa8Z9Z53+g1L4adof2G8wDCr1h6/FXX5+OTo8+9MgV4NKSV33MOvvv4O1Herzg+ZOb0Q+KhHLj6qB4Ef1/1gh8pugVE9DPi+pDT1l4ZwJ6XVEvyY5ogM4B7EX/4uJ5XuegYzQv4ifWDdXUDYgyHxKM7fgc+lfvSaEz7H3zRTCRZ+9bWULUg2n/iMMTIeejXZaV+G1mx6FHJW/h9inphbSivfEGzMMHwmMn8BPr9RVFr7jYOt+HnzlnME/Q8TemiS7CA3qU9iJ6QvOSPf7agOng/UW7wOjh/ZGSYIxWNHrMR09WzaHYw2anoydvd2HWuXljX/QUIqSjftxknb9CsUdN/IN1fgo/8Qgwjyp+gWoGB+PRmWLhsg7TCi4reoUd6/DvDNt6+Gsr0daNX6Kt9zhMTTAMp9q8UEiXHv4RhydCvmCdb/V9h+o6eIXp1A4td2Fg3IheejsbE33QtAAftl7HpYe9beOBlBo3Bc13rPOXGdhtnItOSm3F7/47TcAx1mt/RsvW47CyVwXFW8D/Wq8v3+Ovdlu5Dy9bwhUy0zq/islO8oa9J1Q0etyDXtE3loF5b3XosT3AT33fv7oObSNGxWhsh91WPsLAuMERaIvSi4kTeqc6PaKtG91oWwrwdQamCFyMHki/CDzv6/77ozcr6cFvZmm0elSHkgPV3NyslFKqubk5lPsfD0qB2glqH9/3eVDp23zJdzl+YZXjXyPT9idWmX/teP/frXL8yfd96xVst+59qO/ybbLKcVQkWtQpeMMq8+cdf3vaKse/+773bOu+b/ou33FWGdZFVjcOt8q8W8Hk/vf3QbcTBWqG73tfb937Vt/l+4ZVhjsi0+PLVplfU1Db//6HrHKsB9Xo+97PW/f+qO/yLbTK8Q+R6fGwVeYfON7/gVWO+3zfd5R1X6VghK977AVqt3WTUZFoMUTBJqvMH+p/vwbUa1Y5PuP73h+z7rvEd/nOssrw18jqhvPw0H/HU8CkHWE7PD+zKsTtvu/RoGCz0rc51nc5rrLK8bPItJ2sdIemFExVgKoH9bZVjgt83/c91j03KqjxXb6nrHJ8PDI9vmCV+w0FgxSgjrbK0A2qxfd9r7bue4/vsu2NMeIjI9PDduJ/2v/e160yPFfVff9s3fdi3/f4oFWO5yPToknBBqvcF/S//7hVjut833e4gl7rvuN8l2+eVY7/ikyPk6wy71QwXgFqKKitVjlm+77vh637vlRV+WxH45TI9LjWKvdflG3z3m+VYTO6/fq774+s+97ou2yTrHLsQtv3aPQwhzg84Qnm+RiFGbEe5/s+pyt9i7Wqmg5+rlWOpZHq+wur7L9XgDrXKkMbqAbf9/yedc+7qirbfKss10emxV7W/6FScKUC1I+tMtxT1X1ftO55UVXl+xvVdiZejxlWuXcrOF7VglplleGTvu85zrqnUnZH6ec4EBOVrYtMj29Y5X5TQZOaYpWhF9T+vu/5CeueL1ZVts9ZZXk4Mi1Q8JRV9nsVoL5oleGlqu75c+ue/11V2X5lleVLkWkxSkGnVfZPKkD91irDjb7vWatgnXXP9/suWw2oTqssUyKtH/oQhyc8wTwf37EqwuKq7nOr0reZX1VZ4jHiE5WZfvqY+qtVhmuquudq635zqypbPEb841bZt6ux7K92WWV4r+/7HWrdr0vp0bz/sj1A1EYcBT+zyv8X9TFqlQK1AT1t4O9+X7Tu93RV5arBRBOiM+KDFbxulf96dYf1/Q9Udc/fWvf796rK9l6rLG9FWjeOUXZ0qp5T1GqrDJ/3fb9GZZyGGVWV7RqrLD+JVI9/scq+Xh3BcKXQUdlDfN9vlnW/jUqnCfgv2yJLj/Mi1UMf4vCEJ5inYySoDsuIn+n7PnUK3lGgFJxSVXlq0OFPBeqYSDX+NwVKNbJObWGo2gJqhO97HWtpsVXpDsJ/uezcqnci1QIFTypQ6hjuVwrU76u611WWHg9XXS57yvPnkWoxWsEWBUpdw2eVAnVFVfezowJfrrps9pTnRZHqcZZV/i71MocqBWq673sNU9oRVgqmVFWuIehIkwI1LlI9/p8CpUbwsuqiQb0NarDve33Q0mJN1eWypzxfjFSLeqWn4pQ6g3lKgfrfqu43z9LjtqrLZk95fi9SPfQhDk94gnk6zuZSNZ2/qD+xVxX3OUOBUtrpqau6TI/om6kvRKrxIAUrFCh1MT9V36zqXjdZetxbdbkaMNON/kdJfo4jFPQoUOrnfEy9p6p7vWTp8cmqy3WKpcWqSLVAwaUKlBrGZrWYg1ST7/tMUCZnbL+qy/Vflh7/E7keOrdpBovUvTRUcZ9PWlpUl69iH89bepwbqRbDFLQrUOoKrlOfq+pe91h6fK/qco2ytNgNalikeuioTA271aPMqcJuNShos/Q4vepyfdzSY1GkWuhDHJ7wBHN/T0ao0db86Piqck2eVgTUSMGM4qsbGXg/TmOWqrXC04P5Z5/3GaVgm6VH9Y0U4hrFoz7ItxQo1cg2pR0gP/eZa2nRqaqdzoL4RvGN1KnpVj0fyQsK3wMEe8T6RCDlmmtpsTziunE4E9Vwa1XOPtzi8z61yh5kwOWBlCuuUfwHOdf6HUrV8UGf9zlYmeTtdwVSLjvn7X0R63EGP1ag1BDWK/+O/WctLVoVVTnV+phkadFFNasJ/R3i8IQnmKfjAGapWmskD1f4uMfJ1md3KmgJpEwnE/1c/D6g2kFdz+XW7+lSeqWV13vZy42fDaxs9ij+tgj1OAVUL7VqDo9Zv2elgn193MtebnxtYGWzR/HnR6jHf4F6m3FqZP+I827lPTl/PwW7rM/PCqRco+nPflb7RqRFHahnQf2WM5X5ej/ROztXbIOCYOyaPYr/S4R1YyKobaC+wo3W79mi9JYGXu/1M+vzvw2sbHaO1bUR6vExUDsYrI5hqfV7lii9ws/LfQYpPa2nlI6uBlO2tZYeJ0WoB4jDE6ZgPo7PK/oN19c8fK5RmQ7N7yhvz2MvUDusAh0Zkb63Y+a7a7jP+k2dCk7wcJ/JykR3zgqsbKdaZVuLznEKW4u9QP3d+s7r2VeZBOwXlc5ncXuviwt03Cew8t1glS2q/WfeBarH+s6ZzFL0DxBuV4X70VQ+/tf63B8CLd8LVtkujEiPf7G+bzOoIVxj/abdytsKvKHKJD/7GWgVP1owDuDoiPR41Pq+J6hXJj+rXcGRHu5zvDLRnemBle0frLJFtXXBvuj9mBSoLzBJ6WRjpeBPyptTe4X1uVal+5lgynenVbbvRKSHfYjDE55gPg89faGP/1LuMuLnW9evV0FFd+zjQasw/xaBtrZDsRt7I7m9lZ5yUEqv3vqwi/vspczS62A7tEGYJZXHRqCH7VCsQU8haUfubeu3vargMBf3OUrBDuszwXVooEdnCp3IXRuyFnXoLRIUqHv73z9PGafnPqU770r3sgcVPara1TcDj2ut8lW3bYC740BQ263v+xQoHeWy7cBuBV9X7iJfD1ifWaX0pnXBlXGJVb6LI9DjH63v2omdYzdCwXPWb3tHuVvEMVLpZf5Kaac4uPLti9m7ar8I9LjL+q5l2Ft6HKfMhoRLlF4RW+k+s5Vx/i4OtHznWeV7OQItCg9xeMITrIrD9qrtKZmjS1zXoHRExzZy7wu8LJ8hmtD0OEyY8/uOvw1W8LsCPW5TpaMbY5XZSG6tgjGBl/M+qyD/GbIeZ2AM5BmOvx2kTIh5h4KvqNIjrxOV2TvjYVXNvkzFjjrMDtRhh6a/a33PRgZGDM5R0G39xlWq/B4hXy649quBl3GGVcYtVLM6qPIxGONM7Llq7/vW71MKHleFO1M7jyZl9pnZpYKMZtiHvUv6gyHXjUMtzRWoyx1/G6ZgcYEe31Ol89cOUbDMum6FCmpqr/Cwd0m/NGQ9PmF9Ty8DB2bvUmbDyi1KT3+WWtxyljIb2N4eeBmHYaK1h4asR+EhDk94glV5nKeMR64ULFB6990TFMxRep+FVwv+HrwBB73CoMv6krAeq9CIMeAvQpGVNw0KrlNmVc1OpR2ff1A6v+d0pY2ZHbbdrOC9oZT1o1Y53ya8/YkKDfiPil4zRsEjBf/3a5XOWTpLaSfnXKVXmdjRj2UqyKmswuNWwp/WskfvilKrft6t4O8FejyndITjZKVzdD6tTEK/7TQHX84azGaIYU5r2aP3DegE0D2v+YwyU7q7FfxKwT8r3SbmKL09wSrr791Kt6Nw6rFCd2xhJbYPB7XC+p6nKLZ7794Kfljwf9+pdCTsPKVtxweUfiSFvefOOuUv76fyYW+G+NcQ68YM6N+vq/j+ZQcoMyhUSu/kfo3SNvREpXfu/nXB359S/hcGlD/szRCjnNYShyc8wQI4xik9CrPDisWOTQrODLUc9nO15odw71pQd2MM+AFlrz9BwaIyWigFLygdBQlHiwZ0UrVC768R9P1H4jTgpXeYrlG6E7OjPaWOO5U2+uHoUfjsN//7JZU+3ovZDuBbZa8dovSW93ZHX+zoUnqzwXC0ALOy8amQ7n8lxomYXfbayQp+U6FutKqwBgb2Ya9svCqEew/C5O2sptKzqs5U2jaU02OhCjoloPAYganLx4dw/4mYKPkDlMszrFM6R7S9gh43qyBWZZU67P2J2q3/yzDroX2IwxOeYAEeExV8U+lpiTcULFc6XP3PKozQ68DD3nNlB6jxAd63DpO81gNqjuvPnqB05/ZnpRMun1f6sRQfUEHsP1TpsFdr/YVgk5fHoLfCV+i8HXcPG6xXelT2E6Vzl1Yq/Qyd76ugltRWOuzVWv6f4VT8OAmzg/EDrrXeV+lpvvuUfrjmy0onal6uqnk+lNtjHCYiOjvge1+B6Y0ucf25w5XOC3xc6bbyotJ25B9UmI6wfdirtTagn28V1H0Ho3c9V+iVWUe7/uz7ld6g8FkFf1PwV6VXZZ2igp7yLXb8zCrzbwO+70HQv7v0i9g5f5WOwUpPa92h4BWlZwyWKB0trm7zSTdHHag3rTJ/MeTvsg9xeMITLFOH/QTk2wO63xBQ91v37Ab1kQT8RrfHKEzy8scCuudkTGTnbevfcf9Ot8fZVrm3g5oQ0D0/hEnKfYxqHh8R/XGLVe4lBJPMXYt57IyCKjfjjPaoA/WKVe6gnkO3L6g/YOpcdA/lrP44GJO7cnJA95yGecjyq0S9u3V1h50j2k44EeKBhzg84QmWqcNOyFTozqiaex2Ozs5X6NHw3AT8Pq+HPXWxkepXXXwEVAcmNH9gAn6f18OeuniS6jr5BnTHqKzjIaLfnKzaY0zB/2e1Uzmj0Q6frcdlCfh9Xo+5Vtl7qeY5cPqYgYlkdII6MQG/z+thb8q4Bp2DVM29PoPJ2VlOdFsABHXUYxziX0bwfeLwhCdY5g57lLkVf4arCZ2HYYf83wb17gT8Lj9HA3rTN4U2NO6mn5zH/pgnKSu0szAmAb/Nz3EgJur1M/w5PbMwU3oKvUvvnkmo6TgutH7DbvSqGa+frwP1WcwquG2gLkjA7/J72BvvrQd1hI/PDwf1/zArF1eCmpqA3+XnGILZeflp3E4/OY8p6BV6yjp+TdSPrQjuOBYd5VeEn8AsDk94gmXuaAC1AJOk+mXcdUjjQH0DvV+Lso4HSd9oZOAxCRNKXoPeR8jN596FXt1kN/Ju9B4uae3c7WMuJlz/BO4iVfWgPoDTeLcT9TOYwjm+X/CbbgTV7OIzw9COzt8LPvscOioa9++p5hiCGSB0oB/P4iYn6wB0bpgdMVPoVWpB5gPFcRyFcWZfwX0S83vQ+zzZjt929AaUUWyEGubx6YL/3/vQG1eG8T1u++8a60XuaW5uprOzk6FDh7J169a4ixM5ewH3AHOtf68B/hd42nq9ExgCTALeBZwMnADUWdf/Hbgc+FVkJQ6XQ4CHgMnWvxcD9wF/AdahG80I4GDg3cBpwGEFn38C+ArwcjTFDZ1zgDvRdaAHeBB4GHgJ2AjUA2OBQ9H14v3AaOuz3cBtwDeAzZGWOhxqgBuAr1n/3gj8AvgDuh10otvTRGAqMAuYAwy2rn8H+DbwA2B3ZKUOjxHAA+jfCbASbUsWAW+i//+bgQOBY9FazCj4/IvAV9H6ZYHpwG+A8da//4DW569Au/XeSLSNeQ/wPrQ2Ng8A/wKsjqCsUfBpYD4wCNiG7mOC/r/20n/H7gUm4chzhKfw+CyoNsquaXQcC9ErNsLauybOYwiomzFTdZWOneil/mmdzqt0TAb1O5daKHQ9+h7R7EAbx3EmOpnUrR7L0dHTvRNQ9qCPOlBfRz8Ow40Wveio8lzSH8UodowE9VPMg3grHVvRC0fC2hMt7mMa+inq7xDOFJ1EeDyS9whPIXsBZwNnoqM544BGYAc62rMSeAp4nOyMQsrRApwPzEaP2EdZ728F3gCWA0+i9eiIvniRcxRwHnp0ehCwDzrqsxF4HViC1uNPQG88RYyMOnTE4kPAccB+6ChYF9AK/A34MzritzyeIkZKM/BhdITvGHTbqUPbjtXAq8BC4DF0pDTr7A9cgI5+HQbsC/Sh7cQb6KjPQnT92BFTGaPkILSNCBq3/bc4PBbi8AiCIAhC+nDbf9dGWCZBEARBEIRYyJTDc8kll7Bq1Sp27tzJ4sWLOe644+IukiAIgiAICSAzDs95553HjTfeyDXXXMO0adNYtmwZCxYsYNSoUZU/LAiCIAhC5ok9gzuIY/HixeqWW24x2dg1Nertt99Wl19+eaBZ3nLIIYcccsghR3IOt/13JiI8DQ0NTJ8+nSeeeKL/PaUUTzzxBDNnziz6mUGDBtHc3Ow4BEEQBEHIJplweEaOHEl9fT3t7e2O99vb22lpaSn6mSuvvJLOzs7+o7W1NYqiCoIgCIIQA5lwePxw/fXXM3To0P5j/PjxlT8kCIIgCEIqqY+7AEGwYcMGent7GTNmjOP9MWPG0NbWVvQz3d3ddHd3R1E8QRAEQRBiJhMRnp6eHpYuXcqcOXP636upqWHOnDksWrQoxpIJgiAIgpAEMhHhAbjxxhu54447eO6553j22Wf5yle+QlNTE7fffnvcRRMEQRAEIWYy4/D83//9H6NGjeJb3/oWLS0tvPDCC5x++umsX78+7qIJgiAIghAz8iwtC3mWliAIgiCkD3mWliAIgiAIgoU4PIIgCIIgZJ7M5PAEhey4LAiCIAjpwW2/LQ6PhS2Y7LgsCIIgCOmjubm5bA6PJC0XMG7cuMATlpubm2ltbWX8+PGSDB0ionN0iNbRIDpHg+gcDWHr3NzczNq1a8teIxGeAiqJVQ1bt26VxhQBonN0iNbRIDpHg+gcDWHp7OaekrQsCIIgCELmEYdHEARBEITMIw5PyHR1dfEf//EfdHV1xV2UTCM6R4doHQ2iczSIztGQBJ0laVkQBEEQhMwjER5BEARBEDKPODyCIAiCIGQecXgEQRAEQcg84vAIgiAIgpB5xOEJmUsuuYRVq1axc+dOFi9ezHHHHRd3kVLNiSeeyIMPPkhraytKKebOnbvHNddccw1r165lx44dPP744xx88MExlDTdXHHFFTz77LN0dnbS3t7OAw88wOTJkx3XNDY2Mm/ePDZs2MDWrVu57777GD16dEwlTief+9znWLZsGR0dHXR0dPDMM89w+umn9/9dNA6Hyy+/HKUUN910U/97onX1XH311SilHMerr77a//ckaKzkCOc477zz1K5du9TFF1+sDjvsMPU///M/atOmTWrUqFGxly2tx+mnn66+/e1vqw996ENKKaXmzp3r+Ptll12mNm/erD74wQ+qI488Uv36179Wr7/+umpsbIy97Gk6HnnkEXXRRRepww8/XB111FHqoYceUqtXr1Z77713/zU/+MEP1Jo1a9TJJ5+spk2bpp555hn19NNPx172NB1nnXWWOuOMM9TBBx+sDjnkEHXttdeqrq4udfjhh4vGIR3HHnuseuONN9QLL7ygbrrppv73Revqj6uvvlotX75cjRkzpv/Yd999k6Rx/CJl9Vi8eLG65ZZb+v9dU1Oj3n77bXX55ZfHXrYsHMUcnrVr16p//dd/7f/30KFD1c6dO9X5558fe3nTfIwcOVIppdSJJ57Yr2tXV5c699xz+6859NBDlVJKzZgxI/bypvnYuHGj+qd/+ifROISjqalJrVy5Us2ZM0f98Y9/7Hd4ROtgjquvvlr99a9/Lfq3JGgsU1oh0dDQwPTp03niiSf631NK8cQTTzBz5swYS5ZdDjjgAMaOHevQvLOzkyVLlojmVTJs2DAANm3aBMD06dMZNGiQQ+uVK1eyZs0a0dontbW1nH/++TQ1NbFo0SLROATmz5/Pww8/zO9//3vH+6J1cBxyyCG0trby+uuvc/fddzNhwgQgGRrLw0NDYuTIkdTX19Pe3u54v729nSlTpsRUqmzT0tICUFRz+2+Cd2pqarj55pt5+umnefnllwGtdVdXFx0dHY5rRWvvTJ06lUWLFjF48GC2bdvGOeecw6uvvsoxxxwjGgfI+eefz7Rp04rmUUp9DoYlS5Zw8cUXs3LlSsaOHcvVV1/Nn/70J6ZOnZoIjcXhEQShLPPnz2fq1KmccMIJcRclk6xcuZJjjjmGYcOG8ZGPfIQ77riDWbNmxV2sTLHffvvx/e9/n9NOO00eIREijz76aP/r5cuXs2TJEtasWcN5553Hzp07YyyZRqa0QmLDhg309vYyZswYx/tjxoyhra0tplJlG1tX0Tw4brnlFs466yxOPvlkWltb+99va2ujsbGxf6rLRrT2Tk9PD6+//jrPP/88//Zv/8ayZcv48pe/LBoHyPTp0xkzZgzPP/88PT099PT0MHv2bL70pS/R09NDe3u7aB0CHR0dvPbaaxx88MGJqM/i8IRET08PS5cuZc6cOf3v1dTUMGfOHBYtWhRjybLLqlWrWLdunUPz5uZmZsyYIZr74JZbbuGcc87hlFNOYfXq1Y6/LV26lO7ubofWkydPZuLEiaJ1ldTW1tLY2CgaB8jvf/97pk6dyjHHHNN//OUvf+HnP/85xxxzDM8995xoHQJNTU0cdNBBrFu3LjH1OfbM7qwe5513ntq5c6f6xCc+oaZMmaJ+9KMfqU2bNqnRo0fHXra0Hk1NTeroo49WRx99tFJKqa985Svq6KOPVhMmTFCgl6Vv2rRJnX322Wrq1KnqgQcekGXpPo758+erzZs3q5NOOsmxxHTw4MH91/zgBz9Qq1evVrNnz1bTpk1Tf/7zn9Wf//zn2MuepuO6665TJ554opo4caKaOnWquu6669Tu3bvVqaeeKhqHfBSu0hKtgzm++93vqpNOOklNnDhRzZw5Uz322GNq/fr1auTIkUnROH6Rsnx84QtfUKtXr1a7du1SixcvVscff3zsZUrzMWvWLFWM22+/vf+aa665Rq1bt07t3LlTPf744+qQQw6JvdxpO0px0UUX9V/T2Nio5s2bpzZu3Ki2bdum7r//fjVmzJjYy56m4yc/+YlatWqV2rVrl2pvb1ePP/54v7MjGod7DHR4ROvqj3vuuUe1traqXbt2qbfeekvdc8896sADD0yMxjXWC0EQBEEQhMwiOTyCIAiCIGQecXgEQRAEQcg84vAIgiAIgpB5xOERBEEQBCHziMMjCIIgCELmEYdHEARBEITMIw6PIAiCIAiZRxweQRAEQRAyjzg8giAIgiBkHnF4BEHIPDfeeCP3339/3MUQBCFGxOERBCHzHH/88Tz33HNxF0MQhBiRZ2kJgpBZGhoa2L59Ow0NDf3vLV68mJkzZ8ZYKkEQ4qA+7gIIgiCERW9vL+9973t59tlnOfroo2lvb2fXrl1xF0sQhBgQh0cQhMyilGLcuHFs2LCBF198Me7iCIIQI5LDIwhCpnnXu97FsmXL4i6GIAgxIw6PIAiZ5phjjhGHRxAEcXgEQcg2Rx55JC+88ELcxRAEIWbE4REEIdPU1tZy6KGHMnbsWIYOHRp3cQRBiAlxeARByDRXXXUVF198MWvXruWqq66KuziCIMSE7MMjCIIgCELmkQiPIAiCIAiZRxweQRAEQRAyjzg8giAIgiBkHnF4BEEQBEHIPOLwCIIgCIKQecThEQRBEAQh84jDIwiCIAhC5hGHRxAEQRCEzCMOjyAIgiAImUccHkEQBEEQMo84PIIgCIIgZJ7/D/62DrgOEGYRAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -216,7 +216,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "id": "3e9ff9df", "metadata": {}, "outputs": [ @@ -229,7 +229,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGwCAYAAACtlb+kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACEUElEQVR4nO2deZxdVZXvv5VUKmNVEghJZQASkDkMAqGRDiYiQcQWDPoAQQWablp8vLToaxponxFb5UkzpEFom/cQaJ+iqNAoCgYCibRhMEFiEmQQCIRKpcxcSSqpSiX7/bHPqX1O1R3OPK7v53M+5+bec0/t+8vea6+99tr7NAAKQRAEQRCEAjMo7QIIgiAIgiDEjTg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwtOYdgGyxKRJk9i+fXvaxRAEQRAEwQfNzc2sW7eu5jXi8FhMmjSJtra2tIshCIIgCEIAJk+eXNPpEYfHwo7sTJ48WaI8giAIgpATmpubaWtrq9t3i8PTj+3bt4vDIwiCIAgFQ5KWBUEQBEEoPOLwCIIgCIJQeMThEQRBEASh8EgOjyAIgiDkgBEjRjBu3DgaGhrSLkpiKKXYuHEjXV1doe8lDo8gCIIgZJiGhgYuv/xyZs+enXZRUmPx4sXcd999KKUC30McHkEQBEHIMJdffjmzZs3ixz/+Ma+++iq9vb1pFykxGhsbOfLII7ngggsA+N73vhf8XlEVShAEQRCEaBk5ciSzZ8/mxz/+Mb/85S/TLk4qvPnmmwBceOGF/OhHPwo8vSVJy4IgCIKQUfbff38AXn311ZRLki727x83blzge4jDIwiCIAgZxU5QLtM0ViXs3x8mYVscHkEQBEEQCo84PIIgCIIgFB5xeARBEARBKDzi8JSGwch/txPRQhAEoUyI1S8Fk4FNwPfTLkhG+BTQDVycdkEywl3Ae8DUlMuRBYYCLwNPAuXZzbY604HNwD+mXZCMcBWwAfjLtAuSEQ4BjkYPqLOPODyl4BPAaHQH/750i5IJbkVvQfUDpFMD+ALaKf5u2gXJAO8HjgfORLebsnMVMBb438D4lMuSBe4GxgH/lWopRqR0uBmErhvDgYkVy7l27Vquuuoq13sf+MAH2LlzJwcddFCg3x4GcXhKgdPJ+evUSpFNPpx2AVJmiuP1HCqZtXJxjOP11amVIjsc4Hh9eWqlyCbvT+WvjgB2pnS4rcMwx+v9K5b1+eefZ8aMGa73FixYwIIFC3j33Xd9//awiMNTCk5wvD4prUJkhGHoaIbNcWkVJCMc63g9CJnWmu54fXhqpcgOTgew7HpM7vfvw1IpRXYY7njdSKVprf4Oz2c/+1kOOuggbrrpJgA+9rGP8eqrr/L6669zxRVXxFxeebRESXB26v0bbdnoP988pdqFJWF6v39PAV5JoyAZwdnBT0TXlb0plSVtmnB36mVvK8f0+/eBqZSiCxiZyl/Wf9swvN+nTcAu1zvPP/883/72txk5ciT79u3jW9/6Fl/5ylfYsWMHgwcP5rbbbuNDH/oQnZ2dvPTSSzz88MNs2bIltvKLw1N4hgH7Of5ddqPV30iV3QE8pN+/y14/DnW8Hgy0Am0plSVtDgSGOP4tdcNNenoEe5JU1Azt9+8h9Hd4li1bxt69eznxxBM588wz2bRpU9/DP0855RRWr17NunXrAPjVr37FRz7yEX70ox/FVmJxeApP/7nV0ejxwc4UypIF9uv377IbcdHDTSU9yurw9NcinYhGdpC24qa/+9A04Iru7m5WrFjB+eefz5VXXsnHP/5xlFIATJo0ibY207bee+89Jk+OdwAqOTyFx3Z4OoBO63WZoxq2Hq9Z5zJrAcaI23qU2YgPBsZYr209ytzJ928rzUBLSmXJAnZbsR/iWea6ASY1YLd1HujwgJ7WmjdvHk899RRPP/103/uVnollO0NxIQ5P4bEb6Sb0XitQ7k7e1uMP1nkS5V6a3l+PMjs8YxyvV1rnMuth14216L14QPQAaSs2doTHnsYaUvGql19+md7eXv7hH/7B9X5bW5srojNlyhTa29tjKKdBHJ7CY4/SNmFC82VuqLYer6CTUYdQ7v1FxIgbbC22AWus16KHdnbswVKZoxr928pEyp0VYv92O6OocoTnkksu4e677+b11193vf/iiy8yffp0Jk2axKhRozjnnHP49a9/HV9xKff/VkmwO/jNgJ39LhEe+DOwHq3FFPSUXxnpb8SlQ5MO3qa/HschDiDoKa0edAc/ER0BKxsNmMi4HeExDk9DQwMHHHAAV1xxBUcccQRz584dcIe9e/fy5S9/mWeeeYZBgwZx8803s3nz5gHXRYk4PIXHOaW13npdeVfMcuCMeLWjHZ7W9IqTKkMwORmrrfMY6/09aRQoZZwdvN1WxqVUlizg1MPuzA6ocm0ZsPXYiB4wTUHXjzI6PLbroNCP6XG+Bx/84Ad5+umnefXVVzn//PPp7OzsfwMAfvGLX/CLX/wi1pI6EYen8Dg7+I3W6/6rDcqE04hvsl6PTaksaWP/7n3AO9bZ3i7+z2kVKkWc0VB7pCltxe3wiB6mfkyhvHrYrkOvdTjfgyVLljB4cPaeryU5PIXH6fDYU1plbaTg1qPsnZr9u7eijdbWfu+XDWc0tOx1AwZ28M73yojoYbCdmb24N+bMnpPjRByewjPGOm9BGimY3y56uA248yx6iBYgejgZiYlyiR7uCI9CR4dBHB4hZUZZ5+1IIx2EefxdJxLxsvN37Pn1steP0da5E6PFKKqtPik+th7bMG2lrNO/Y6zzHnSSbtlthzPCA5WmtbKIODyFx3Z4diJGy/ms351IB2/XjR3Wuex62E8o2oF2emxjXtb24tRD6oZG2orGdh3syI7dViTCI6SKs1NzNtIybrZna7EXvTuorUfZOzT7MSNlN+JOPRQyincOlqRuaKStaCTCI2QSZ0O1Dfhg9DbxZUOMlhuJ8LgRPdw420vZtZC64aZ/hEccHiETOBvqbswmUWWMaojRciMOoBvRwzAYGGa9dkaHRzjeLxNSN9zIlJaQSaShGvprUfYpi2p5CWV0hkHyNJyMdLzeic5pskfxZawfYkfd2K6DTGkJmWEQYsSdVIvwjKXcOU1ixDWih8G2G3sxO+mWeYAg0WE3diRHprSEzOBclWQ3VDFaAyM8gzFLtMuEjFrdiB6G/h08lFsPqRtuZEpLyBx2I92Hzt+Bck9b9I92dWMMWBkNV7VR6/4Vri0DooehfwcP5e7kqzk8w3APLMuCt6TltWvXctVVV7ne+8AHPsDOnTs56KCDYi1hJcThKTSVRmkS4XEb8a3WeTTlo78R32adyxjtAtHDSf/BAZS7rfS3HTswnX0a9WNESodN/2XplSM8zz//PDNmzHC9t2DBAhYsWMC7774b8LcHRxyeQlNplGbvqlvmZelOI27rIZ1aubVw7sItelQeHGy3zmI7NGnVjxHo/5c0DruNeJvS6u/wfPazn+Wggw7ipptuAuDhhx9m8+bN/OQnPwkuhw/E4Sk0lSI8YsQrO4Cih9FiKOV7nEL/Xbih3HWj1mBJ9NCUWY9qDo/bpXj++ec56qijGDlyJMOHD+db3/oWX/nKV9ixQ/dJd9xxB5/73OcSKTFkPaVaCIl08G4qjdJk1OoO09u0ABuTLU6qOPPd7L2qpG7IYMkmSxGvLtzbBiT9t2HgsvTKDw9dtmwZe/fu5cQTT+TMM89k06ZNfO973+v7fPHixcyaNSvOArsQh6fQiNFyIw6gm/71Y5/1ehTldXikbmikrbjJmi3tqn9JrPRflm47Pg3WoQDo7u5mxYoVnH/++Vx55ZV8/OMfRymVbFEdyJRWocnSqCQLSKfmplanVrb6IR28G2krbkQPN/2ntPY5PhuYxzNv3jyeeuopnn766SQKVxVxeAqNvQX8Lsd7ZW6kdp6Gc3RUZj3EiBtECzeihxtxiA1Ot8Hp6FROXH755Zfp7e3lH/7hH+IuWF1Sd3g+//nPs2LFCrZt28a2bdtYunQpZ599tuua+fPn09bWRldXF8888wxHH3206/OmpibuuOMONmzYwI4dO3j00UeZPHlykj8jowy3zuLwaMQBdCN6GGppMYzyJXHbtqPS4KBs0T+QtuLEuSt9fYfnkksu4e677+b111+Pu2B1Sd3hee+997juuus4+eSTOfnkk3n66ad59NFH+5yaa6+9li996UtcffXVzJgxg/Xr1/Pkk08yatSovnssWLCAuXPnctFFFzFz5kxGjRrFY489xqBBqf+8lLEb6W7He2VtpFBbj7IZ8cGYFD6pH5U7tO2O12WrH5Xaiq1H2eoGyODRid2v9s/FMSu1GhoaGD9+PNdffz1HHHEE8+fPr3inJ554gp/85Cecc845rF27lpNPPjmuQvehsnZs2rRJ/fVf/7UC1Lp169S1117b91lTU5PasmWLuvLKKxWgWlpaVHd3t7rgggv6rpk4caLq7e1VZ511lue/2dzcrJRSqrm5OfXfH90xX4FScJfjvWnWe9szUL6kj99av/08x3uft977aQbKl+QxyvrdSsEwx/s/s977uwyUMcnjfOt3/6bf+zus96dloIxJHt+1fvdXHO+dZr33egbKl/TxlvXbT3G89zXrve/E+rcPPvhg9R//8R/q4IMPzoAOKBiq4CQFJ/R7/0jr/dFq1qxZau/evWr16tXqlFNOieTv1tLBa/+dqRDIoEGDuPDCCxk5ciTPPfcc06ZNY+LEiSxcuLDvmp6eHpYsWcJpp50GwEknnURTU5Prmvb2dlatWtV3TSWamppobm52HcWj1ihtFBkI8CWMRLwMwxyvux2vyzqKr1Q3oLwRQIlouJGIl8Ge0trX730zpbVkyRIGDx7MMcccw4svvphg2WqTiR5v+vTpbN++ne7ubr773e8yd+5c/vjHP9La2gpAR0eH6/qOjo6+z1pbW+nu7mbr1q1Vr6nE9ddfT2dnZ9/R1tYW7Y/KBLbRqtTBgxhxKK8Rd9YN5XhfOng3Za0fMjhwI7bDUG9KK7sPEM2Ew/Paa69xwgkncOqpp/Jv//ZvPPDAAxx11FF9n/dft9/Q0FB3LX+9a2666SZaWlr6jmImOVfKS+jBjOjL1lDFiBvqRTRED43oYbC1GE75tnAT22HovyTdRhweT+zZs4c333yT5cuXc8MNN7BixQr+/u//nvXr1wMMiNSMHz++L+qzfv16hg4dypgxY6peU4menh62b9/uOopHpQgPyCheRmnSwfdH9HBTqa1IErc4PFB/SisTbkVFMlmyhoYGhg4dyttvv017eztz5szp+2zIkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a8pLpQgPlHfuWVZpGWQKx001PaStGPZi9qEpkx5DHa+THyzZMxWNjVmJqlWb0qr8eImosH9/mJ2aU1fwm9/8Jo8//jhr166lubmZiy66iNmzZ/ftxbNgwQJuuOEG3njjDd544w1uuOEGurq6+OEPfwhAZ2cn9957L7feeiubNm1i8+bN3HLLLaxcuZKnnnoqzZ+WAWTU6qbWqLUF55boxada3ZAO3k1Z20qt+jGScukx3PE6+QjPpk2bADjyyCN58803Y/1b3khnSuvII48EYOPG4I+8Sd3hmTBhAt///veZOHEi27Zt4w9/+ANnn312n7Ny8803M3z4cO6++27Gjh3LCy+8wFlnndX3tFWAa665ht7eXh566CGGDx/OokWLuOyyy9i3r/9/SNmQUbyhATNSq5bEPQp32L7ISAfvRlZpuallO1opV/2w68ZeoNfxfjJ1Y+fOnSxevJgLLrgAgFdffZXe3t4634qTscAEtOPbXeH9EUQ5cGxsbOTII4/kggsuYPHixXR1BX+OWOoOz9/8zd/UvebGG2/kxhtvrPp5d3c38+bNY968eVEWrQBIp2ZwhqWdenSjE7mb0HqUxeGp5wxLB68pY1sBsR1O6qUGjEB3pfE5Iffddx8AF154YWx/wzvNwH7oXbg3ON4fCYxD15nq+bNBWbx4cZ8OQUnd4RHiRDo1gzMsXUmPcWgjXsTtCSohHZob0cON6GGotvijfxL3lthKoJTie9/7Hj/60Y8YN24cDQ0N9b8UG58DbgB+Afwvx/sfBO4BVgJXRvbXlFJs3LgxVGTHRhyeQiN5GgZbi17MXLON0+EpC9KhuRE93EjEy1CtbuxB6zMcrUd8Do9NV1cX7777bux/pzY9aE06gXcc779tvd/S7/3skMlVWkJUiNEyVNMCyh3xqrUqKc1RZNLIKi03ktNkqDalBeW2pfkbHIjDU2hk1GqopgWUs1OrVzdAJ3GXBWkrbiQ6bKjWwUM560c1BzD7WojDU2gkh8fgJcKT3YYaPdWM1m50qB7KqYdENGAIZmlx/jq16Kk1WCpj/ajXVkaS1d2WxeEpNDJKM3gxWmXSw8uotUxGXKZ/Dc4Hy0rES6a0+uM1iTt7iMNTaEZYZzHiEuHpjziAbmRKy+B0eLr7fVZGPWoNDso8eOxvS/c43hOHR0iUJsdrMeISlu5PLQewzEa82qi1mfIkccvgwI0MDtzkN6dJHJ7C4iUsLR28JtuNNB7EiLupN6U1CJ2bUAZkcOBGprTc5HcBiDg8hcW50V5Pv8/K3Ej7h+gh6400HsThcVNNj12YHXTLoofUDTf5jWjEQ34dQHF4Ckul50bZlLGDr6VHthtpPEin5kb0MEjOihupG27y6wCKw1NY7A6+UkTDrpRNuJ8xVWS86JHNRhoPMm3hRvQwyODAjdQNN/m1peLwFBY7ablSpdzheJ3Nihk9+W2k8WDr0X+6E0SP/pRND2krbqRuuMlv/RCHp7DUqpT7cK8+KQP5baTxUMshLtu0xRDHa9HDW1spUxK3tBU3tepHtvUQh6ew1KqUkPWKGT219LAjXmVx/sCb0SqLHs5pXdHDdPCVIhq7MA/fLYse0lbceNEjm4+lEYensHh1eMrSUGuFpcumBYgRdyIOj5t6tqNsAwRpK27ya0vF4Sks4vC48RKWHgY0JlOc1BEjbrC12AOoCp+XVY96tiObo/jokbbixostzaYe4vAUllpeOMgozYnzGTBlM+KV6kdZ64a0FY0MltxIW3GTXwdQHJ7CIqM0N7X06MUsOc1mQ40eL6M0qRuasupRzQHMdqcWPV7aShPu5PciIw6PkDlqNVLIesWMHhm1usmv0YoeaStuRA83XqPDZdCjAePY5S/iJQ5PYZEO3o0kYroRh8cgbcWNtBU3tfTYS9afEB4tzodS5y86LA5PYREj7kbC9G7yu7Q0eqRuuBHb4Ub0MOR7RaM4PIVFGqkbr2H6snTytfZasbUoy+Zy0lbcSE6TG3GIDU6HR5alC5lBjLgb0cMw2Dqgsh5d6N24oRx6yBSOm1rOMJSrrUD9wVKZ6ocfO9oQf3F8Ig5PYZGltm7E4THUC0tDueqHRP/cSFtxIxEvg1dnGLIYHRaHp7CIEXcjRtzgxeEpU/2QuuFG9HAjehjqabGbLD96RByewiKN1I1MWxhsLfZhjFN/ylQ/JEfDjdgON6KHoZ4WkOXBkjg8hUUaqRvp1Az1on9QLj28tpWhlGNzOZkOdyO2w+DH4cmeHuLwFBZxeNzIZmqGfBut6PEa/YNy6CHT4W7EdhjqOX+QZT3E4Sks4vC4kcRDgzg8burpUbZHj4jtcDPMOst0eN6jw+LwFBavYekydPAgRtyJF4enjEbcy6i1DO1F2orBOYUpeuR9sCQOT2HxarRkczlNdhtp9PgJS0sHrylj/ZC2Iisa+5PvwZI4PIWlXuhxJ2ZzuTI1VEnEzHtYOnrE4XHjZ+PB7G0uFy31dhaGctWNfA+WxOEpLPn2xKNlENBovZZRq3Tw/RE93PhJ4i56dNjWohczQOxPmepGvgdL4vAUFjHihnpP+IXyaAFSN/ojeripp8cuzP5N2RvFR0u+O/joyXdbEYensOS7YkaLzMO7kbrhxkvSclmioSD1w4lEyt3ku26Iw1NY8l0xo8Xp8Oypco2txTDM9FdRyfdeGtGT791jo0fqh0HsqJt86yEOT2HxYrTKMjKxtdhd45oybS7nJUxfpm0L8m3Eo0emcQziDLvJdzRUHJ7C4sdoFb2henH+yrS5nHTwbkQPN6KHwU+0qwl3vmARybcDKA5PYZFRmsGLFlAePaRDcyN6uJG8FYOfaCgUX498txVxeAqLn91js1cxo0UcHjdSN9yIHoZBwGDrdT73WokWLx38XqDLel30+pHv/K7UHZ7rrruOF198kc7OTjo6OnjkkUc4/PDDXdfcd999KKVcx3PPPee6pqmpiTvuuIMNGzawY8cOHn30USZPnpzkT8kYYsQNXrSA8unhdZRW9M3l/Iziy1I3IK+j+GjxOlgqW/3IZ91I3eGZNWsWd911F6eeeipz5syhsbGRhQsXMmLECNd1jz/+OK2trX3HOeec4/p8wYIFzJ07l4suuoiZM2cyatQoHnvsMQYNSv0npoQ4PAa/Dk/RR61+6gYUf3M5eZaWwenwiO2QwVJ/8t2vpL7+9qMf/ajr35dffjkbNmzgpJNO4tlnn+17v7u7m46Ojor3aGlp4YorruCzn/0sixYtAuAzn/kMa9eu5cwzz2ThwoUDvtPU1MTQoWa5cnNz9v5zwiGrtAxitNx40cPeXG4wupPfUePavJNvIx4tToen2hYOUD49ZLCk8bNKaxQ6OqxiLZEfMhf+GD16NACbN292vT979mw6Ojp47bXXuOeeezjggAP6PjvppJNoampyOTbt7e2sWrWK0047reLfuf766+ns7Ow72traYvg1aeF3Hl6MlkYcQDeih0HaihvRw43oYXBGh7PlAGbO4bntttt49tlnWb16dd97jz/+OJdccglnnHEGX/7yl5kxYwZPP/00TU1a/NbWVrq7u9m6davrXh0dHbS2tlb8OzfddBMtLS19R7HyffyGpbNVKaNHjJYb0cONODwGL5FhEGe4P2WpH1702I3e5gOy1rekPqXl5Dvf+Q7HHXccM2fOdL3/0EMP9b1evXo1y5Yt45133uFjH/sYjzzySNX7NTQ0oFTlcFpPTw89PfUqcV6ReXg3YrTciB5uxOExyBSOG2krbvzoMRatR3usJfJDZiI8d9xxB+eeey4f+tCH6k4vrV+/nnfeeYfDDjus799Dhw5lzJgxruvGjx9fNe+n2Mg8vBsxWm5EDzd+8hKKvrmc1A03Mv3rJt/1IxMOz5133sn555/PGWecwZo1a+pev99++3HggQfS3q49x+XLl9PT08OcOXP6rmltbWX69OksXbo0rmJnGLtS7qF2wlg2K2X0yKjVTb6NVvT4zUsosh5SN9yIHm7yrUfqU1p33XUXF198Meeddx7bt29nwoQJAGzbto3du3czcuRIvva1r/Gzn/2M9vZ2pk6dyre+9S02btzYN53V2dnJvffey6233sqmTZvYvHkzt9xyCytXruSpp55K8+elRL4rZfSIHm7EAXTjRY+96JVrw9F6bIq7UCkhbcWNtBU3+d6XKHWH5wtf+AIAS5Yscb1/2WWX8cADD7B3716OPfZYPve5zzFmzBja29t55plnuPDCC9mxwyyVveaaa+jt7eWhhx5i+PDhLFq0iMsuu4x9+/Yl+nuyQZAwbLaWD0aLhKXdSGKqGz+d2nCKrYc4PG5EDzf51iN1h6ehofYurrt37+bss8+ue5/u7m7mzZvHvHnzoipajvH7KAWAEcDOeIqTOvlupNEjerjxo8d4iq2HDA7cSFtxk++IVyZyeISo8Vopu9Cheih2QxWj5Ub0MAxxvBY9gnVoRX70iLQVN/nWQxyeQuK1UkI5Rmpep3Cy2UijJ99GK1q8buEA5WgrfusGFPvRI9JW3ORbD3F4CokfhyebFTNa8t1Io0f0MPhxeMqkR73pcOfmcmXQQ5xhTb5thzg8hUQcHjf5nneOHtHDYGuxDzO9W40y6SG2QyNtxU2+HUBxeAqJTGm58dtIh+LO7Sga+TZa0SIdvBvRw02+IxrRk289xOEpJGK03ATJSxA9pG70R/RwIw6xoQx1A/Ie8RKHp5AEMeLZqpjR4lUPe3M5KLbhEiNuEIfHjejhxm9bGYJZJFFE8m07xOEpJGK03Igebvzu01QGLSSioZHBkhu/079Q3PoxCLN1nzg8QmaQDt6N6OEm36O0aJG64Ub0cONVj33ofc2guHrkf88qcXgKiRgtNzJqdSObyxm87tEEUjf6I7bDTdHrR/73rBKHp5CI0XIj0xZuZHM5g9fpPZC20h/Rw03R9XA6PHvqXJtNLcThKSTSwbsRo2XwMw+/m+I/ekTqhhuxHW6kfhhsLfZQ/0HTthYjyZKbkZ2SCBEiYXo3YrQMfubhofh6SN1wI3q4ET0MQbSALEWHxeEpJNJI3YgeBj/z8FAePSSioZGcFTdiOwx+BtLdmGmv7OghDk8hkUbqRvQw+JmHh/LoIXVDI3q4EYfY4EcLyGL9EIenkIjRciN6GPzMw0PxR/FB6sYQ3I5jkZC24kYiXgZxeIRMIkbLTZBRmhgtTdHrR5C6AaIHFL9uQLB8yKLq4dd2ZC/iJQ5PIZEwrBsx4ob8G61o8aPHXoq/uZzYDjdiOwxBB0vZGTyKw1NIgoZhi7q5nBgtg0R43IgebqStuJEIjyH/bUUcnkKS/+WD0SKbyxnyb7SiRSJebmRLC0Oj47U4PEWwHeLwFBI/HfwuZHM5J9lrpNGSf6MVLaKHG4kOG/xu4VB0Zzj/bUUcnkKS/4oZLeLwGPI/Dx8tooeboNHhIuohe1a5yX+/Ig5PIcl/xYwWWaVlkLrhRvRw40ePbG4uFx1Oh6fXw/VlcYa9zBxAFiNe4vAUEjHihkZMNZdRmr8cDSi+HtJW3EhOk8FvBy91w032HEBxeAqJGC1D0LB0U7/vFgWpG27E4XEjehhECzf510McnkKS/4oZHUETD6HYekjd0IgD6Cb/o/jokLbiJv96iMNTSMRoGfzOwxd9c7n8G61oET3ciB6GoM5wIzAs+uKkTv7rhjg8hST/FTM6/M7DQzn0EGdYI3q4kbwVQ1CHB0QPyGLdEIenkOS/YkaHXy2g2NMWUjfciB5uRA+DXy32ATut10V0iPM//SsOTyERo2UI4vAUeRQfJqJR5M3lpK1o8t+pRUcY2yF6ZFELcXgKSf4rZnSI0XITtG6AOIBQ7LrRAAyxXoseMh3en/xP/4rDU0hklGYQh8eNXyPejUn2LrIe0laMswN57tSiQ2yHm6AOz0iy4mpkoxRCxOTfE48OMVpuRA83EuEx+N3CAcqhh+T/afIfHRaHp5DIbroG6eDdSE6TGxkcGJwOz56qV7mRtuJG9DD0OK7Nhh7i8BQOmYd3I6M0N2LE3cgybIOtRS96xZEXyqCHDA40+bel4vAUjjDz8NmolNEiRsuNODxugkZ4hmAiqUVB6oYb0cNN/vUQh6dwyDy8m/w30mgRPdzI5nKG/I/go0Xaipv8Dx7F4SkcQRweMVpuxGi5kfph2EdxHz2S/w4tWsR2uMm/HuLwFA67Uu7F/zx8dpYPRkf+G2m0iB5uRA+DaOFGBgdu8l8/ita7CaEqJWinp0jkv5FGi4zi3YgeBmkrbkQPN35X/0LW9Ejd4bnuuut48cUX6ezspKOjg0ceeYTDDz98wHXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkaGCLI76G6Ku7mcjNLchDHiLRGXJQuIHoYwWkh0WNNpncV2aMThcTFr1izuuusuTj31VObMmUNjYyMLFy5kxIgRfddce+21fOlLX+Lqq69mxowZrF+/nieffJJRo8wIa8GCBcydO5eLLrqImTNnMmrUKB577DEGDUr9JyZMkEoJYsSdbLPORdMCwhlx0UNT1PoRpm6A6AHSVvpj6zE64rIER2XpGDdunFJKqdNPP73vvXXr1qlrr722799NTU1qy5Yt6sorr1SAamlpUd3d3eqCCy7ou2bixImqt7dXnXXWWZ7+bnNzs1JKqebm5tQ1CHecoEApWOvze29b3zslA78hyuNa63d9z8d3DrO+sy0D5Y/6eMr6bRf6+M4XrO/8JAPlj/IYZP0upWCsj+89an3nbzPwG6I8zrZ+1+98fq/L+t7BGfgNUR63Wb/rmz6+M9P6zmsZKH/Ux2rrt83y8Z2vW9+5M9ayee2/Mxf+GD16NACbN28GYNq0aUycOJGFCxf2XdPT08OSJUs47bTTADjppJNoampyXdPe3s6qVav6rulPU1MTzc3NrqMYBI3w2KPW0RGWJQuEHcFnromEJIweRa0bIHqA2I7+SFtxk/9oaOas+W233cazzz7L6tWrAWhtbQWgo6PDdV1HR0ffZ62trXR3d7N169aq1/Tn+uuvp7Ozs+9oa2uL+JekhRgtN0ES7bY5XhfFEbbJv9GKDnF43ARpK1D8+pHvKZzoyL8DmCmH5zvf+Q7HHXccn/70pwd8ppRy/buhoWHAe/2pdc1NN91ES0tL31GcBGdxeNwE0aMbk/QtRrz4dQO8PzsKpIPvT9HrR5C2Mgx3/SoC+bcdmXF47rjjDs4991w+9KEPuaIt69evBxgQqRk/fnxf1Gf9+vUMHTqUMWPGVL2mPz09PWzfvt11FIOgRquoIxMx4m7yb7SiQ+qGG7EdbsImcYseWasbmXB47rzzTs4//3zOOOMM1qxZ4/rs7bffpr29nTlz5vS9N2TIEGbNmsXSpUsBWL58OT09Pa5rWltbmT59et815UGMuBvRw02QaYtsGa3okLrhRvRwE0SPfciKVyfZqhuNaRfgrrvu4uKLL+a8885j+/btTJgwAYBt27axe/duQC85v+GGG3jjjTd44403uOGGG+jq6uKHP/whAJ2dndx7773ceuutbNq0ic2bN3PLLbewcuVKnnrqqdR+WzqI0XIjergJY7RGoE1Gb41r84TUDTeih5swejRTXD387PGWrenf1B2eL3zhCwAsWbLE9f5ll13GAw88AMDNN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mAf5XXPNNfT29vLQQw8xfPhwFi1axGWXXca+fV4fr1AUwhqtbFTM6JAwvZsowvSboitOqgRN0pW64UZshxupH4ZsOcOpOzwNDQ2errvxxhu58cYbq37e3d3NvHnzmDdvXlRFyykySnMjergJosde9O7To9CdWlEcHung3UhbcSN6GIY4XgdxeIYAw4FdkZUoCJnI4RGixB61+ll1AsVspCCdWn/EiBtECzeihxvRwxB0C4ed6AETZEEPcXgKR5B5VihmIwUxWv2RML1B6oYbqRtuZLBkCOrwQJbqhzg8hcOO8IjDoxE93EgnbwirRRN6v5WiIHXDjUTLDXbd2GcdfsiOHuLwFA4xWm4k4mVwjtJEj+DO8A6M0Rc9ilk3ILjtyE5EIzqC1g3IUsRLHJ7CEbRiFrGRgqzEcRImLJ0doxUdQQcHCrPXShHrh9QNjTiAhigcnvT1EIencIRtpEMd9ygCYfUokhF3/r+KES/KqDU6pIN3I3oYgjrDkKXBozg8hSNoxXQ+WqNIRlym+AzOnITaz6EbSHaMVnSEMeJFrh9Bo8NFshsgES8nEuERMknQirmPYnZqMkozSAfvphhGPDrCdvCD0Xs1FQWxHYZi2A5xeApHMSpmdEjSskE6eDeih5ugeuzCrGQSPWTg2J/sRLzE4SkcYsTdBE1azk4jjQ6pG25kcOCmGJ1adMh0uKEYtkMcnsIRNKIBWaqY0RE2LN0IjIyuOKkSRQdfpA4tjBEvYt6KOIAG2cLBjSQtC5kkaEQDpKE66cI8FbwonVoxRmnRIXq4icIBLIoeUWzhMAqd11QEitFWxOEpHMWomNEhRtxQjFFadEhEw43oYYhiCweA5gjKkgWK0a+Iw1M4pFMzDMKMsPLdUKOhGEYrOkQPN6KHIcwWDnswTwUvih7FmA4Xh6dwSOKhwTlKk1FrdHWjKGZDOng3YjsMYTp4KN7gsRhtpSiWS+hDwtKGMGFpKJ4eUdQNKM5eK9JW3IgehjAdPBRPjzCLYbLj/InDUziK4YlHgzPx0O8Tj6F4eoSpGz3Abuu16FHMVVqS72YQh8dNFIthhgNDoilOQMThKRzi8BjCGq2idWoSpncjEQ03YjsMYdtK0ab4onCGIe36IQ5P4RAjbpBRmhvRw4108G7EdhikrbgJUzf2YZ7VKA6PEClixA1RjdKKoocYcTdRtJUR6M0pi4DYDkNU0WHRQ5ONiJc4PIVDRmkG6eDdiAPoJootHKAYegwmmi0cijKFI23FTTEcQF8Oz5QpU+IqhxAZMkozhFlZAMXToxijtOgIo8deYIf1ugh6hNlZGLLSoUWHDJbcFMMB9OXwvPrqq3z9619nxIgRcZVHCE0Uz9IqSpg+zMoCkA6+P9KpuSmSHrKFgxsZHLgphgPoy+GZM2cOZ511Fm+88QaXXXZZTEUSwjHMOgfp5Lc7XhehoUqH5qYYo7ToED0MzghPb9WrqlMkLUDqRn9K6PA899xznHrqqVx33XV8/etf56WXXmLWrFlxlU3wjXOPgyAVsxfYab0uQkOVKS03xTBa0SF6GGwtdte8qjq2Fk2YQVeekcGSm2Is0w+UtPz973+fww8/nF/84hf88pe/5OGHH+bQQw+NumyCb8LOw0MxjbhooZFRqxtxeAxhtdiBXn4MaXdq0SB1w00x9Ai8SquhoYGFCxdyzz33cO6557Jq1SpuueUWRo0qyrbz+eKTwGdDz8NDVipmGIYA/wgcKREeAA4CbgaGF8RoheVM4J8AcQA1VwMfCa2FwkQ1xoQtUmq0AN8AJkndAOAY4NvA4IJsWuorM/Xv/u7vmDFjBjNmzOCoo45i7969/OEPf+Cuu+7i5Zdf5pJLLuGVV15h7ty5LF++PK4yC/04A/gp0E4T3wf0CpJ9tb5Sg/w31JuBLwKTGco8IHgj3Wqdh6LD9EHD/ekxCPgtMAV4hKE8BwR3eLZa5zFhi5UaBwFPWq//haFWzSivHp8G7gReYii/BoJrAVqPMeRZjweATwAbGcoCoMx1Yxjwe/QA8t8ZyltAcD22WOcxocsVBl8Ozz/90z/x/PPP88ADD/D888+zbNkyenpMZ3Lfffdx/fXXc//993PsscdGXlihMt+2zt2hR/BgKubYEPdIjwPQzg5AU2g9tqOdx8FoPdpDlS0N/hva2YEoRq35rhsA8x2vw49a869H9LZjKnnV42i0swMwJrQedt0YjR52BB2ApseVmKzQ/UM7PFutc7p1w5fDc9BBB9W95t577+Wf//mfAxdI8McI4P3W62iM1lbrnE+jdarjdU/oKS3QeuyPHpnkz+E53fE6fP3Yap3HBC1O6nzQ8XpvyfWYChxove4J7fxB3vVwtpXwemxxvB4DbA54n/RwLkdSkekxJnB5oiDynZb//Oc/c8YZZ0R9W6EKJ6LjDzswjbQhlNHKRsUMygzr3Imzg49Cj3w6gCdb561E4fDkW4sxwPus11uAnpLrEW3dgKLosYUo9OjFbEw5JkSp0sPWYxtRDpZyFOHxym9+85s4bitU4BTrvBAYYVXKRrrZE/iO+TZatsPzA6KK8ORXjyHACdbrHxPlqHWkdffgtSwNbAP+J+AN1xYO5ZzSstvKz9BTFqBtR5BdeDT51sOuHw8RZcRrFHnUYzw6320fOj+0KIMleZZWzrEb6e+AtVYjbZKIhquRNpZUj+nodOvNwNNEYbS2YXIR8qfHSdZ5GfBmJCsa81s3wLSVpcB6y3YMK2lbGYpuLxBVBw951sNuK68BfyAKB3CrdR4TvFARIA5PzjncOr8CrLUa6dCSNtKxwDjr9VJgm6VHS0n1OMI6rwLeJgqjpTCr+PKnx5HWeSXwlsvhybcRD4pTjzZLj5ElbSvvQ093bEGvarQdnuEl1eMo67wSWEOUEZ7BQHPwgoVEHJ6cY2/3+CdgndWhlbWR2vkZbegF5JssPUaXXI8/4TZajSVNarf1eBNYY9WNQfQSfAVNfuvGcGCS9fpPmAjPyEiSlvOnh21H3wR2AZ2WHvuVNOLl7FfeJgqHZzdmW48xwQsWEnF4coy9dgjgLaDdqpQjStpInR08wCZLj3BGa6t1zp8eTiO+Adht6TE+EgdwTIh7pIPTiL8baTS0BT1yzQ+HWOct1rHe0qO5pHXD6QwDbLH0GFdSPZy24x1MdHh4zm2pODw5xm6k76F952iM1lbrnO8OHmCr1Uj3L6nR6m/Euyw9JpXQIR4BTLRev4mZ/h1GNw2B77rV8XpM4LukgdP5A9hg6VHWaGh/27Et0sFBfvX4E+4Vr5Nzroc4PDmmv9HaFElYOv8dvK1Hp9VIx+S8kQalvxG3IzzROID50sOOaGxGuymbHQn+wfcU34vZMj9fevR3hrdZeowqoTMMA9tKV990eL4jGkEYDBxsvbb12NM3eMz3Pk3i8OSY/kbL7uBHRdKhDQdXYmf2GRjRsEet5TPi/SMaYMLS4YxWPvXo36H1Oqa0xlX8hle2Wucxoe6SNP312BHplFa+6gYMHDzusvQYW0I9DkJvOrEbWAc4H0p9QM71EIcnx9i7pK6xzjscS0uDP8LVfpwC5LGhgtFjt6VHGSM8U63zVswv2FPiCM9U6/x23zsmwhPO4cmnHtOs81vWeWckKxq3Wucx5KlrGYSJaNj1Y3df/l/5psPtuvE2el2mc+AbzuFZh07ASO8xG7FsPCgkg/2MpDbrvMcxat0fs8+nPxTmcQpjgfVhipgYgzARjfes8+6+UVr5wtK2M7zW8V5vJHkJW61zPvV4t++dqCI8+XR4+tePLseU1lCCrsVxPk6hBXeOU3aZgI5o7MWOaJhoaBlXaQ20HSbCMyGUHn8b4rvRkLobfvrpp/Pzn/+ctrY2lFKcd955rs/vu+8+lFKu47nnnnNd09TUxB133MGGDRvYsWMHjz76KJMnT07yZ6SC/Qvf63unvEZ8Atp73wt0WO919xmt8kU0bGfYGK1B7LPGNweUMMdroBEvb1uBgfWju99gKRh7gJ3W6/zoYdeNdZjY9p5IV2nlRwuoZDvs7Sz2cIAV88krqTs8I0eOZMWKFVx99dVVr3n88cdpbW3tO8455xzX5wsWLGDu3LlcdNFFzJw5k1GjRvHYY48xaFDqPy9W+kd4nGH64EYL8thQbeevHWO0ehxh6eA1of/jFPJBrVFaawmNeDU9wreVrdZ5TKi7JMkoTGnFAazUwRuHJ9wUzlbrnB8tIM7BQfqkPqX1xBNP8MQTT9S8pru7m46OjoqftbS0cMUVV/DZz36WRYsWAfCZz3yGtWvXcuaZZ7Jw4cKK32tqamLoUDM32dyc3u6PQRiBaUbRR3i2Wuf8NNSBzp+ZwhlGD2OBTYHuvM3xegx6R5vsU81oAUwUh4cyd/C2Flsw8Zhoc5qmkEc9nA7PXkuP6KKhDZCT6EitwUHeHZ5chEBmz55NR0cHr732Gvfccw8HHHBA32cnnXQSTU1NLsemvb2dVatWcdppp1W95/XXX09nZ2ff0dbWVvXaLGJHNHZgFsZKhMft8Nh6hOvU9mEcwP0C3yVpas/Dh3nop1038qPFYAbmd0Xn8Gy2zvnRo1IHTyRTWpDH+mHr8Z7jvb2OR20E37bArhvpPk7BLwP1KE6EJ/MOz+OPP84ll1zCGWecwZe//GVmzJjB008/TVOTNuCtra10d3ezdetW1/c6OjpobW2tet+bbrqJlpaWviNvOT8D83cgOqNlN9T8OTyV9AjvANqxofwZ8f4RjSa6OaDC9d7JnxYT0V1ODya/K7pRa/4cHjsa6m4rUemRv/pRzwEMrkc30GW9DmeBkqRaDk8RHJ7Up7Tq8dBDD/W9Xr16NcuWLeOdd97hYx/7GI888kjV7zU0NKBU9RBiT08PPT1hwpXpUjmiEVXFtI1W/hpp9BEe0J3aoeTRiJtOzXRoI9C7LO0KdGe7gx9l3TP7bcjWog3npEJ520p8HTzk0QGsrIfbAXyToGxCJyDsh3NThKwyEjPMrTSlFW6wlD6Zj/D0Z/369bzzzjscdthhff8eOnQoY8aMcV03fvz4qnk/RaBWBx/dqDU/RrxexKtMndpotOGCymFpCNMdbcOkheejU6sc0TDRv3C/In8dfC09htId8pfkq61AfdsRLs6dL1tq141tOLc1MVo0k4MoSQ1y5/Dst99+HHjggbS3twOwfPlyenp6mDNnTt81ra2tTJ8+naVLl6ZVzNip10iDzztDHsPSlR1A06mF0yNfnZr9FOwtOKM4WoshlsMTXA9F3vI07Pydda53TfQvmraSjw4NTP2oNliKpq3kQ48GTP0wegzGfhhs2WxpvboBeoelvJK6szZy5Eje97739f172rRpHH/88WzevJnNmzfzta99jZ/97Ge0t7czdepUvvWtb7Fx48a+6azOzk7uvfdebr31VjZt2sTmzZu55ZZbWLlyJU899VRaPyt26kV4ymbEKzuAplML10jzpYdtwNtd72otGi2jFb5+jCMvethG3O3wRDU4yFcHD9Xqh9Ej3ANl8tXBj0NvNrGPgfld+lW5HMBadcM5WNpMPknd4Tn55JNZvHhx379vv/12AO6//36uuuoqjj32WD73uc8xZswY2tvbeeaZZ7jwwgvZscME3K655hp6e3t56KGHGD58OIsWLeKyyy5j3770trCOm3gjPPlqpM4pnGo5TWWM8FTq4AeHjvBA3vSo5QA2WY9hGYyZqPOH3cEPI0xmVJLUcwCHhbp7vmyHXTc2AL197w51vCpnhCc+25EuqTs8S5YsoaGhoernZ599dt17dHd3M2/ePObNmxdl0TJNMhGefDRSW4vN6AfeGcoZ8ao1ShscWYQH8qJHvQ4edJh+C0HYgd5heAhaj/dqX54yjdCXeFrNASyT7ajVVgAa6S3V4LHW4KAhEtuRLrnL4RG00bIX3Mcb4RmLPZedZSpHuxqxq3fZIl6VO3httAZJhMdCt5Vo9MhPJz8B3Sr2ABtdn5QzOlyrrTSymwbKUzeg9uCgwTE4yCvi8OSQVozR+rPrE2O0RhHmP9c5Qzsm8F2SolbCMsioVeM2WhLh0Z3avkhGrfnp5O26sZ7++/5GleBfnLYS7eAg+3UDkrAd6SIOTw6xIxrr6G+0osqm34vZXTj7DbVWwjLIqFVj61GuDn4YZl+RSqPWfSWL8FSuGxDdqjW7bjSSh1hA7WholNO/2a8bUFsPJVNaQhpU3nQQTFSjXCOTWpswwl4a2RvRKq18GK3Ky7CjrBv50cPWogvnI1ggHocn+22l8gge+q/SCr5Sazdmd+H81I/4Ihr5saNQWw8lER4hDSpP4YDtie8p2cikVgJ3NIl2ttFqJg9PTLdHafEZrfwY8XoRjd6SRbzq6RHNXit516Ocg4Nm9P7pUNl2RDM4SBdxeHLIwI2ybHTF3FPSTq1yhCcKLbaid+qArBuuFvRG9lB5pcXeSDq0/BjxehGN3pJ1avX06BE9iHYKx7kAJNvdra3FNkyMTuO2HeLwCIlSeQQP/Y1WWTbbqz2FoxvpcMLEZpy7C2dbD7tubKX/jjBRjtLy5wxXi2hEEw0tgh66fnSXrH7Ush3RRkMHhb5T3NSrG9EMDtJFHJ4cUs+I7y7RlFYjMN56XXmU1t33Thn0qGzAIdopnHxoARLR6E9lPcxQYFeJ6sf+mFR+91MX3YODcAPHPcB2x1/MLtUH0lEODtJFHJ4cUs+Il2mUZu8r0oveLdVgprTsPbnLoEe96F80ozRbi+HWkV3qjVqjiYbmo25AvZyVctkOW4s/o90Sg3sKpxEzTRyMfETLqw+W3LYj+2vvqiMOTw6pF+HZFWmeRj4a6cB9RcwybHt1TnOov2Rv0xbuuetx49VojRrwuR+2Y08V5kWPaqPWHut3hNMjH3VjMNWiocbh2VUiPeoNHPfR3Ze5VwbbUW+wZOeGhtMiXcThyRnV9xWB/hGeMhiteiN4Z4QnXEO140cH1LwqbbyGpcMbrXzpUa+tlKFuVI+G2oODXrqsLr4MevixHeFsqa1Htm1pvcFBdLYjPcThyRl2pdyFzqY3mI32dkVSMfNhtOpFNKC7bwa9DA5gPT3sKZzhhH1oSL70qDf9G01b2Z8sP4ql3i7L0Q8O8lo3THTYth3RRHiybUu9Tv+Gs6PpIg5Pzqg/KoHd1iM0y+Dw1ItoRGe08qGH1yRdKL4ewzBps/US/MNp4XwUS3YTdetNhTvbSjSDg+zWDfAW4RHbAdEODtJFHJ6cUX0EP6zv1a5IR63jgOpPs0+b6kbLTqbdVSqjVa9T29eXtRJVmD67etgP2B0YDQXbiO+OZNS6F5Pzll096nVo0sHbmC0tyhTx8rr6dxg6kTuPiMOTM6pHNEwHH828sz1KayTLCxGrGy3bAdwdcVg620arukMctQOYfT2qG3Cw68euSKKhkIdOrboeUbeV7GsBXiI8u0sT8RpFtV2Wwa4f3VZbgfxGecThyRn1IzxRGa0ezNOHsttQvRjxaBMPs6tF9a3hIb5OLbt6VHeGwdajKzKHJ/udWvKDg6Gh7xQn1fUoX3TYtqOdwM4Bn+r6sbcvHprfPB5xeHJG9QiPbbSiaqSQp4YqU1rureF3Dfi0fKP46m2lAePwaKXCG/Ds14/kosO7MN1mdvVIzgHMflupPTiI2pamhzg8OaN+Bx9VI4WsG/FGTMmSG7WOJKub7VV+pphNXFOe2awbUP+ZcwA7rQjPYML+r+anUxuoR9RtBbKux36YWuDFASz6Ki0v07/R1o90EIcnZ3iZ0oqmQ4OsG63q+4pA9I20k6xvtpes0cq2MwxeBgew0xELK2+nFscIPtt6VN9lGSq1lWimw0cT5ol+cVLbdkTtAKaHODw5o/6UVpReeLaNVvV9RSD6iAZkvZOvXjcgvim+bDp/4CW/qxfYWwoHcDB6gABJ5P9B1vVIdnCwFV3XIKvtxa8eksMjxE7tXZYHdmjhN5cTo+Um2w5gsnrYWuxHVs2Il8EBUAoH0I6G7sH8zxlM/l9ZosNeIxrR1A1F1rctkCktIXNU32UZKlVKKPaoNflGWgwjHk2nZhvwQWT1eWtepnCAUuQ02VrUjobK4EAzMD1AbAdI0rKQKF4b6R6IeHO5bDbS5FcWiANocG62l736MZxa0dA4IzzFqBvRRYezVzfAfwdflunwgXo0YmpClA5gOojDkyOqJyxD/1FrGZ4BI1NabkQPg91WdmJ2kzLE0VaK1cFDORzAWns0laWtgJcNSyFaBzAdxOHJEV4bKZRj1FrbAYxz1Vo29Ug+LJ1dPbw6fxD14CCbm+0lHx3OdgcvbcXQgt5sA2rlu0F0jx5JD3F4coTXDh6iMuJ/ts7jQ90lLpJdlQTQYZ2zp8cYzC8eqMcQTFOP0gG09ZhQ86o08OPwRLfZnl3T8qZHHBGv7NYNSCOHJ7t62FpsodKGpXHUjfQQhydH+DFa0Rhxu5EOJ4tV3O8UTvjN5Ww9WmtelQa2FpvA8Tx0m8ph6TIY8eQ6eNApwZDl+pHcYCm7WjTgffAY3RROXttK5cFB9noDb4jDkyOSn9LahcmAyFZDrb3LMjj1cD4bJhojni0twKvR2gf0SAcfS1uBonRq0UZ4sjdYOgBtP/ZhSukmjuhw3m2Hu25IDo8QO8lPaUFWoxq1d1kGp9FSRB3xyq7Rqj29V74Ovt50J5RDDz8LHqIZxWd3is+uGx3otYYDKWd0ONloaDqIw5MjxIgbnFoM3FcE4h+1toS6U9T4cYYlhycuPbIZ8RqCyTpLdhSfzU6+dt0Apy3tcrxb1Jym5GcO0kMcnpxQe5dl+wqIvmJm04jX3oMHyjbFl84UTjbrBqQdDc1W3bD/d7qBzRWviDunKVt61G4rgzHPu9qNIioH0K4bI8iauyARHiFz2Aa8i0q7LEPZRvF+RmlQ/E4tiNEaQdjN5bKpBaRlxLOpR/22Ui4H0JszDNHq0UXWp/iSjYamgzg8OaF+RKNcK0/8RniKPm0RJMIDUa7iy84U3yhMaZIN02d7CsdvWym6Hsk6PJDPiJdEeIQUkFGaGz9haSi7Hm6j1UNUm8tlc4rPdoY7MZ23mzi2cIB8dmhQrVMrpx62He1Br+MSB1DjtqPhHz2SDuLw5IT0HJ48RzSgLBEvP0YL4jDi2enUZHDgRvRw42fxB8SRxJ0dPfZD7w0O/qKhkM8ojzg8OcHvlFbRc3hq6+HeDh2KbcT3B5qs1+srXuFelg7FdgDT7+CzNcWXfr5bduoG+B8cFHlKy9ZiIybq68ZdN5yPHhGHR4gNifC48RuWLnKY3tZiA9ogDcTWY+CotYgOYP2clbg6+GxO8fm1HdFF/7LXVgZjSuNl+heK7QDWTuCGWg5gHhOXxeHJCekswwbTSIein9iUPvV3WR5otIo8D++3Q4Ni77UStIMfjDs2GIzsOoD1Izxx7cOTHS3Go/+fq29YGmeEJ3t6+I3+Qb4Tl8XhyQnphaW7ga3W62w01Pq7LIvRchOnA5i9UbxfPZyJzeV2iOOa0srOFJ+txXrs2G9/4sx3y2NbidOWJo84PDkh6Kg1mrBjtoy4312WoRzz8OkYrWzVDfCvh/PRI0WbAh6GTkyFanoMdbyOOjrsnOLLhh5hIhrljIYOzP/L8wNEU3d4Tj/9dH7+85/T1taGUorzzjtvwDXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkLsDMPsslw/L8FttMJvLgdZM+LeE7jjmMKxtXD+r6RLumFp+39hUs2rkiSIEY9ej4k1r0qK+huWOp8QFeWztGyypUe6gwP7r2ZDC/CzR1McDmDypO7wjBw5khUrVnD11VdX/Pzaa6/lS1/6EldffTUzZsxg/fr1PPnkk4waZeResGABc+fO5aKLLmLmzJmMGjWKxx57jEGDUv95kTDFOu+gmtEahKmY+tng0W0uB6ahZsOJtPV4r+oVI6yzeRJOdEa8BzORlg097FKkk8PTZp2z4/BkQ49s1Y36Hdpe9CRx1B1a3vRIwhkeCowLfbcoCNNW8hjhaUy7AE888QRPPPFE1c+/+MUv8s1vfpNHHnkEgEsvvZSOjg4uvvhi7rnnHlpaWrjiiiv47Gc/y6JFiwD4zGc+w9q1aznzzDNZuHBhIr8jTg60zmurXuEcpelO3t5crgldMSs7Sl7JltGy9ajv8OzseyfaRroOnTY9GVgVyR3DUL9+xOkA2nVjAtqc9Ia+Yxj2x7SGtqpXDawf0euRjbZiDw781I3+0eHKTxT3Sv71iK5u9KKntSag9dgY+o5hCWI78uzwZDoEMm3aNCZOnOhyWnp6eliyZAmnnXYaACeddBJNTU2ua9rb21m1alXfNZVoamqiubnZdWSV+hGNkY7XxR+1hjHi0fwv500Pu37E4QBuQLvWg8jClKetxZ+xd2CqhK1HHPUjW3WjfodWXQsoXnTYewc/sK0ULeLViGmx9fuWOBzA5Mm0w9Paqv87Ojo6XO93dHT0fdba2kp3dzdbt26tek0lrr/+ejo7O/uOtrbq48G08ddITRpvUUet3o14XBGe7OgxFL3UFvxN8UWnh8KE6tPXo37dgHgjgNmpGxCsg+/B7OcUnR7ZmPIM4wAWzXZMQjsAPegBQmXidgCTJdMOj41S7rU4DQ0NA97rT71rbrrpJlpaWvqOLCc5e4/wdLneLboRD9LBF22UZteNLmBz1auqO4DR6JGdUbw3h6d6pxZdRKMlkruFxbvt2Ol6t6jR4TARnmgdnvQdQKcdrd5Txj14TJZMOzzr1+sVMf0jNePHj++L+qxfv56hQ4cyZsyYqtdUoqenh+3bt7uOrBKkkUIcDk/6jbQBYzr9RHjsaFcjUWwulx09/EU04gpLZ0eP+h18E2bdYhw5PDswS7HT1yNIjgYUc7A0FvNrq8fz457CyY4eYQcH4vBEzNtvv017eztz5szpe2/IkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a/JOkIgGxDFqTX91wQFWKfZRa2VB9Q4eimXE63fwUKYpPu9TFlCGaYsg078Q12CpIfTdwmBrUTu/K+4pnOxEQ73ZjjgT/JMn9VVaI0eO5H3ve1/fv6dNm8bxxx/P5s2bWbt2LQsWLOCGG27gjTfe4I033uCGG26gq6uLH/7whwB0dnZy7733cuutt7Jp0yY2b97MLbfcwsqVK3nqqafS+lmREiQpFaKsmHvQZmI8aa8usLVYT631QANHJfbmcqPQelTeodkr2TFa2Ril5bGD78FZg6LX4yjS1qMJsz2m3whPtBsx7gOGoIcr1bNF4iZsW7Gjw7sJQ57aCsQ7/Zs8qTs8J598MosXL+779+233w7A/fffz+WXX87NN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mDH7NddcQ29vLw899BDDhw9n0aJFXHbZZezbV3nz8DwxHL3UFtIMS4NuqLbDsyKSOwYhaFIqaD1GEWVewgS0Ia/8yM4kCJukW7ScprDTv0XSw/7ru/CX3wVR6tGLdnJa0VGe9ByeoBENpzLNlM3hiTunKVlSd3iWLFlCQ0PtUOeNN97IjTfeWPXz7u5u5s2bx7x586IuXurYlXI7JjNgIHEnLYNuqO8n7YZaP9oF1fSIbtS6ER0UH4reNfXd0HcMStAprWjD0tmJeAVN8C9inkbQ/C6Iw3a0ovV4OZI7BiFoRCPa6LBdN8ah7Uf1ybW4qa/HYMyjRySHR0gAbx18eUat9fOZIP4kbshKJx+0U7O1GEkURiAbScvO/C4/mw5CMaf4/HXwoocmblu6BfOYhnTbi7/93YqRwyMOT8bx18HLqFWTVMQLsq9HA7XC0hDlFF8zaZpBW4sOak0yJlE3suEMhxksie1IYrCUnsPThNl0sP70716ckag85/CIw5NxvDk85RmlBZ2Hh7hWW6RntLzldw187Aho82U7BeH16AK2Wq/Tqx/Zi4amO4L3ZzviWuEJWXMAw+hRFFvqzO+qvgSlthbRPJg6WcThyTgHW+c1Na9Kah4e0jZath7v1LwqCaNlm80pNa+KE2d+V/VnpTnD0rtcn0Q7ik9fj4Osc7r5XWC0mEiaXYI/PeIcLKVfNxoIN6UVT/04sOZVcRJFagDkL8ojDk/GmWqd19S8KolRmp2Ye1DNq+KkEWMy19S8MgmjZetxcM2r4mSqdV5T8yqnM+zeTzXaTi0veiTRwa9Hx9AaSXOAMNU6v13zqiQGS/bwJL26MQG9pLyXcNPh0djS9PWYap3X1LyqshbRPnokWcThyThTrfOamlclkYhpN9IxwOhI7uiXKejx8i50nkZ1kojwrLHOUyO5WxDsv7ym5lWVO3goqx5JTGkpTLeal04tzsGBXYL0tXiPek9/T9KWpq/HmppX1bcdEuERIqMBE08JMoUTrdHqwizITKehTrXOtbWAZDq1vBityiN4KKsetZ3hIZiFuOGw9Zha66LY2A/T7mtvmhD3Lu2g3Yx96Hyy8XWujYep1nlNzauGYqYgk4h4Ta11UazYf3lNzasq21HI79J0cXgyzER0Nn0vtZbZQjKjEki7U5tqndfUvTKJML1digm4E4OTY2q/klQmqQhPXhyeym2l/+Zy4bFLkW5bWUe9nV6SmOLbg0lczrLtGOF4Hefg0S5F1ttK5cEBiMMjxMBU67wWr2HYOEdpkPa0hf1Xa0d4Km+WBVEbra2YrSDTyWuaap3X1LyqeoQnHiM+NZK7+aUZs2ItSDR0H6bLL4IDONU6r6l7ZVKDJbskUyO7ox/sv7qmxjXVHjsCceVDjiat9ICp1nlNzauqR3jyuhePODwZZqp1XlP3ytph+mg2l3OWJMtG3DlKk4hX8hGeyaSxgbv9P7AJ9yqSgdQP00c7xTc1krv5xf6r9ad/k8h3c5Yky20lqSkcZ3rA1Eju6IfBmFVaa2peWT/CIzk8QmRMtc5r6l5Ze+NBKIYR97ZE326k++gfzC/SqHUYesrTWYrKJNXBd6D1Hkway4+nWuc1da9MKkxvlyTLHTwks6IR0rYd9l8NEv2DOG1H8vXDHpL0AO01r0xqsJQc4vBkGG97zoCpdu6xrXNzufIYcbv73jHgk+hHJemNWu1JtO3UejAkJGfEFWnqMdU6r6l7ZXUjHm0nb2txEHr5QbJMtc5r6l5Zf3O5vEeHG/A7WIp7+hey0Fbeof9GFf2pv+BBHB4hMqZa5zV1r2yxzgMfLxptJ2+XZGokd/ODM25Q2wG0tRg4sVGkUav9F9fUvbKyMwzFMuLeOjSopUf0G3XuReeTtda5NnqmWuc1Na8ajOnU3HpEv7lcenXD3oNnL/U22rN/adx2FLLg8NTenwmStR3JIA5PhplqndfUvTIpI2430nG4d/CNnynoMGw3elu36ti/tLrRKkJYemq/ElSnvjNchCk++y+uqXGNpn5biaZT68V0r1mtH85fGnd0OP3BwXv0T0XuT/XBUnw5TVMju6NX7L+4pu6V9W2p5PAIkeAMw9aOaDRZB8TviTsnUJI14lOtc/0wbFLOn10ayHtEo0ij1jV1r0zSAUxHD+978Nha7KbS41bjmeJrBsZGckevTLXOa+pemaTtsEuTh7aShB7JIA5PRpmMDobvod5W6M4qVz1vJe8jk0Otc5gwrP1OI1FtLrfGOk9Cb1mXHIf0K0F10nAAp0Z2R69EoUdRpvimWed2tCtTnepaON+NxiHejdkfPR091tS9srozXJS6AUaPoLmhznfE4REi4X3W+W3q7cFjN9KuilcWZWRi6/FG3SurG63oN5fbgNZ9EEk/CNDW4091r0zSiK+xzsnWjbHoqAbAm3WvLr4DGEXdgOJMeXrXI41o6AEknR5wmHXOlu1IBnF4Mor/RlrbaEW/+eC0WhdFThRGK/rN5cDocUitiyLHu9FKsoO3428Hk+RePHbdeI/+z4PvTwPJ5iXYeqRTN+oPDrxFeKKvH4fWvCpq/OtRvW5E9+iRbcAW63VytnQE5nG2YeqH5PAIkeI9opG00bLH0O+reVXUROHwON+NTg+7RIfVvCpKxqH3Z91HNBGN6IzWOrTL0UiSo3jvzl/1JF3nO9HVDbv1Hh7ZHb3gP8JTua1EP4q39UiurUA0ekQfHQZ43TonVz9sV3Mzxt2qTpL5bskgDk9GiWIED3EYreQbKUTv8ETXySevh1033qPec5IgWaOlSKNT8z/duYdK2S3xtZWDMAsL4se/7UgqOpx83RiF2aAzjB7xRIez3FZAcniExMhuRMNuKoeSVPUZjy7/XrwkLSedl5Ce0apfN8BLku4ootwaL3k9ohocRF83Oqy7DibJaS3/DmDStiO5umFHNDagJ5Fq402PPDuAUdsOcXiESIgqLB19I30XHVcYRlKJurY5eBe9HXptko54ZX2UVn9pKZTFiCcd/YOk9WhBDxAgughP9BGvA4Hhkd21FsE6+OIOlrznMw3DrDyVfXiEGJmITi7rxc/SwaQaqTNzJJmGGtWoxPlu9Eb8EJJK1PUe0YBa9WM3ZiO2PE/xRbGCD+IK0yerh63FeiptUtGfpHN4NmP28UomB9B7Bw/JR7zSayvenWGotd1JdA+mToY8lbU02JXyHSptB9afpCMakJYR99bBJx3xWodemp5coq53PYajp1OgqNMWY9BJ3BAugdv5brRtJVk94hgc5DniFWWEJ77ocGukd62F/yXpO6i01Ws80eH4EYcng0SVWOZ8Nx6HJ39GK55EXbtkyTiA3ketttFyply6ic+IH0wSibp23bDdztokHdGApDv4YBGNJCNeWdYjaQewE/iz9Tr+iNdwzPMIwyzRB53U0NvvyjwgDk8GyXZEA5JebisOoGF/dFQD4K26V9fWwvlJtIm6nWjTEv9+K8HqRlKrkiCttpLN6V8oQnQ4Hgcwfj3stPktmInF6qRhO+JHHJ4MYld9MVqaYDkrxRzFO5ek195kD/wYrbxOW0RZN+x3nU+nC4/dVqaQRKKuPz2KHfEaiX7oC3jRYwg6URfSyfFKrq1EEf2DfCYui8OTQY62zq94unqMda686DJeozWVuJ8hNQm9yV4vXo34aOuc5Cg+OQfwSOv8qqera3dozk/y2qkdZZ1fr3mVjbcOHvKbqGvr8Zqnq4udw3OEdf4zsLXu1c7/8WI6gLbt8NZWJMIjJMAQTNX35vDYTx6uHKSMp1K2o5t/I3Fvi247f2/gJYF7JMYBq7yPaN47+GOss7+6UX1P1bwntdv1Y7Wnq2vrsQ+TB5TH+jEe/UyxvXh1eGrrEW9biT9R11/dGGOdd1Dt6YV5tx3B2srWqlfkcS8ecXgyxvvQXXYn0ObpG96MVvTLB5OZe/YX7bK16KFakm68YemDiHvaIpge1R2eePU4ouZVYRns+AtRODwQdwTwyJpXhcV2ht+i3lPSbdJweDrRi+Yh7voRbHBQPbslz3UDoh8sSYRHCI2/Dg28Gi2I+pm8f7TOx9S8Kiz+Gqn9zOykIxobgI3o5nRUnWvD4W+UZutR34hHq4dduumR3rU/h6CzLnbiZb8q8GPEW6peEYRV1jlePfzZjkGY6d/KesQ3gk+mfvjTo77tiKduvIqesB+LyTiKHqdlitoBFIdHCEzUDk83ZnfiaBvqSut8bKR37U/UEQ0702l01SuCEr8eIzE7/WRbj1fR0wL7Y55kFD123fgjlXYKqUR9I77VOkerh+3wZKmtjMaY/8r1Y6t1HknUW2omazuiiv5ttc5jApanMj2YKE98ehyMjj3vxsvqTvDiAG61zmMClyp5xOHJGP6M1gjMepL6FXNs1SuCkE+HZ6t1HhOwPNWx9Yhv1GqP0DrwsqwUvOhhfxJt3diNmfKMTw//gwPvRjyetnIEcSb529FQfx38Tqo9sGVrhaujIf6I13DMMmx/EZ76zvCYYEWqQfx62HXjVXSuWn28244xAcuUBuLwZIxgHXwvtTaSj6dTs434kcT1SIUJmCRMbysL0urgIQkH0N+IFbwY8Tzr4W+6E9KrH2vRsbQhxJm3EvXgYB8mAjgmYJkqE3/dOALduW2wjvqUw3b4bytp2I74EIcnQziTMKMyWs5Po62Y76ITEJuIy4jbjTSqJEznJ8Mwu25EQ/zTFlFPdzo/id5oJaeHNwewAdNtp2HE49VjHHAA2knxtmVB/Q4N4tLD/h+biJ72jB5pK27yEw2NF3F4MsQhwFB0kPldT99I0+GBuBuq/4iGt0Q7e0v0eML0kzDGIlr8TVmAnym++Eat8YTpB2HWtUSVs+L8JG962HXjbbxsSAleOjSIq37sxGSSxKuH/w6+vjPsrEnRYNeNoyO/s00ctkMiPEIo7A7+VfwmYabl8MQbio1jlAZxGfEd6O4G4jLicYzS4puHt+vGMcRhZqah8zR2AWs8fcP+3+6iWs4KJJHjla+2En/9yNpgqf7gAKJOan8LXS+HEcfmlA34XaEFfqa0xgQoU1qIw5MhjrPOUUY0IIlRfDxGy75rlB2889M86TECvyu0IN15eNuIDyeOZ2rFkYTp/DS+aGhWIhppTmlB3NHh4BGe6vXDmSkZrR6KOJfqH4xeadcNvOnpG0Mwuw3JlJYQE++3zi95/kbaRjy+Dr4Bo8fvPX8rbT3iM+LHoxvrOvSOP/Vx5qzUj/A496iOhn2Y7iZ6I27XjRWev5GVDn4acTx9yNbjD56/keaUFsQ5xdeM2bfYux5p14/4bOkJ1vkVqu0h3R/nr6v8yCKQKS0hJCda5/w5PFOJepefw9DdQhdet8mH7OhxXM2rgmDXjeWev9GCToOHWno4nzgWnx7HR35n/3qkHf3bjNk7Pdr6MQjTqXnXIytt5Vii7oZOsM7vAJs8fysrekTfVk6yzsHqRvX4qTOnqSFAudJAHJ6MsD869AjwsudvHWCda4/542ukWzB73L6/1oW+cY7gvY1KwKz4qG3m4tPDNiknEPVSfdtoeXeG7Q6+Cx3Mrsw+4hzF23qcHPmd/Q8O0o5oQFx6HIGe8tyB1ydhg5ckXYgzT+M1dPJyM1Gv8vRfNyD9+pG/tmJ/Opj87LaceYdn/vz5KKVcR3t7+4Br2tra6Orq4plnnuHoo4+ucrfsYnfwb1Dr+bT9GW+d/1zzqnhDj7+zzqdEetdgRmuCde6oedVW6xy9Hn+y7j6cqEP1/vWwtahdNyDO+hFP3RgPTEE7a96ntOy2Urtu5LGt2M7w7/GazwTp2469mNo8I9I7+x8cjMBMM6alx0toTQ5EP1g1Ovzr4a1udGO2C8nLtFbmHR6AVatW0dra2ncce6yZ57z22mv50pe+xNVXX82MGTNYv349Tz75JKNGRT9PHidxdvD2GC6exdIvWue0HZ7hmHFG7YYanx4K06lFZ8SHYpIw/Rut2nUDTDwsej1WoFdEHYCJX4bHrht2jMAb3hxAW4tmzB7m0WG3lWg7+Dhth61HPLvlZEUPu63sot5wMz49dmJy3qLTYxL6f7oXP4MDb3UDzNxCPPUjenLh8PT29tLR0dF3bNxopnC++MUv8s1vfpNHHnmE1atXc+mllzJixAguvvjimvdsamqiubnZdaRJMKPlzRO31Rrn695eyZrR2o07M2Ug9s6r8egR/Sj+WPQE2QbgPc/f8h7hsevHATWvCkI3Jm00Oj385++An+ifvU9T9EZ8mXU+nCgnifyP4MFr/YivbkAcbWUEZn8m7/XDewefjO2IzpbadeOPeN28FbJhO+IhFw7PYYcdRltbG2+99RYPPvgg06ZNA2DatGlMnDiRhQsX9l3b09PDkiVLOO2002re8/rrr6ezs7PvaGtrq3l93PhfoQVeR/F2I92POP7Dl6MD6QdjGko4DkaXtQc/S/S9RzTibaTRO4DhOrS0jXhW9PBWPxRmFB99/diMWRgcTa6GczWj9w5+GGaRgTfbEW/dOJ6o4mnHo3NK1uGl5ttkpYOP3gGMc3AAcdeP6Mm8w/PCCy/wuc99jo985CP87d/+La2trSxdupT99tuP1lY919nR4f6P6ejo6PusGjfddBMtLS19x+TJk2P7DfVoRo/5wM8S7KGYUaK3KZxBxDFtsYOoQ7F2I10J7PH8Le9GK5lR2nT0eDM84aJ/aTuA8RnxuBzAPEVE34e2H7vw+kgJMHWjm1rLjsGtRfQrcd62/sJQolq5FnfdkMGBm3jbSvRk3uF54oknePjhh1m1ahWLFi3iYx/7GACXXnpp3zVKufclbmhoGPBef3p6eti+fbvrSIsTrPO7+FlGaXdPPbj3AB1IL8bpyUOnlu8Ofh16+fFgolq5lu9Rmm3ETyIKc7MfZgPGl319078eeWgrdofmbzWjf+evkah3F7axp/mi6eTz3cGvRDuh+xHVZp1JDQ5kSismurq6WLlyJYcddhjr168HGBDNGT9+/ICoT5b5gHVeVvOq/niPaEBSnVo0RvxU6xysg087wgOmU/uL0HcaitmKLI4cDYjbaL2KjgKOwmxwHxx7IuhP1ItNOHFGQ9Pu1KJtK7abEFeH1oPJiIt3CjgfesTbVvZgYvzh9ZgITEYnHLzs65tZGSxFT+4cnqamJo466ija29t5++23aW9vZ86cOX2fDxkyhFmzZrF06dIUS+mPv7TOz/r6lvdRCcTdUF+wzqdiNrsLRiPG4fkvX9/0P0obRhx73gI8Z51nhr7TDHR3vR7zpC5vZMVo7cPUj9ND381W9Le+vuU9GgpxOzwvWeWYhH5ccDhsPfxZO+91A+LWw24r4evGGMxmEM/VuG4gWRosRaeH3a/8AT+rGSE707/Rk3mH51/+5V/44Ac/yNSpUznllFP46U9/SktLCw888AAACxYs4IYbbuATn/gExxxzDPfffz9dXV388Ic/TLnk3mjAVEx/RjxYhCceh2cFuiMZTdhpnOPRTsgW/DwHB/zo0WUdEFdDXWydZxE288E2e/6cYcjOFB8YPWaHvpOthz9nOEttZRfGAZwd6k4jMFMWcQ6W4tXjt+hJ90PRe9AEx7ajr+H1f9rGfwc/Cj1gip7F1nl26DsFsx3BoqEypRURU6ZM4cEHH+S1117j4Ycfpqenh1NPPZV3330XgJtvvpkFCxZw9913s2zZMiZPnsxZZ53Fjh076tw5GxyJXv7ahZ+EZTCbU/kzWvGN4n9jvf5QqDs5R/Denhhv40+PeBvqS+j9PPYj7LNxbD38dfBDMOnpWRi1LrbOs0PdZQhmktCfEc9SRAOi0uMv0BHRtej8P+/4cwDj1WM7ZvJ6Vqg7BWsr4Kd+dKLjcxCXHr9B29OjCLvqNZjDYzvD3qKhMqUVMZ/+9KeZPHkyQ4cOZcqUKXzqU5/ij3/8o+uaG2+8kUmTJjF8+HBmz57N6tXeFzOnjd1In8fs/+GNg6yzN1MXvyf+jHWeHeouwY2WPz3ibai9mF8Q3AEcBNibK/gzWlOs8y68pMHbdWMsUT8Qw+ZFqywTCJPHcxJ6e8kN+Hm+GpjIgbddjOKNaEBUDk/w6J8/PZKzHeEGS8H1sNuLt61J4nUAt2IyboI7gC2YdW/+bKmtxTpPV8uUluCL8B38OzWvsonfiNtG63TCdJvB9GjAGPHiOIDT0cHl7fh56jOYXY29abEZs8InHj16MBO2swPfJWlneHzNq8LwHHo1zoGEWY2TlB52HCg+PRZb59mB7zAMk7Dsz+HZD5PJt9bTN+z6Ec2uY5VYbJ2DO4AfQGdTvgm017nWjW07vPUrdt0YR9jszWQQhydl7HnnuI3Weusc7VNanPwBHU1oxiwO9ceh6PJ1E2TFWhO62/Y2MrGNwERff8cPi63zBwmax+NMSPW+5Bj8Gi2FqR/x6zE78B2Cd/D+9LBrUHxahM/jGYxZ3ek/opE1Pew8nkMwds0fM9AWoB14y9c37b/Xgde9iOPXY7F1nh34DnZb8V83/A+ke9GORHwOYHSIw5MiE9Gd/F70lJY//I3i7UYa3/aKClhivQ42MrEb6e+o9XzvSthatOHVNbD1mOTr7/jhJfSM/37oVGz/JDWChyT0WGydZxPEAWwgjBEP1lb2R6dwxsNi6xysrZyASe73N4E/AhPH86dHfHVjB2aIMzvQHcLXDW8dPCShx7PoPJ4jCepWBUvuhyCDJXvwGJ8e0SEOT4p82Dq/jJ8npINeDWVvDe8tDGvPTsdbKZ+2zh8J9G1bj7hHJZCE0dqL6dQ+GugOs61zMYz4i+haPh6ztsg709EOyE78JveD3/qxFR2DgThH8Yus80cIYoZnW+el+E3ut6d+t+F1J6P46wbAU9b5nEDfnm2d4+7gIQk9tmIcQP+2YxhBk/vB7+AAkqof0SAOT4qcbZ2f8P1N24BvwJjm2theeDNx7T0D8EvrPBO/D7FowLhJv/b9d/03UtsBjPeBIr+wzuf6/ubx6M52B373FIFsOoB7MDXdvx52W1mM3+T+Rsz/cpaM+G/R2VPjMJNT3rG7wSd9fzOLHTyYtnI2ej2ed0Zg0nv965HFtgJGj4/7/uZstNOzFnjd97ezWj+iQRyelBiE6eCDOzzeDfhOzHguvoq5Bp3L04jfkcmJ6LH/dvxuogbZnMIBeMw6n4rfGW5bvacxy2C9k9VRWnAH0Nbjcd/fnIzOeOnGz+Mkk4kA/sp67U+PkZgpC/96+K8b9mBpJCauHD2/Q2eSjUbnvXlnNnrqcQ1+nidmk/W2chZ+d/wJ3lZAHB4hFk5Ej+22ESZ/x9t0lk0yUY2fW2d/RtwewT+FnweG2gQ3WhOJ46GINusxW+d/zNc3wxmtrI5af4Xu6E/AzyZzzZgcDf96OJ1h75M/yehhtxV/o/gz0Am6bxFkBO+/buxC5wpBnHoozADBn+0oZge/Al1nR6D/x71j21L/eoxBtzYI4hCLwyNUxdnB+wvRAxxhnd/w9a1kjfjZaLPsjeDTe2CeNf+m52+sR6cFNqFzQ+LDvwPYgtl/x78eU9Ajwj143WcFkqobmzDL07138h9GT3K8jt8VOKCfJw56/O+dZPT4NTp+dxRwmOdvhevgs6xHsGmccHrY2wJ4f3CLrUUrcQ6WIEhE9BC0NdyDyRLzjq3FeryuWAOJ8AgeCNfBH22d/1jzqv4kUzGXWX+pBa8rLsZgshj86zEEY8S9P4yiF7OHRDIO4Bz0tnn1ORM9KfgqfrslMHXjDfy40skZLVuP8zx/I1yHZuvhby1TMnp0YhLbvXdq0ejh78EtySUu7wKm4XWH8sPQ3XQ3ZsmEd1rRuYZ78RMr60APloYQ94Z7TgfQm2tl143/wu9CGIBjrHMW60Y0iMOTAvthHpAZzOGxd6v1VzHtKa0pNa8Ki8J0ahd6+sYcdJbFK/jdIh+0yWtEdx7edkq1sa8OtvOHV1ai4xIj8NrJp9Gh2VpMIK5nBNn8p3U+A695TeEGB8GMuK3HwTWvioL/tM4Xe7r6SGAquoN/pvalFRiMiQ77cwCT0aMLWGi99qaH3Vaexe8DMsG0lTfxsxHGXsw0Trx6PINesTUJr4PHNGyHHUeO145Ggzg8KXA+2vT8Hj+TDjYtmCwcfxEeO2gb/hnN9fh/1vkCdKpjbf6bdf5FzauqEayRgtFjWqC/64fvW+fL6l7ZCHzCev3LGtdVJ5gem9AuI8RtxN9Ep6U3ApfUvXoG2pDuxMRC/BFMD3vqLP668WP0tNaJmGd9V+eT1vlpzANwvXMoOr13J36HFsnp8R/W+bN46Z5sPZJsK5CUHj3o+gFwad2rR6OjwxBWD3/OsG1Hx2IeO5pVxOFJATvu8aNA37ajO22YLsobdiON3+H5LXpKZRTavavOKOCvrNc/rnVhVYJFuyBJPWwjfib1Ar8fRofJO0i2g4ck9XjAOtc34hdZ50fxk1VgMwrjvgVzeCbjJxMtCJsxrr53PYK1FedUuL/de5KrG4+hNZmM2ZmrMpMx67l+EuhvBYv+QRpt5ZPUGzx+Au3OriLIL4KgenRhdmqP3yEOhzg8CTMes7fqQ4HuYHfw/qI74G6k8SbbAdxvnS+redXH0ZktrxNkQzkI08HbKc7xG6230E9BHgx8puaVdof2E/w+TsImDw7Pj9Huy3HoFVuVaSCqwUE7Zp2RNzag90AaRBLTWnan9hlqPZHoGHQMqBszEeYPu0Pz/3Dl5OpGD/Cg9bq2A3iBdf4NfiezbYJFNCBJPZ5DW8dRmHhWZWzbEaytjEBPlkK2bUc4xOFJmE+hTdoLBElIBZPM579SvotOYx1GnDvI2nwfndp3BrW6jHAjVjBGPLgDGPzxjX6wO7XLql4xFJhrvQ5mtCaiA8v+kjBtkjNa29AxG6ilx0z0KH4rQTajhDAjeEhSj8fRKfSt6H1XKnOR42pveyT3J3xE40D8bgsYBLutzKXWzj+fts7B2grkI8IDJkJc3QEch5nOCqbHkWh34M+YRyt7RxweoSLhRqxg0p1/5/ubezG7TcRfMddiFkZ+vuIVozEJqcH0aMEYreW+v51sI/0JOnfiKKrtq3E2WpO1BNl8EUzdeAW/TyODpPW43zpfitn7w43dwT9MkM0XwWyw/3KgbyenRy/wA+v1/6h6VbgRPITRowM9dZFMxOt36Do8Arii4hWHovO79gI/DfQ3DkVvSNFNkMFScvmQ4B48Vs7z+iQ6K+53+Nmcw8kp1nlFoG8nFy0Phzg8CfI+9JzzPoLOOQ/FPIk8WJdoV8xkohp3WuerqDRS+zQ6PyL4nPNfoKvwm/jZRdfmXbTBHE4SEa/twL3W6+sqXvE56/wQfjMsbOzde35b86pqJFs3fo3uaMYAfzfg06GYKYvg0b9weiQbAbwTXRs/ip7qc/MBtP3YSdDk/lZ0d7SPIFudQtJ63G6dv0SlmJI9MbwIPf3on7+0zssJMzg4CO1oxMu7wM+s19dWvMK2HcGdYVuPPLSV4IjDkyB2nONXBJ1zPhHdFXQQZAs2gD9Z5yNqXhUVj6HdmdFop8fNf7fO/yfw/e0OLZjz14sZqR0ZuAx+uM36q3Po/wDNAzGL1r8X+P7hjJa9jeVh1MokiQoF3Gy9vob+qcEXosP072AeK+mP0ZjRcDA97EnBo2peFRVvY7L6/nHAp3Zb+TFBVmeBqRsr8bvYwcbWI5m28h/oHV6m0H+J+hCMi5xWW2lHD2Ea8bNlZBi+bZ0/Tf8F4CegLWEPJk7on3B6JNtWgiMOT0IMBy63Xt8d+C729nzBOnjQ7gd43dYrLArTUK/BucPL6ejuaCdmxt4/4UbwoM0/JKXHO5iETHen9ndoJ+Npgka7wkf/1qATdYdhtnKMlx+gN2aYhF6GbLA7+H9DxyT8cyravP0Js8WkP+y2Un+xeFTYDuCFmARSvdDB3rrhO4HvHa5Dg6RtRw+wwHp9Lc5lFnPREdn16OnOYESnRzL1Yzna9W9ER70Mdlv5KUHi3KDVnIaOMAaL/tlp31PI/tJ0JQequblZKaVUc3NzLPe/DJQC9SaoQYHv80ulb/M/A5djplWONYlp26jgbavc/73v/R9Z5fhu4PsOVbDduu9xgcv3dasc9ySmx3SrzHsVHKkA1QSqwyrH+YHvO8u6b3uo8j1vleNTienxJavcrysYogA1wyrDblDjAt/3m9Z97w9cttFWOZT1Ohk9Hrf+5Hf73vsnqwxLQ913mXXfiwPf41NWOZ5PTIsWBVutcn+y7/0lVjm+Fvi+4+z/VgUHBC7fPdZNvp6YHmdaZd6hYIIC1FhQXVY5Tgt834us+74UqnxrrHLMTEwPc/jov5MvXBaPuB2eZVZl+IfA9xitoFvp2xwZuBxjMEa8JTF9r7L+5AYF+6mJoHqsMhwX+J4ft+75roKGwGX7b1Y5nktMCxQ8YpX91wpQF1tlWAtqcOB73mHd875QZfs/hO1M/B6jFHRYZf+yAtQDVhkeCHXfV617fjpU+d4lbGfi95hplbtXwftVo1UvlFVPgt3zYMc9xwcu25FWObaDakhMj69bZX9bwXB1rFWGPaAmBb7n31r3XBaqbPOssjycmBYoeM4q+wMKUF+2yvBSqHs+ZN3zplBl+4VVls8nqoc+xOGJTzDfx0etirAT1P6B73OJ0rdZHbo8thH/y8T0HaxghVX+f1cLrL+/JNQ9H7Dud3uosqVjxA9RsEuBUg18Uq20yvBPge/XoKDN0uOcUGX7e9Iw4pdZZd+uDmRynzM8I/D9jrXut0tphyp42X5JGkb8h1b5l6rLaFAK1Hp0JDDY/b5s3W9RqHINRkfdFKhDE9NihIJ3rPLfqB60/v6PQ93z19b9/jFU2T5kleVPidaNk5WODivVxEzVZpXhilD67rT0ODFU2W6yynJ3onroQxye+ATzffyWQUqB+pdQ93lYgVJ6xBOuPI/qG6kvJqrxX1rlV2oJf6EUqDMC32uIgi3W/f4yVLkGo50dBeqYRPX4mgKlRvCu2s5ItZkw0yZ2VGCLgqZQ5bKnPNsS1aJBwW8VKHUKDyoF6olQ97OjAo+ELps95XlfonpMUtCpQKmbuUwpUF8Kdb/nLT0+H7psL1h6fDpRPc5XoFQDu9SfOCRkZHh/BXssPQ4JVa4xmGh58IFskOO7CpQaxwq1h8FqDWGc4U9ZP+HN0OWypzyXJ6qFPsThiU8wX8fJzFaH8Zp6iSPU+MD32V9BlwKl4PjQZfpHfSP1k8R1vk+BUsewUv2KESHuc56lxToVZjrLPp6y9PjbRLUYpuAtBUpdyXfV9aHudZelxwOhyzUMM914cKJ6nKD0lItSP+GTIaI7DQpes/QInq9iH2dbWryWqBYoO7dpLJvU8xyshgW+zyGWFnuVnfcR5rjN0uPOxPXQUZmZ/Eb9PxpD3OfvLD2WR1KuVZYef5WoFvsp2KhAqa/yNXV5qHv9zNLjf4cu12RLi15QIxOuH+LwxCeYr2MGTyhQajyrlU7CC3KfbygibKT2KH5dwhofzAGqlXUKlDqAH4a41wuWHuEbKaQ1ikd9hDNVQ194+tKA92lVxhk+I5Jy2YnLyY7iUefyvxUoNYxOBUcEvI89Yt2iIHxbHoMZxQdPoPZ/DKdRnWDV8wP4ndJJ+kHudY9V/McjKVdao/jjOES1WAnMY7k14H0aFfzJ0uOLkZTLznn7VsJ6nMfF1u9QahAfDXifo5U9PaYXU4Qv1xqrULMT1kMcnvgE83XszwQ1mrVK14PHFL5HJ2MUbLO+/4lIyjQMVDdJz8WjngT1G2aqwfRYv+fLAe7zEeu7O1WYFRbOwx7Fv5mgFgeA2gjq63zF+j1dCk4JcK/brO//V2Rls0fx/5agHmeD2sNgNYunrd+zWsFYn/dpULDS+v5XIyvbakuPuQnqcSuodzhQjWWD9XvuU/6jmVMVfW3tA5GUaxJmFJ/UoodGUL8H9UhfZFcpndPo916XWd9drwgVYTbH5VaB/ivBunEoemXWVX2R3c0q2ADhQev7P42sbD+09PhqgnqAODxxChbgOEmZUfjPlL88C7tS/0FFMX1jH8/om6r/kZC+l1p/rwvU/vwP6zf5HWkNUyb5+ZbIyjYKk4x5REJ62IZhGQ2qgZ9bv2mrglN93OdoZerVnMjKdo5VtncS0mKU9bcUqK8xXsF71m96SenpXK/3utL63halVzVGU74FVtn+T0J6zEA7FArUyZyp7Kk+Ha3xYwN+an3viUjL94pVtqS2LrjO+nsbQQ3nJus39Sp/U5ZjlUl+/lJkZTsQ4wDul5Aei6y/+RhNyqzaaldwlI/7/KUy0Z3g23r0P/7aKtsLCWlhH+LwxCdYwOMcZa/M0QZonIfvXGBdH22HBjoJUoFamIC240Ftsv7e/+x73zZcSsE/K72Sq969/q91/XoVZnltpeOJAeWL7/gYxkieCApGKlhs/bZOBed6uM8oBX+0vhNthzYMvaJQgTo2AT3+FRNhGwFKO3Lt1m9bpbyNXk9Upn1F16EB6kzMFHDcK/mGgPqD9fe+3/f+xco4PQ8qb1N1f29d363Crr7pf3zbKt/9CdSNw0Htsv7eZ0DBIGXswF6lB0z1nMAGpaPrSukprWiiO/bxslW+SxLQ4wrrb+0ANQ2U7kdetn5bh9L7cdW7zwRlVnXeH2n5WjFTwBMS0MM+xOGJT7AQx4eV3jTK9sjPV9Ub62XKGPBvRF6Ww/SNVTd686q4fnMjZkSynP77zHzV+n1KwVJVfR65SdkrE7ThjyZXxXlcbRXktzFqAXpEuN76W992fTZcwUKHHv+uqk/ZTVFm5c27ypvz7O+wV/LFHZo+1/xg9WHXZ4crE+nZqeBqVT0y+iFl9vL5TxVlJBS0E9JplfHUmPWwnb8/03/lzwXKrC56U+lN6Krd58uOa/974LJUO07HRFyCrw6qfwxH2wwF6nHXZw0K/k2ZqvO4gvdVuU+zgh9b13WpKBZ99D++YRXkpzHXjWMw9fAa12f7KbOx5F6lcxurRTiPUHoQYQ8mRkZezhetMv5dzHo4D3F44hMs5HG8MhXOzlW4XmkDNkvBpUrvl2F//lPlLfrh//i99Ufmxfh7F1h/oxPU0RWvuViZJeZKwa+U3qhwptIO4v9UZtXNXqU7vujLORG9mZkCdVRMWjgN+O+tf7uvaVLwbYcWXUqPZi9RcJqCs5Xed2iz9fkmFSzvp/5xiVWItwmzM3jtw2nA76h4zUTldgLfU3oH5Y9Z9eOTSndmdvTjJRXlVJbzuJ/4p7Xs0btCO4IDr/lLZXYtV0on7/9PBbOt40plpjiU0k5B9OUcjNkM8b/FqIe9G3sHqCkVr7lKmSndXqVt5d9YOp2p9IDKnsbqVnBhLOW0N0PsRufmxfE39kNHQBWop6nUJkcq+D+O//ttCu5UOon/NKXbzHeV2Z2+TelBRfRltTdDTHJaSxye+ASL4BiqdNRmq8LYuH5Hr4L/paIerTqPq6w/tjqm+1/p+EHn1bz2QAU/UqbjqnRsVDphOb7/l0esP3ZbDPcejN4sTaEN+EE1r5+tTASn2rFM6aTUeLQYBmqz9cfOjuH+49Ebtil0BLCx6rUNCr6gTLSn2vE9pXO84tHDXtm4g3iSdWdhFhLU3oCyRcG/KtPRVzp2K738Oh4twKxsfCqm+8/HOBG1N0g9SsEv6tSNdxX8Rax62Csbr43h3kMxUfI3qbfnz7nKJO5XOxapqFMCnMc4TF0+IUbNnYc4PPEJFuHRorQxf1DpKMYfld6Abb7STkC8f78Fs+le1CtQnM7OfM/fO8T67Y8rHbb/g9L7b1yhwu6Y6+WwV2vtQM9FR3XfRujbIbYHP8+amaX0KqznlM49+L1VVz6q4or6OQ97tVa4ZzgNPCaB+qN177fwumlbk9KRru8pHSF9VcGLSke8op+mqHTYe67Mj/i+H8bkTHnfQXicgmuUXgTxhtKR4t8oHfFpjV2LgzER0ah3bP8qxnb8jefvTVd6ELlI6bayQmlH6GKlp4vj1eMyq7zriXYPmuHoPEuFjoZ62xy1QWkbcaeC31n14yWlV/rNVnEOou3DXpTxs5j/jn2IwxOfYIU6bkRXzFeJbj7+eozBiiNaEuex1Cr3v0d0v2ZMPkw3qE9k4Dd6PVoxHfEnI7rnUZjIzhqS3RYh7PFJTMczMaJ7fgqTlPsrCLHBYPLHv1vl/i3RTHsORi/HV9ZxXQZ+o9ejEdQbVrm/FtE9DwD1G+ue20F9MAO/0+txFGalYRKPMBKHJz7BCnU0Y5Jobw95r7HoZzAp6/jfGfh9fg87IVOhl2eHudexaEdSoTu1j2Xg9/k97KmLPxM+6nURJqL4J+pN62XzeM4q/0LCrdhqAnULpq49QrwJwHEckx3/n/8Y8l6t6NwUW48vZuD3+T3sTRn3gDol5L1Ow+RJbQX1gQz8Pr+HvSnjm8S/Z5M4PPEJVrjD3ndFoR8e6ff7Degk1w7rHrvxE4rO3nG79Tu2gfqLAN8fid551X5Ew7uEN4BpHU3oJzErdKJ1kL1GpoH6OaaOPUV8yZ1xH4ejpzwVqHsI5vScgZnSU+jVeoMD3CcLh73x3l6CPc29EdQX0J26QkfPooompnHYU9fr0Q8m9vv9/dAP39xr3ecV4ltEEfcxGr3oQYFajL3lRDyHODzxCVbIYz7GAN+Dt6XqI9Fz16sc310F6uQM/J4wx1DMaLML1H/HW4c0GdT/Qi/XtfV4mGQfSRDHcSiodkzOzWyP3zsJ1PcwuR7d6HB/Xjt3+/gUJlz/a1BTPXxnCHrl1WJM3WinXjJ/Po5/w+28eclhGYN2dN5yfPcFktv4M66jBTNA2IreO8iLU3yopZ29alGh286oDPymMMeJGGd2Jaj3x/R3xOGJT7DCHv+EGVlsQzs+F6Iz7Q9BjzTmoMPNj2DC2QrUFvSc+5AM/I4ojhGgHnP8vrfQ+218FL28/lD0E5vPQ+dBPevQTqGnsiovLc7ncSQm90aht9K/Bp1XcJh1nIIe5d+JO4Kh0Bs7BhnxZvW4AJPf1I1+EO/laGf/EHTHPRu9F8n/A7XBocVu9DL80Rn4HVEcDZjtJ5T1W+8EdT66jUxDt5mPolcx/Qqzs7lCR0OuIr7tD5I+9ke3D/v3rUYPhM5Et4FD0Tb1fFA3YfatsY+X0Kv20v4dUR1/gRkw7SWe3CxxeOITrNDHbMzOoV6O19Dz90k9VyfJowEd3fmzDz0Wo53Eohhv59EC6juYqbp6Rxd6tUbwJ59n+zgKHeHxWjfaQd2MXqWWdtnjOM4F9boPPVagN/wcuB9V/o9G9OKNbR616EVvrpjsU9eTO8ajHX+Fzk+K+v5e++8G60XpaW5uprOzk5aWFrZv3552cVKlAZgFnA+cAhwEtADdwDrgT8BSYBHwUkplTJIRwCeAs4ETgVZgCLAbeAd4FVgCPAm8m04RE2UicBG6jhwDHGC9vx14C1gBLAaeAjpTKF/SnABcAJwGHAKMBfYAG4E3gRfQejwL7E2lhMkxGDgLOA84GZgCjES3lTbgdeC36LqxOqUyJkkL8Em0JicAE9Aa7QTWAK+gbcdCoCOVEibL+9D9R9R47b/F4bEQh0cQBEEQ8ofX/ntQgmUSBEEQBEFIhUI5PFdddRVvvfUWu3btYtmyZcycOTPtIgmCIAiCkAEK4/BccMEFLFiwgG9+85u8//3v59lnn+Xxxx/nwAMPTLtogiAIgiCkTGFyeJ5//nleeuklvvCFL/S998orr/Cf//mf3HDDDXW/Lzk8giAIgpA/SpXDM2TIEE466SQWLlzoen/hwoWcdtppFb/T1NREc3Oz6xAEQRAEoZgUwuEZN24cjY2NdHS4F/Z1dHTQ2tpa8TvXX389nZ2dfUdbW1sSRRUEQRAEIQUK4fDYKOWenWtoaBjwns1NN91ES0tL3zF58uQkiigIgiAIQgo0pl2AKNi4cSO9vb0Dojnjx48fEPWx6enpoaenJ4niCYIgCIKQMoWI8OzZs4fly5czZ84c1/tz5sxh6dKlKZVKEARBEISsUIgID8Btt93G97//fZYtW8Zzzz3HlVdeyUEHHcR3v/vdtIsmCIIgCELKFMbheeihh9h///356le/ysSJE1m1ahXnnHMO775bhqcbCYIgCIJQi8LswxMW2YdHEARBEPJHqfbhEQRBEARBqIU4PIIgCIIgFJ7C5PBEhey4LAiCIAj5wWu/LQ6PhS2Y7LgsCIIgCPmjubm5Zg6PJC07mDRpUuQJy83NzbS1tTF58mRJho4Z0ToZROdkEJ2TQXROhrh1bm5uZt26dTWvkQiPg3pihWH79u3SmBJCtE4G0TkZROdkEJ2TIS6dvdxTkpYFQRAEQSg84vAIgiAIglB4xOGJme7ubr72ta/R3d2ddlEKj2idDKJzMojOySA6J0MWdJakZUEQBEEQCo9EeARBEARBKDzi8AiCIAiCUHjE4REEQRAEofCIwyMIgiAIQuERhydmrrrqKt566y127drFsmXLmDlzZtpFyjWnn346P//5z2lra0MpxXnnnTfgmvnz59PW1kZXVxfPPPMMRx99dAolzTfXXXcdL774Ip2dnXR0dPDII49w+OGHD7hOtA7H5z//eVasWMG2bdvYtm0bS5cu5eyzz3ZdIxpHz3XXXYdSittvv931vmgdnvnz56OUch3t7e0DrklLZyVHPMcFF1yguru71RVXXKGOPPJIdfvtt6vt27erAw88MPWy5fU4++yz1T//8z+ruXPnKqWUOu+881yfX3vttWrbtm1q7ty56phjjlEPPvigamtrU6NGjUq97Hk6Hn/8cXXppZeqo48+Wh133HHqF7/4hVqzZo0aMWKEaB3h8Vd/9Vfqox/9qDrssMPUYYcdpr7xjW+o7u5udfTRR4vGMR0nn3yyeuutt9TLL7+sbr/99r73Retojvnz56uVK1eqCRMm9B3jxo3Lis7pC1TU4/nnn1d33323671XXnlFfetb30q9bEU4Kjk869atU9dee23fv5uamtSWLVvUlVdemXp583yMGzdOKaXU6aefLlrHfGzatEn99V//tWgcwzFy5Ej12muvqQ9/+MPqmWeecTk8onU0x/z589Xvf//7qp+nqbNMacXEkCFDOOmkk1i4cKHr/YULF3LaaaelVKpiM23aNCZOnOjSvKenhyVLlojmIRk9ejQAmzdvBkTrOBg0aBAXXnghI0eO5LnnnhONY+Cuu+7il7/8JYsWLXK9L1pHy2GHHUZbWxtvvfUWDz74INOmTQPS11keHhoT48aNo7GxkY6ODtf7HR0dtLa2plSqYmPrWknzgw8+OI0iFYbbbruNZ599ltWrVwOidZRMnz6d5557jmHDhrFjxw7mzp3LH//4Rz7wgQ8AonFUXHjhhZx44onMmDFjwGdSn6PjhRde4HOf+xyvv/46EyZM4Ctf+QpLly7lmGOOSV1ncXhiRinl+ndDQ8OA94RoEc2j5Tvf+Q7HHXdcxYR70To8r732GieccAJjxozhk5/8JA888ACzZs3q+1w0Ds+UKVP413/9V84666yajzYQrcPzxBNP9L1etWoVzz33HG+++SaXXnopzz//PJCezjKlFRMbN26kt7d3QDRn/PjxA7xbIRrWr18PIJpHyB133MG5557Lhz70Idra2vreF62jY8+ePbz55pssX76cG264gRUrVvD3f//3onGEnHTSSUyYMIHly5ezZ88e9uzZw+zZs5k3bx579uzp01O0jp6uri5WrlzJYYcdlnqdFocnJvbs2cPy5cuZM2eO6/05c+awdOnSlEpVbN5++23a29tdmg8ZMoRZs2aJ5gG48847Of/88znjjDNYs2aN6zPROj4aGhoYOnSoaBwhixYtYvr06Zxwwgl9x+9+9zt+8IMfcMIJJ/DWW2+J1jHR1NTEUUcdRXt7eybqdOpZ3UU97GXpl19+uTryyCPVbbfdprZv364OOuig1MuW12PkyJHq+OOPV8cff7xSSqkvfvGL6vjjj+9b6n/ttdeqLVu2qE984hPqmGOOUT/4wQ9kaWmA46677lJbtmxRH/zgB13LS4cNG9Z3jWgd/vjmN7+pZs6cqQ4++GA1ffp09Y1vfEP19vaqM888UzSO+ei/Sku0jub4l3/5F/XBD35QTZ06VZ1yyinq5z//udq2bVtfv5eyzukLVOTjqquuUm+//bbavXu3WrZsmWtZrxz+j1mzZqlK3HfffX3XzJ8/X61bt07t2rVLLV68WB1zzDGplztvRzUuvfRS13Widbjj//7f/9tnHzo6OtSTTz7Z5+yIxvEe/R0e0Tqaw95Xp7u7W7333nvqpz/9qTrqqKMyoXOD9UIQBEEQBKGwSA6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwiMOjyAIgiAIhUccHkEQCs/tt9/OI488knYxBEFIEXF4BEEoPDNmzODFF19MuxiCIKSIPEtLEITC0tjYyM6dO2lqaup774UXXuDUU09NsVSCIKRBY9oFEARBiIu9e/cyc+ZMXnzxRY4//ng6OjrYvXt32sUSBCEFxOERBKGwKKWYNGkSGzdu5A9/+EPaxREEIUUkh0cQhELz/ve/nxUrVqRdDEEQUkYcHkEQCs0JJ5wgDo8gCOLwCIJQbI499liZzhIEQRweQRCKzaBBgzjuuOOYOHEiLS0taRdHEISUEIdHEIRC85WvfIULL7yQdevW8dWvfjXt4giCkBKyD48gCIIgCIVHIjyCIAiCIBQecXgEQRAEQSg84vAIgiAIglB4xOERBEEQBKHwiMMjCIIgCELhEYdHEARBEITCIw6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeP4/cZ4Fv1Dm5tcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGwCAYAAACtlb+kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACF10lEQVR4nO2deZgdVZn/P72lA53OAlk6CSFhCwHCYgLEKJBAQEHAiCigzAiOOiriNqMsIyODMjDiCPgjUUdEZHHAEUQRhAAqQSQJEiSEJUEhCdBJd8jWnbWX9Pn9car63Orcpapu7fV+nqeeurldt+6535zznve85z2nagCFIAiCIAhChqmNuwCCIAiCIAhhIw6PIAiCIAiZRxweQRAEQRAyjzg8giAIgiBkHnF4BEEQBEHIPOLwCIIgCIKQecThEQRBEAQh89THXYAkMW7cOLZu3Rp3MQRBEARB8EBzczNr164te404PBbjxo2jtbU17mIIgiAIguCD8ePHl3V6xOGxsCM748ePlyiPIAiCIKSE5uZmWltbK/bd4vAMYOvWreLwCIIgCELGkKRlQRAEQRAyjzg8giAIgiBkHnF4BEEQBEHIPJLDIwiCIAgJp76+nrFjx1Jbm684hVKKDRs2sGPHjqrvJQ6PIAiCICSY0aNHc+211zJ48OC4ixIbTz75JLfffjtKKd/3EIdHEARBEBJKTU0Nn/70p9m2bRv//d//TVdXV9xFipT6+nqmTJnCeeedB8BPf/pT//cKqlCCIAiCIATL8OHDmTJlCj/4wQ947bXX4i5OLLz++usAnH/++dx7772+p7fyNRkoCIIgCCmiubkZgPXr18dcknhZsWIFACNHjvR9D3F4BEEQBCGh1NTUALB79+6YSxIvvb29gNHDD+LwCIIgCIKQecThEQRBEAQh84jDIwiCIAhC5hGHJzc0xF2AhCFVXxAEIU+I1c8FZwPdwD/HXZCE8P+AjcBhcRckATQAS4E/AXUxlyUJTAE2Ad+MuyAJ4VPotjI75nIkhbuBVwH/K4WyQy1wBHBA3AVxjTg8ueAG6/w/yH85wBeB4cDtMZcjCRwBTANOAD4Sc1mSwKeBEcA1wNiYy5IE/gfYB/hj3AVJAI3AhWin+NuxlmTvmA4nzcBgdP0YUrScb731Fp///Ocd782cOZPt27ez//77+/rt1SC9X+44Ne4CxMzogtcz0I02z0wteP2F2EqRHMYUvP50bKVIDoVLgGfEVopkMKXg9cdwahMdewPbYzqcTk/hYy5GU4wlS5Zw3HHHOd67+eabuemmm3jzzTc9//ZqEYcn8zQABxb8e3pcBUkIRw349yGxlCI5HFnwekrJq/JDoQM4ObZSJINROLuIvOtRWDeGofXJM3sVvC7+jK/Fixc7HJ5//Md/ZMKECVx//fUAnHnmmaxYsYLXXnuNT33qU2EWFpBHS+SAKcCggn+Pj6sgCWGgw7Mf8HwcBUkIhUZ8FDpsn69n9RjqcDp9+8VVkIRwxIB/ix5OJgDR7368A2iK/FvNdxsKHZ7ii2IWL17Mf/3Xf9HU1IRSiuuuu46rrrqK7du3U1dXx4033sjJJ59MR0cHS5cu5YEHHmDTpk2hlV8cnswz0MHJu9GaMODfeXcADxzw7/HAG3EUJAGMwzlSzXtbOWjAv0UPJ/uhE/6jx9+TpIKmseB1PToa2Oe4YunSpfT19TFt2jROPfVU3nnnHW6/XedOHn/88bz88susXbsWgEceeYT3ve993HvvvaGVWByezLPvgH/nvYPfZ8C/827Ei+mRV4dH6oaTgXoMHCzkDakfTgau6mxgYHR4586dLF++nHPPPZfPfOYzfOADH0ApBcC4ceNobW3tv7a1tZXx48PtnySHJ/PYDo/9lN28Ozy2Hiutc971sI24rUeejbitxd+s82DyvfzYbisrrHOe6waY+mHrkWcHsDBWsss6Dyp2IYsXL+aLX/wiCxYsYOHChaGXrBzi8GQeu5G+aJ3HkO/A3kA98mzEmzF1QfQwdaPNOkD0AKkbNqKHwY7u7Ebv8QalHJ5ly5bR09PD17/+dcf7a9eudUR0xo8f3z+9FRbi8GSewohGN/q/PM/7i9h62EYrzxEe24DvxEQ18mzEbT02AW9br0UP01ZGUWo1Tj4Qh8dgD5R6MQ5P8cTlCy64gHnz5vH666873n/22WeZOnUq48aNo6mpiTPOOIMFCxaEVmLI91A/J9gd/AZgLTAJ3cm/FVeBYkaMlqFYB5/nMH2hHgo4FtED4HV0muzeaNvxeslPZJd6YKj1epl1znPdKIzw9FivTYSnpqaGUaNG8alPfYpDDjmEuXPn7nGH3bt386//+q/88Y9/pLa2lhtuuCHUFVogDk8OsI3WRozDk9cITw16F12Al63zEPQiz+2xlChebGd4I2YKJ897ixQ6PHbyZZ5zeAptRxt6Rd8o8unw2HajD5MPmee6URjh6RnwHpx00kn84Q9/YMWKFZx77rls3bq16F1++9vf8tvf/jbUkhYiDk/mKezUNlivB642yAvDMCOTt9CdWiPamOXR4Sns4DcNeC+P2G2l0OHJsx4D68eB5FcP+3dvAd6xXg9Fd6G9cRQoZgodnt4B78HChQupq0ves/kkhyfzFDo8m63XeTVathZb0fPOee/kxeFxUhjRED2kfhRSqEUHZr+ZEcUvzzyFU1q7B7yXXMThyTzDrfNmxGjZv9t2/EQPjXRoGtHD0IjZz1f0cNaNPnSkp/D9vFE+wpNUxOHJPPZTbLciRsvWotM65z3iZSdhdmLqRgOlnnycfYZZ50I98l43QOtht5W8RjSGW+cO65x321EY4RGHR0gEgzBLBbcjRssesdr5Onnv1GzHZht6abq9gVhe9bDrxzakbhS2FYXoUVg3QPSwXYc+zJRWLXE9Qd4t4vBkmsKR+nakkRZ28GD0EAdQk/f6UahH3rWw24rUDY20FSfFcngK308m4vBkGruR7kJXyrw3UjFaTko5gKKHaCFtxYm0FSeFER5Iy7SWODyZZmAjzfuUlhgtJ9KpOSnUw24r9ehHcOQNaStOpK04GejwpGOlljg8mUYaqZOBeuQ98bBUXkIeHeJGjLHeho6K7rD+ncf6IbbDiejhxHYdbEdHIjxC7JQapdkbZuUNGbU6kTwNw8B8N8i3HtLBOxHb4cQeHMiUlpAYBjbSLQV/y+MoXjp4J9KpGQrz3Wwjnmc9yiX4J3slTjhIW3EiU1pC4hjYSAs3zMqjwyNLS52U6tT2LXJt1hmoBeRbj1IdfB3OPXryQik98lg3wG3S8ltvvcXnP/95x3szZ85k+/bt7L///qGWsBji8GSaYkY8z3krAyM8W6zzsD0vzQUDjbi9qZp0aBrRw9iObvReTZDP9jLQdsRdN/aO6QAd4bOjfLsHnJ0RniVLlnDcccc53rv55pu56aabePPNN/3/fJ+Iw5Npihlxe5fhPK48GWjEC7XIc5h+oB7SwWvyrMfADh70bu0gtgPirRt7o/9f4jj2xuk2lJ/SWrx4scPh+cd//EcmTJjA9ddfD8CvfvUrNm3axC9/+Uv/cnhAHJ5MUyzCI0bcGHFbi1qMQcsLA3fhBqkbUHxwkEc9yg2WRI98a2G7DargvdIOz2GHHUZTUxN777031113HVdddRXbt2sdv//97/OJT3wi9BLbJDulWqgSMeJOBo7SdqHnnu29VrYV+1BGKXTwxIgX7+AloiGDJZuBttSuG01oB6Bvj0+Exw7iG6DtAAZbrwt3WLZ/vzOGsnTpUvr6+pg2bRqnnnoq77zzDrfffnv/3xcuXMisWbPCLLADcXgyjRgtJ6UcwH3QeqyLvETxYdeNLkzCoW3E81g3pK04kcGSk1JTWqAd4g6iZUflS0JjYMIylIrw7Ny5k+XLl3Puuefymc98hg984AMopYgLmdLKNDIP70TC9IZyHVoe64Z08E6krTgZqEc3erAA+dNj4KaDha/3XJa+ePFivvjFL7JgwQIWLlwYduHKIg5PprFDjzsL3suz0bJXGRSOjvKqh3RoTkQPJ6KHoQGd8waiB3iJ8AAsW7aMnp4evv71r4ddsIrE7vB87nOfY9myZXR0dNDR0cEzzzzD6aef3v/3xsZG5s2bx4YNG9i6dSv33Xcfo0ePdtxjwoQJPPTQQ2zfvp329nZuuOEG6uqSvQFSNOxlncXh0YgDaCinRR6TuKVuOLFtR7HBQd4igIMLXkv98OrwXHDBBcybN4/XX3897IJVJPYcnrfffpsrrriCv/3tb9TU1HDRRRfxm9/8hne961288sor3HTTTZx55pl89KMfpaOjg3nz5vGrX/2KE044AYDa2loefvhh2traeM973sPYsWO588476enp4Rvf+EbMvy5u7Ia6q+C9vDZSKK9HXo14oRY7MUncQ3GOZrOOODxOitWPvOZ47VXwuqvgdV7rR7FVWs6k5ZqaGkaNGsWnPvUpDjnkEObOnVv0To8//jhHH300TU1NvPXWW3z0ox9l8eLFoZXcLnWijo0bN6p/+qd/UkOHDlVdXV3q3HPP7f/boYceqpRSasaMGQpQp59+uurt7VWjR4/uv+azn/2s2rJli2poaHD9nc3NzUoppZqbm2P//cEdf1SgFHy04L1PWu/9NgHli/JosH63UjCs4P17rfcuTUAZozzOsn734gHvb7TePzQBZYzy+H/W7/5WwXvHWu+tSUD5oj5WWL/9hIL3/s1678cJKF+Ux/7W794x4P0nrfc/Eur3T5w4Ud15551q4sSJCdACBSMVTFdwUMF7NdZ70xXUqlmzZqndu3erl19+WR1//PGh6+C2/459SquQ2tpazj//fJqamli0aBHTp09n0KBBPPHEE/3XrFy5kjVr1jBz5kxAb1O9fPly1q9f33/NggULGDZsGEcccUTJ7xo0aBDNzc2OI3vIKM1QGJaWiFfxugFSPyT6p5HpcIO0FSf2Jq2FU1q2TwFQx8KFC6mrq+OII47g2WefjbZ4ZUiEwzN16lS2bt1KV1cXP/rRjzjnnHN49dVXaWlpoauri44O55K/9vZ2WlpaAGhpaaG9vX2Pv9t/K8WVV15JZ2dn/9Ha2hrwr0oCttGSDl7C0gMp1qFBfjt56eCdyHS4oVJbyZsexaa0IA0PEE2Ew7Ny5UqOOeYYZsyYwQ9/+EPuuOMODjvssFC/8/rrr2fo0KH9x/jx40P9vniQvARDMS1A9Bg4ahU9DLYWdZgVfnlBHB6DtBUnxZKWIQ0OT+xJywA9PT39GdzPP/88xx13HF/+8pf5xS9+QWNjI8OGDXNEecaMGUNbWxsAbW1tHH/88Y77jRkzpv9vpeju7qa7uzvon5IwykV4ZASvyavREiPupJgeO9BG3H5CeJybvUVNuYhX3myHtBUnxaa0wDg8iYijFCWRJautraWxsZGlS5fS3d3NnDlz+v82efJkJk6cyKJFiwBYtGgRRx55JKNGjeq/5rTTTqOjo4NXXnkl8rIni2JRjbzOO1cyWnkz4uIAOimlRx7bSx3mOWsS4Yk7OmzvTJycrVZKTWnZDlA45ayv1/GZanZqjj3Cc9111/HII4/w5ptv0tzczMc//nFmz57N+9//fjo7O7ntttu48cYb2bRpE52dndxyyy0888wzLFmyBIDHHnuMV155hbvuuovLLruMlpYWrr32WubPn5+DCE4lyoWlG9GbaeVFI+nQnEgippNyDvFw8qVHY8FrWfBQPFIOUTk8W7dq3UePHs0bb7wR6ne5I54prSlTpgCwYcMG3/eI3eEZPXo0d955J2PHjqWjo4MXX3yR97///f0rs7761a/S19fH/fffT2NjIwsWLOCSSy7p/3xfXx9nnXUWP/zhD1m0aBHbt2/njjvu4Jvf/GZcPylBFOvktxa8Hgr4rzzpQsLSTkQPJxIBNBQm+EuEJ+66sWXLFlasWMF5553Hpk2b6OrqqvyhUBmPHgSA2YEaYAwwDB35GUJQ1NfXM2XKFM477zyefPJJduzwP7Ucu8Pz6U9/uuzfu7q6uPTSS7n00ktLXvPmm29y5plnBl20lFMqLN2HfgDeEMThgfwacVml5USm+Ax2W+nGOYq3tahH6zVQq6xSakormoiXUopbb72V//zP/+Sqq64K9bvcMRK9E/smnAPofdB2YwthPEz1ySefdDxp3Q+xOzxCWJTaDh204RpCvjo16dCciAPoRPQwlNJiO9oBqkXrkReHJ94pLYB33nmHSy65hJaWlgTk8swDjgf+HfhlwftfAz4N3AZ8N7BvU0qxYcOGqiI7NuLwZJZSG+1BPufipUNzIno4ET0MpQYH4Mxpai/y9yySjLrR29vL22+/Hcl3lacerUkbsKbg/Xbr/foB7yeHRK7SEoLANlpd7JlNL0bcYGsxGDMFmAckiduJ6GEo1cFDPqc8ZQ8vJ/FHvPwiDk9mcWO0klsxg6eUHtsKXufRiKfPaIWD6GEoZzvy6ACmt4MPh/Q6gOLwZJZKYWnIVwdfSo/dmKeCJ7ehBk96jVY4VOrUpK1o8lg/KjnD9ThTCLJOegcH4vBkFhmlOZGIlxPp4A2F+86IAyhtZSClBgd2EjfkS4/0RrzE4cksMkpzIno4Se8oLXjKJfjnWQ9xeDSlOniFmRLPkx6VosPJHSyJw5NZxGg5kURMJ5WSdPciP0ncdt3oA3oG/C2P0VAZHDgRW+pEIjxC4pAO3okYcSeVHi0B+akfUjeciO1wUiqiAVI/Ckn+4EAcnsxSyguHfDfSYtuyJ7+hBk8po9WLeSp4XvSQEbwT0cOJ2FInlaa0BuHMi0sO4vBkFrvCSQevsfUQo6WRTs0gWjgp18Hn0XZI/TCUemQROLf4SKYe4vBklnIOT94aKYgeA5FpC4No4UQGB06kfhgKIzcDbaki6fVDHJ7MYj/FVjp4jTg8Tmw9uov8LW96uNFib/LzJB5pK06krRjKOTyQdD3E4cksboxWXkYlIEZ8IOUc4rxNW7jRAvLTXqStOJG2YrDrxm7rGEiy9RCHJ7NIDo+TcnrYc8956dAGFbwuVz/yoke5utGLmcrIix52/SgW0chbWwF3tjQvepTTAoweQyIoi3fE4cksbhppMitlOJQLS+fVaIEYcXBvxEWP/GkBokch5ewoJF0PcXgyi5tGWofOTcgDbsLSeXEACx0ecQDF4RmIDJaciMNjKGdHIel6iMOTWcp54jsKXiezYgaPGC2DrUUPemXFQPI2bVFp1JpXPcTh0ZSrH1I3nCTblorDk1nKVUxF/gyXODwGt6M0qRuavOpRLvpXCzRFU5zYkeiwQRweIZGkO/QYPOLwGNJttIJH2oqTcnrsxKzOyYseYjsM6Y6GisOTWaRTcyKrtAxSN5yIHk4q6ZGn9lKD2VlYHJ60R4fF4cksYsSduAnTDyYfm8tJ3XCS7pUnwSP1wyArGp2ku26Iw5NZ0l0xg8ft5nLJHJkES7l9ViB/dUPaihPJaTLIikYn6W4r4vBklnRXzOCRzeUMUjecyBSOE3GIDYWbdJZbpTVowLVZJd22QxyezJLu5LJgqcdU9XQ21GCRDt5JuvMSgifdnVqwuNUC8lE/0u0Mi8OTWcSIGyrNw0PSG2qwyJSFE+ngnYgehkpa7EavXAPRA5I+WBKHJ7OI0TK4cXiS3VCDxW2Sbt4cnnSOWoNHbIehkhYgehSSbNshDk9mEaNlKHzCb1+Ja/Kkh9voX142l5O24kSmww2VtIB81Y90txVxeDJLuitmsFTq4CFfelSqGzvI1+Zy0lacyHS4QWyHEy/R0Jrwi+MRcXgyixhxg5ewdB6MuBs98jiKl+lOjdgOg7QVJ26dYUhidFgcnswiYWmDzMM7ESPuxO3Kkzw4wyAOTyFiO5xU0mMXepsPSKIe4vBkFjFaBjFaTrzkJeShk5e2YijcS0b0kOjwQNI9WBKHJ7PIPLzBTQef3EYaPJKX4MStw9OIea5SVqm00R5I3RhIHvVI52BJHJ7MIqNWgxgtJ6KHEy+by2VdD9nCwYms0nKS7sGSODyZpBbzEExxeNLeSINHHB4nsrmcwdaiB1AlrknuCD54xHY4SbftEIcnk3jZWTgPRkvm4Z2k22gFT6WkZchPVEPqhpN056wET7rrhzg8mcSLw5OHzeXS3UiDR8L0TsQhNkjdcCK2w0m69RCHJ5MUOjy9Ja7Zgdl1OHkVM1jS3UiDx02Y3h61Zr2DB6kfhXidwkne5nLBIs6wk3RHQ8XhySR2pdxV4bq8dGqySsuJdPBORA+DFy0gP9FhiXhp0u0AisOTSdyM0iA/DVUSD51IB+9E9DC40WIX+Xn0iNgOJ+luK+LwZBI3YUdIcsUMFjFaTtzUD9HDSV708Go7kjeKD5Z0d/DBk+6IV+wOzxVXXMGzzz5LZ2cn7e3tPPDAA0yePNlxzR//+EeUUo7jhz/8oeOaCRMm8NBDD7F9+3ba29u54YYbqKuri/KnJAhxeJx46dDytLmcGHGow5hBWYkj0eGBeMl3y7oWkHbbUV/5knCZNWsW8+fP5y9/+Qv19fVcd911PPbYYxx++OHs2LGj/7of//jHfPOb3+z/d+Hfamtrefjhh2lra+M973kPY8eO5c4776Snp4dvfOMbkf6eZCAOjxMvDg/oUevm8IoTOxLRMLjZWRjyE9EQ2+FE2oqTdOsRu8NzxhlnOP598cUX88477zB9+nT+9Kc/9b+/Y8cO2tvbi97jfe97H4cffjinnnoq69evZ9myZfz7v/873/nOd/iP//gPenp69vjMoEGDaGw0q5mam5P3n+MfN2FHyM/IxE0jtTeX2wutR94dnrwktHt1eKStaEQPg61Fg3V9Je3SjKzSCpRhw4YBsGnTJsf7F154Ie+88w7Lly/nuuuuY6+99ur/28yZM1m+fDnr16/vf2/BggUMGzaMI444ouj3XHnllXR2dvYfra2tIfyauBCj5cStHsltqMGS7lFasBQ6PHsOjAx500Nsh8ZLBw+iByS5bsQe4SmkpqaGm2++maeffpqXX365//3//d//Zc2aNaxdu5ajjjqK73znOxx66KGce+65ALS0tOwR/bH/3dLSUvS7rr/+em688cb+fzc3N2fI6ZHEQyde9BhFEhtqsKTbaAWLdPBOJDrsxG10eAewN1qPjWEXKka82I7k9SuJcnjmz5/P1KlTOeGEExzv33rrrf2vX3rpJdatW8cf/vAHDjzwQN544w1f39Xd3U13d1ZDj2LEnYgeTrw6PDWUfq5S2pG64UQGS0686GE7PFkm3YOlxExp3XLLLZx11lmcfPLJFSMtS5YsAeDggw8GoK2tjTFjxjiusf/d1tYWQmmTjhhxJ6KHE69J3FneXE6mO51IW3Ei9cOJODxVc8stt3DOOedwyimnsHr16orXH3PMMQCsW7cOgEWLFnHkkUcyatSo/mtOO+00Ojo6eOWVV8IocsIRo+VERq1O3Oixk3xsLidtxYno4UT0cOJ1SitZjx6JfUpr/vz5fPzjH2fu3Lls3bq1PzLT0dHBrl27OPDAA/n4xz/O7373OzZu3MhRRx3FTTfdxMKFC1m+fDkAjz32GK+88gp33XUXl112GS0tLVx77bXMnz8/w9NW5ZBG6kT0cOJFj+Fk2wEUZ9iJtBUnUj8MhfuTudmXCLQeW0tdGDmxR3guueQShg8fzsKFC2lra+s/zj//fEDn2px66qk89thjrFixgu9973vcf//9nH322f336Ovr46yzzmL37t0sWrSIu+++mzvvvNOxb0++kDCsE9HDiSSmGqSDdyJ6OBE9DG63cNiFeWh1svSIPcJTU1M+5PX2228ze/bsivd58803OfPMMwMqVdrxultqlkclIEZrIKKHQbRwIoMDJ1I/DG4dHtB6jCBpfUvsER4hDKSROhE9nIgeBq9aDMJp+LOG1A0noofB1mI30Ffh2mTqIQ5PJpFG6sTtFE4e9Cichxc9vEc0QPQAiQ4PRNqKk2TqIQ5PJpFG6kT0MHgNS0M+9Kikhf3oEciHHvLwUI1M8RnE4RESiZ8OPlnLB4NFRq0GPw5PHvTwYsRFj6R2aMEjtsPgpa0k0wEUhyeT+AnTy+ZySW2kwWJr0YfZZ6cUedIjvaPWYBGHx4noYUh/WxGHJ5O4rZg7kM3lCklmIw2W9ButYBE9nHgdHCRvc7lgEdthSH80VByeTOIn9JisihksYrQM0sE7ET2ceG0rILYDpG4MJJl6iMOTSdJfMYNFjJbBbVIq5EuP9OYlBItbPQo3lxOHR9rKQJKphzg8mST9FTNYxGgZpG44ET2ciB6GWszevJL/l4W6IQ5PJkl/xQwWP5vLNZS7MMWkfx4+WNzu0QT50ENsh8HPnlVSNzTJdADF4ckkYrScyOZyBqkbTmSKz4nUD4PsWeUk/XVDHJ5Mkn5PPFhkczmD1A0n6TfiwSL1w1Do8PRUuNauGw2YqGHWSH90WByeTCJheoOXeXjIfqcmHbwT0cOJ6GGwtegBVIVrJTrsJJl1QxyeTJL+ihkcXubhIft6SN1wIhENJ+kfxQeHFy36gO3W66zWDz8D6WRpIQ5PJpFOzeBlHh7yo4fXDi2rm8tJW3Eiehi8aAHZd4jTXzfE4ckk6a+YweFlHh7yo4eXugHZffSIRDSciO0weHV4sl4/0l83xOHJJOmvmMFha9GLDjtXIus7T3upG4Wby2W9fkhb0YgeBi9TOJB9PfxM/zaRJDcjOSURAkTyEgx+R2mih0bqhyHrdQPEdhQitsNJ+qPD4vBkEjHiBjFaTkQPJ9JWnIgeBmkrTrzo0YVJIUiOHuLwZBLJSzB42VgOxGgNRPQwZD2iATDYOovtkLYykPTrIQ5PJpHdYw3pb6TBIno48TM4yOrmcvUFryXCI9O/A0m/7RCHJ5NIWNqQ/kYaLLLyxImfCA9kUw/ZwsGJ2A4n6ddDHJ5MIg6Pwe8oLYsdGmTBaAWLFz12Azus11nUQxweJzI4cOI1PSB5ES9xeDKJbC5nkKWlTkQPJ+IAGgodnt6SVxmS16EFi9QNJ+l3AMXhyRx1mP9WCdOL0RqI5CU4kfphkAR/J1I3nKRfD3F4MofXsPROdKgeklQxgyP9jTRYRA8n4gAa/NaNZG0uFxzSVpykX48s1tKc49XhgSSGHoMj/Y00WEQPJ6KHwa8WkKTN5YJDnGEn6W8r4vBkDq/z8JDEihkc6W+kwZL+efhgET0MXqe0krm5XHCI7XCSfj3E4ckcXo0WJLFiBoeM0pyk32gFi+hh8KoFiB6FZNkZhizYUnF4MocYLSd+jVYDzmhZVpAO3onoYfBjO5LXqQWH1A0n6ddDHJ7MIQ6PE7+jEhA9INt1A0SPQsR2OJFVa07SH/EShydzyCjNiVc98rK5XHo3DwuOGnQkD9Icpg+Oahye5HRqweG3g6/HPJMsS6R/cCAOT+YQo+VERq1O0m+0gqOh4LXoIW1lIF712F7wWvRIYt0QhydzeN1JF5JYMYNDjLiT9Ielg0O2cHAibcWJVz36ME6P6JHEuiEOT+YQo+VEpvicVOPwZO3RI9U4PFI3NKKHE3GIDcmzo+LwZA4xWk7EaDmpZnO5rOlha9GLHp27QdqKE9HDiehhSJ4W4vBkDmmkTkQPJ171yPLmclI3nEg01InUDyd+HZ69SYqrkYxSCAEiRsuJGC0nUj8MooUTiYY6EdvhJP3RYXF4Moc0UieihxPRwyBaOBE9nIhD7MSrHt0F1yZDD3F4MoeM0pyIEXci9cMgWjiRtuJE9DDUWQekWY/YHZ4rrriCZ599ls7OTtrb23nggQeYPHmy45rGxkbmzZvHhg0b2Lp1K/fddx+jR492XDNhwgQeeughtm/fTnt7OzfccAN1dXXkD3mWlhMZpTmpxogPDbgscVONFg1kb3M5qRtO/OjRaZ2zZjv8rGiEpPUtsTs8s2bNYv78+bz73e/mtNNOo6Ghgccee4y99967/5qbbrqJs88+m49+9KPMmjWLcePG8atf/ar/77W1tTz88MMMGjSI97znPVx00UVcfPHFfOtb34rjJ8WMGC0nfvTosM6ih8Y24lnTo5q2AqIHZLdugOhRiF+Hx9ZjWIBlqQ6VpGPkyJFKKaVOPPFEBaihQ4eqrq4ude655/Zfc+ihhyqllJoxY4YC1Omnn656e3vV6NGj+6/57Gc/q7Zs2aIaGhpcfW9zc7NSSqnm5ubYNaju+IoCpeAuD5+ZaH1mRwLKH/TxO+u3fcLDZz5jfeY3CSh/0Eev9dvGePjM/1mf+UICyh/kcYr1u5Z5/FyH9blDEvAbgjz+y/pd3/XwmeOtz6xKQPmDPp63fttpHj5zlfWZ/0lA+YM8Rlm/S3n83FPWZ86t8vvLH27779gjPAMZNmwYAJs2bQJg+vTpDBo0iCeeeKL/mpUrV7JmzRpmzpwJwMyZM1m+fDnr16/vv2bBggUMGzaMI444ouj3DBo0iObmZseRDaqJaOyFc7v9LFCNHsMCLkvc1OJvHj6revipGyB6FJJVLUD0KKTatpKMiFeiHJ6amhpuvvlmnn76aV5++WUAWlpa6OrqoqOjw3Fte3s7LS0t/de0t7fv8Xf7b8W48sor6ezs7D9aW1uD/jkxUU0YFrLXUP08aiPrRgtkig/E4RlINW0la3UDqrOlWasb2WgriXJ45s+fz9SpU7ngggtC/67rr7+eoUOH9h/jx48P/TujwU/F7MPkJiSjYgaH5PAYqnV4pG5osl4//NSNOqAp2OLEjkR4DOLwBMott9zCWWedxcknn+yItrS1tdHY2Ng/1WUzZswY2tra+q8ZM2bMHn+3/1aM7u5utm7d6jiygd+KKSMTQ7IaaXAUOjw9Ja/ak6zrkW4jHhx+9NiJfjQHiB4gdWMgyepXEuHw3HLLLZxzzjmccsoprF692vG3pUuX0t3dzZw5c/rfmzx5MhMnTmTRokUALFq0iCOPPJJRo0b1X3PaaafR0dHBK6+8EslvSA5ixJ2I0TL4mbKApBmt4JC24kT0cCLRYUM26kZ93AWYP38+H//4x5k7dy5bt27tj8x0dHSwa9cuOjs7ue2227jxxhvZtGkTnZ2d3HLLLTzzzDMsWbIEgMcee4xXXnmFu+66i8suu4yWlhauvfZa5s+fT3e31/+gtJONihkc1RitevRzYHYEWqL4kLrhRPRwUo0e+yJ6QPbrhpf93SBpDmDsDs8ll1wCwMKFCx3vX3zxxdxxxx0AfPWrX6Wvr4/777+fxsZGFixY0P85gL6+Ps466yx++MMfsmjRIrZv384dd9zBN7/5zeh+SGKQvAQnfvTYDuxG5yUMQxyerBpxiXg5EdvhpNqNB2vR+ZFZIBu2I3aHp6ampuI1XV1dXHrppVx66aUlr3nzzTc588wzgyxaSslGxQyOauaeR6D1WBdoieJDOjQnoocTsR1Oqlm1Brp+bAmsNPGSjbqRiBweIUjsRuolKRWSVjGDQzo1QzaMVnCIHk5ED0NhLMCLHt3ALut1lvSQpGUhkVQ715qMihkcYsQN1RqtZqByRDY9SN1wko1OLRj8buEAMlgqJFltRRyezGFHeMTh0YgehmqNVi1JeQhgMGTDiAeH6GFoLHgt0XJTN9KthTg8mUOMlqEG86gMcXj8O39dBZ8RPbJZN0D0KMS2o32YfYbcksWIV7V1IxmPLRKHJ3P4rZhZbKTVhKWzrIefrRokTG/IYt0AyXcrxK8dhWw6gNX2K5CE+iEOT+aQUZqhMCyd7v0jgkGMuJNq20qW6gaI7ShE2ooTv85wH7DNeh2/HuLwZA4ZpRmCSDyMv5EGRzVGPItRjWrbShMJ2NkjQCQ6bJBoqJNsOIDi8GQOGaUZCpfoK4+fzaIeQRjxLOmRjTB9cEj+nyEbHXxwZMN2iMOTOcRoGfwu0Yds6iFG3IlfPXrRu3GD6AFSNwaSxYhXELYj/sGBODyZo1qjNQT9SIUs4PfRASBGfCBZ1CMbo9bgkJwmg9QNJ9mwHeLwZI5qNx6E7BiubDTS4JC8BCdBjOKzokfhFg4SHRbbMZBqbEdyIl7i8GQOv1GNXsxDMuOvmMEQRCPNSocGYsQHInoYChP8/eY0NeJcGZlmJMLjJBttRRyezJGNihkMooWTbIzSgkM6NUM1Kxq3Yp4KnhU9spGzEhzZsKXi8GQO6dQMkrTsJBtGKzhED0NhZMar7VBopweyp4fUDU02psPF4ckUdZiEYxmZBJO0PBjn6DfNiBF3InoYCtuK1y0cIHu2QwaOTrLRVsThyRTVhKUhSRUzGKpppFsLXmdFj2yM0oJDprQM1WgB2dNDprScVBMtT44DKA5PpqjmUQqQPaNVTSPtI0kNNRiyMUoLDlmlZahGC5C2UojdVurQ23xkgWxs8SEOT6awK6WfJ/xCkipmMFTTSCF7nZqE6Z1IhMdQrcOTNT2qqRs7MPY3K7YjG4MlcXgyhYSlnYgRd5INoxUcoodBbIcTsR1OsjE4EIcnU0gjdSJG3EkQHXw9sHcwxYkdcXgMYjucyBSfk2zkNInDkymkg3ciRtxJNfVjOyZML3pkr24E1Vbi79SCQWypk6Dy3eJ1OTx9+3777RdWOYRAkA7eSTVJy5A9PYIatWahU5MtHJxU28FLRMNJ1mxHEIMDgOYAyuIfTw7PihUruOaaa9hrr73CKo9QFUF18Fkx4tUmLWdVDwnTV7+iMUtagHTwA5GIl5Nq9OgGdlmv460fnhye0047jfe///387W9/46KLLgqrTIJvglqVJEZLkzU9JExvCGrPqmb0gzfTjtQNJ6KHk2w4xJ4cnkWLFvHud7+bK6+8km9/+9s899xznHDCCWGVTfBMNiplcMiUlhOpH4agtnCoJe4wfTBI3XAigyUnQTmA8Ua8fGUQ3XXXXRx66KE8/PDDPPLII/zyl79k0qRJARdN8I6MSpwENaWVFT2kfhiq7dC6Cj4reiSlQwsOcQCdZEOPqlKmH3vsMX7yk59wzjnn8Morr/Cd73yHpqamoMomuKQO+BdgamCVMt1h+hbgP4EhEuEBYBbwTSArRqtaPgecVbXzB1nQYwjwbWBCYM7w8GqLFCtTgBuAehkcAPAh4F+BrCS113u5+LOf/SzHHXccxx13HIcddhh9fX289NJL/OhHP2LZsmVccMEFvPLKK3z4wx9m6dKlYZVZGMC1wBXATxjEZ4DqG6kdpu8sc20yqQWeAg4BHqORhYB/PbZY5+HVFis2xgNPWq+/SyM7Af8OzxbrPLyaIsXKucAPgZdo5CHAvxag9RhNmvW4FbgA2EEj1wN5rhuDgKXoXaZ+SiMrgDzrcQTwAPpRst+rerC02ToPr7JU1eHJ4fnGN77BkiVLuPPOO1m8eDFLly5l165d/X+/9dZbufLKK/nZz37GkUceGXhhhT0ZDlxmva4PJEy/E9gLGEEaHZ65aGcHYGxgjXREVWWKk6sKXjcwyHJ4/DqA6dfjBuvcHUiEJ916HIx2dgCaA2sre6EjidU4kvHwT5gtNUdV7fCku26AjvwB9FKPmQyq1gGMVw9PDs/+++9f8ZrbbruNb3/72xWvE4LheAqrYrVGC3TFtB2eNVXcJx4KU+i7q57S2mKdh/stTuycWPC6r+r6scU6D/dbnFgZDxxovQ6urUBa9SjeVvw6gFvRCeC1aD3a/RcsJmYVvN5dtR7pd3hsPbqrXtEISYnwBL7t4fr16znllFOCvq1QguOt81aCHrUOr+Ie8XGcde6ksFPLp9FqAg6zXm8hiE4+3Xoca503E5TDkw09thCEHoqkjOL9Emz9SLcdPQDYB+gBtlS9ZxUkpW6Ess/zU089FcZthSLYDs9diBGvA6ZZr39OEBEeW4sGtPuQLqahG/hbwJ+BnpyPWm1n+NfAdkuLhhxPadl6/AKxHcPRU3wAvySIweMW65w+LcA4fy8Ar/TXjd3W4Ydk1A15llbKsSvmfZhGOiinRnwK2i3pBB4niAjPjoLPpk8Pu278Bfi7IyydzwjPdOu8BHjbqhuNOe3g64GjrdeFtiOvOU123fg78FeCjPAMwWPmSCKwbcdzwBtW3airqm5ssc7Dq7hH9YjDk2KGAGOt10uBTVYjbc6pEZ9snV8B3kBGrYda55eAVYHOw6dPC9AOMcByoNWqG3vnNIfnAHRq8XZgIbDL0qMpp22lsG6sIgjbsaXgdfr0sKfClwOrLS0aMlA3xOFJMQdZ53fQUY0NVqc2LAMV0w92SPp1dLq1iXjlW4+/A6syNA/vh0GAveTidWCdVTf2zmlEw7Ydr2PnaWg99glkFJ9uPVYTRMSrD7PNR3r1+DuwJtBo6PAq7lE94vCkmMIODWCDVTGH59SIF+qxBdhp6TFGjHi/0aqnB51g6ge7bjQCg6sqW9RMQhu7bej1Q205j4YW1g0w0eGRGejU/DBwsGRHeIbmUI8azGrG14G3LeevMQN2VByeFFPYSAE2W41030DC9Ok34jushjo2h0ZrYETj7YL8Lv8ZBVsxz51KV/0YWDfaA+3Q0qUFOEfwAB2BOjzp1eN19HO97Sm+8TnUYxx6ONODdv7WBjL9a2sxjDh38ReHJ8UMNFqdVqcWTIRneBX3iIeBEa+dOTbik3BGNDYVhKX3rerOW6xzuvQY6PB0WG1lSM6joQMHB3mMDg+MaICZ0to3A1ENr9htZQ16TdYmS4u96K7CVdlinWuJ83lr4vCkmD2Nlu7U8pjDMwiYYL229ejqj3jlz4jbRusN66wKIjwjq7pzuvWw68a2QKa0tljn4VXcIx72jIba0+H5sx0DIxpQQ6/VXvI4WNpzcGAGS8N937UbveoV4tQjfevlhH7sDn61dd6Z41HafmjvfSew3nqvp3+Ulj+jdYB1fqP/naAiPOnUY5J1XmWd7X14mgNpK03ovZp6qrhXtEyyznb9sKdw9snhdLjdVt7C3mXGrGgcncPp8IG2o6/AdozE/CrvrEHv4h9f/p9EeFLMfta51TrbRmtEDjv48db57YL3eiw9RuUwLG07w2/1v+M0Wv7ZYp3Tqceb1nl7QV7CEN937UCvxoE06bEv5plRdnvpDmSVVjo7+IF1o9Dhqc52pNOW7mk7gooOH452p1ZUdZdqiN3hOfHEE3nwwQdpbW1FKcXcuXMdf7/99ttRSjmORx55xHHNiBEjuPvuu+no6GDz5s385Cc/oakpfTvjemEfjJ+81jp3BTJKS2cjHej8gXkezqgc6xG80Up3p2br0RuIA6hI49Jju260YxZdd+c4363U4ABgdA4dnj1tR1CDpfiJ3eFpampi2bJlfOELXyh5zSOPPEJLS0v/8bGPfczx95///OccccQRnHbaaZx11lmcdNJJ/PjHPw676LFiV8p3MLuqdFmd2tB+8+WHdD5OYc8ITy3KmrEdk8OwdHgRnvQZ8UZgtPW6mAMYTBL38KruEiV71o3CaGj+HJ5SHXwD3Yz2vYUDpD0amkWHJ/YcnkcffZRHH3207DVdXV20txd/+u6UKVM444wzOPbYY1m6dCkAX/ziF/nd737H1772NdatW1f0c4MGDaKx0bgFzc3NPn9BPBSbwtk9IE9j7cAPuWIHOhehAd1Qt/suY5TsGeEx/7fV7cOTTiMuDo/BrhvbKcw/CFKPA0iTHsUcnt6CVUl1+H1ikq1uM7pr6S1zbXIIbwonfW0FwtQjfmKP8Lhh9uzZtLe3s2LFCn7wgx+wzz779P9t5syZbN68ud/ZAXjiiSfo6+tjxowZJe955ZVX0tnZ2X+0traWvDaJFJvCCW7Umr6GajuARg8zDx/MPjz7lL0qSdRQfkormLqRHj1sLd52vBuUw7PJOqdHj2IOT2Fiqv9fsqXgdXpsh62HqR9B1430aLEPJr9r4OAxCxGexDs8jz76KJ/4xCeYM2cOl19+ObNmzeKRRx6htlYXvaWlhfXr1zs+s3v3bjZt2kRLS0vJ+15//fUMHTq0/xg/fnzJa5NIsQhPcCtx0tdQ99TDRHhaqlo9s9E6p6dDG412b/oojPIFZbTSp0exDj64UWv6HJ7iDmAQevSRRoc4vGioXTeqs8ZRYteN9RQ+gCY7Dk/sU1qV+MUvftH/+qWXXuLFF1/kjTfeYPbs2fzhD3/wfd/u7m66u6uZ6oiXPSMaEHynlr6GOjDCM8jKbBqKft6Yd2yjNQid05T8KT7bgLdROKmQ3w6+uMOT37YSrh6b0AOldNSPSvldMjiAQj1GRVyeoEl8hGcgq1at4p133uHgg/W2e21tbYwePdpxTV1dHfvssw9tbW1xFDESKk1p5WlkUot5anyxsDRQhR470JvNQ1r0qBT9q878pq+DLzelNYjuKvVInwNYaYovT/VjnHXegfmfLNRiMNXsGmPfcQiFU+xJplLdSE/Mvzipc3jGjx/Pvvvu25+MvGjRIkaMGMG0adP6rznllFOora1lyZIlcRUzdCp1asOqunu6RiZj0KHK3eilthr7YZk6iledHunq1GwjXir6lyctwDjDziR++4GIQbWVdHTwUKp+mMFSMPUjHXrYWjjrhnOw5F+PDkz6dzraS7h1I35id3iampo4+uijOfroowE44IADOProo5kwYQJNTU3ccMMNzJgxg4kTJ3LKKafwm9/8hr///e8sWLAAgBUrVvDII49w6623ctxxx/Ge97yHefPmce+995ZcoZUFKkV48mTEbedvHYWrS7QWDZbRqu7pLenSw+7gnbU/6LqxD3E+BNALlTq1PHXwQzFJqaZ+1FlH/gZLdt0o1lbqqh4sKUxOUzrqR3HbEVRbiZ/YHZ5jjz2WF154gRdeeAGAm266iRdeeIFvfetb7N69m6OOOooHH3yQ1157jdtuu42lS5dy4oknOvJvLrzwQlasWMHvf/97fve73/H000/zz//8zzH9ovDZG5NOHE6EJ11GvFw+U33VozRIW1SjUgc/iCDC9HXE+RBAL0TnACYfu25sxkzUFib45812FI/+aT3qArEd6awf4QwO4if2pOWFCxdSU1N6pHj66adXvMfmzZu58MILgyxWorE7+G0MTMTNpxEvF+2qDWRKKwsRHrOZGmg9duGHbnTNG4LWo6P85TFTQ/lOLa8dfDHnT7/Kl+0o11ZqAp0OT3/9GEQ3zeg2Vc12jHESe4RH8E7x/B3IqxEvl89UG2iEJx16FB+l2Z1aviJe+6K30OyjML8L8prvVm4ED33U0yttpX+wJBEejWkrtVDFs+fiRxyeFFI8olGP/d/ZSFdAOSvpaKTF9QhylJYuPcqNWoNxeNIT8bIN+DsM3Pc36CTdEdh5MEmmXN2oo5sapK0Y25GvwVIdZol+8foRhB7xIg5PCike0QgjLJ38Rgrl9cib0apHr1qD4qPWvpyF6YtPZ0HhqHUo1aRfbyp4Pdz3XaIi/IhGeuoGlNdD5WywNAbtEPSiBwgGrcfuQPSIF3F4Uki5JF39Kp9TWsX1CHKVVjqMFuinoW1w/EXr0ZezMH3xVTgQXJh+N+aRCslvL+FHNNJTN6C8HipnDqCtRRsDc3S0HrslwiPEQbkkXeijjt0BGS17d+FkU06PYEZp6TFadgcfrtFKnx57RnjsCGA+60fx/C6tRXWDg/RoMRjjlhXLWcnr4KBUNLRXHB4hDmxPvFREo4ZqjdYOzJNUkm24hmJcMjFa5aZwdKfWE0inlj49SkV4unNaP8LP70r+7sL2kxZ3MnCtYZBTOOlxAEu3FaftEIdHiJTiYXqn0aqj2thMOvJ47Ea6Be2mGeyIRr6MVqUpnB6J8FhoI74rp/Wj2OAgmCmc9OwuXCmiEUw0ND3OcCU9ghkcxIs4PCmj9L4iJixtr0bJQ0Mt3cHbo7SgjVaydxeuFOHpzlkiZqUIT1eOOrVmzCCo2D4rdkL7EKpZb1a4u3Cy9ahUN4KZwkmfM1zKlnZJhEeIGntfESi+rwh09W9GmIeGGs28c3p2F5YIj5PyOSuwK5Ck9nToYWuxBT2NY3BO/0K+9Ihm+jfZWkDlFY3dgbSVeBGHJ2XYjXQ9eiWOwUR4bIcnDw210rxzr2W0mqv6li707sJQzXPXo8Ct0apu8zB7/VeytajB5GmU2ll4V0FUwz/p0KNSREP1x7tEDzCDg+psh63FYJK+AKTSYKk7ED3iRRyelFGpQ4Mutlqv8mC03EZ4qt8d1N6ZYlTVdwoTt2Hp6oxWOrTYF+PatDn+YrZw2BWIEU+HHpUiGtDdbzvyrYfT4anOdmzHxNOSbUsrDR6DsR3xIg5PyqjkhefNaLmNaNQBe1X1TelwACvp0RXoqLWZQuchadharGfgLst2mXvYbi3ez1NbKW07uvrjmMHokY62UqqD7w6sg7fbS3LrRx2lNiwFu37sCmzwGB/i8KSMSqMS2JUrh6dSRMOeh4fs61F6a3gI1uHZgplQTW6nFl1EIx3OsBc9gokOJ7etQGVb2pWj6PBotDOwm4G7LMNAh0ciPEJklB7BD7bOOwMepSW3kUI5o2XHc3bmxgEsvTU8DFyGXb0RT36n5iWiUZ0eya8b4E6PvLQVcLOCT7eVOmDvqr4p+RGvwg1L+/b4q7YdO2VKS4ia0hENu4PfFdAoLfmNFMoZLdsBDCrilfxRfKEWao+/6vqx08onCC5Mn1w9SjvDQdcNu63sQ5JNavR6JLduNGKWY5SeDt/V3/lnPeJV2o7WYhyeXYA4PEKEVI7wBN3BJ7eRFu6yXM7hycsovrQzDLYeOwIzWsnXIzpn2F7RWId+anoyiX5wkNy6Ya/e24V5EprBRIfzEi2vnCphbIfk8AiRUbpTM1NaeRmlFe4rsmOPv+ZvSqt0hwYDHZ69qGZzOUhT/SgdDQ2qbvRiNttLbv1wo4cMDiCPEa/StsMs9dguER4hSkrvsgzFprSCaaSDSOremm46+DyNWm0j3rrHX0xYenvBlnN5CdPvqUfQ0T9Ieqc2BPMbZUqrXN2A4CM8yW8rlac7e9hmPTJEHB4hEgp3WW7b469BG/Eu6Dd/yTRcpRsp5NGIVzZa0NOftpz9iFd0Ce2Q9E4t2miorcVeJHWzPa+2I+v5kG7ait2vDAbqIyhTGIjDkyIKd1nu3eOvQXfwkHQjXj7CI2F6Q+EORPlwAMtHQ8NoK8muH9EODgo32xM9kl43wFtCO6Q3j0ccnhRR2oBDOKPWZDfUaI1W8jfbq2y0uoG+XEzx2bss9zHwmXMQrsOTTAfQXVsJanAA6dYjrIhXMtsKuHN4eqD/0SNpndYShydFRJtoB+LwFLKFpG+25yYsDeQi4mVr8Q7FoqFBR/8g6Z1aedsRdP4fpEWPSrYj2FVaI0jiZFA9ZsPSSrYjuPoRD+LwpAivjTTrozS3U1p5MOL1lNsa3tQNCMpoJbtueHWGq3/0SDocwGgGB5Du+rGn7ajOlm4GK+E3iQ9jLr9hqdN2BOMAxoc4PCki+imt5HbwEIcRT64e9r4i3ZhdYQxhODy2FvuiM2aShdsObXvBu/l1APM7HV5612kIznb0AZus18nTw82GpQMjPJLDI4SOTGk5Ke8AhhnxSp4ehXXDrdEKxuGpQ+8wnCzcOsOKoCNeyasbEEd0OLmDg70w20OWnsKBvDiAbusGyJSWECFuO3i7Ula/udx66zy67FVxUH6X5RqC34gRTPpr8vTwYrSC6dR6MbGkMeUujIXo9bDbSvK0gDgiPHZbSZ4eth3dDnTu8Ve7buwGegOcwkmuHm7rBojDI0SI24q5reDd6ox48hvpFijYSs8mjLA0GD1ayl4VB/EYreTXj+j0sHfGGkP6pvjCiA7beqStrRSPaFQf8UprW5EcHiEGCvcVqTSl1Q0BbS5XaMSThTstIBwjnjw94glLZ6tTq04PO8JTT9Km+IZjXDy30+HVR4fT2sGHNTjIlu2QHB4hVMrvsgzhGPFCo5WsUas7o9VLYVg6D6O0SivWIF8Rnuj0SO4Unz042IjZR8VJ8ehwcLYjWcQzOJDocBIQhycllN9lGcKpmMkdtYrRcuI2vwuCylmBpHZqtZj/oWj1SGbEq3xbgVLR4eCmw9M4WHLuWZXfwYEkLQsxUL5Dg3AqZi9mtUWyjLjb6T2QsHTeprRGoadjdmNcdidhO8TJqh+VHR4ZLBnCmsJJZlsBifAICcTLKA2yP4r300ir31yucJVWeketeeng2zHbvTnJpx7F60Y9JlsnSAewh6RP8ZVvK/lwhgdhFspHGw2NB3F4UkL5iAaEn2yXrJGJlwhP4eZywSw9ridJO6YOwmx3JxEe74ODrE95upuygOBX4iRbj0rPFYMw2kqyBkvlNywFifAIsRC/EU/WyMRLWFoRlBEvnOJLjh6287cLvYn9noS1W2oa6waE82wxSOqUp7voH4Q3jZMmPYpHNKqPDtuDpQaSNMUXX78SD+LwpIR4wtKQzlG8s0ODbOvhd7oz2I0YkzNqlcGBEy8dPGRbjyHoTUvB3Qq+4KLDyVzFJw6PkEjcPSgTgh+1Js9oDQX2tl67mdKCbBtx9xGNoI1WMqf44nd4kuMMQ5yDg+TpYdvRTpzOjGHP6HCWFz34jYaKwyOEirtRGtg7beQhorGFYrssQzmHJ4th+vI5GlAqL2Fvqt1cLplTfJX1yNfmcl4jPMF1asnTw2sHD/lwAL0ODiRpWQiNGkwTiS+ikbxG6rZDg2wnYvqNaIB5Hpl/0q9H8NHQ5Ezx7YtOaodSG5Y6o3+Q7Rwvr3UDJDqskaRlISLcG60wc1bS1EjFaDlx1o9u9KJhyGv9CMuIJ2+Kr3DD0p6iVzijf5DtwZIf25HviFfxwVL1jx6JB3F4UkDhviLFd1ku3UiDG6WNIinVJV6HJ7lTfPE6gMnQox7zLPvietRihg9B5/Akb6NOaStOqpnSCs6WplEPZzQU0hnlib0HO/HEE3nwwQdpbW1FKcXcuXP3uOaaa65h7dq17Nixg8cff5yDDz7Y8fcRI0Zw991309HRwebNm/nJT35CU1P1wfqk4D4nIQyj9Q7Qh/bnR1W4NhrcT2mFEaa3v3Vs2auiJN68BFuPcWWviooxaKPWi665e7LnvjPBhumTVT/81I3gIhq2FqNJSjwgXgfQ/tZktBXwnv8X3KNH4iF2h6epqYlly5bxhS98oejfL7vsMr70pS/xuc99jhkzZrB9+3YWLFhAY2Nj/zU///nPOeKIIzjttNM466yzOOmkk/jxj38c1U8Inf2s89slr7DXLJl1B8E10t2Ykcn4qu8WBO712NH/TnBGvNU6J0MLMCXxY8SrN1q2Hskw4rYW69ArbPaktMMTjAFPVv0o1KM4YdYN+8l/dSRlGqeyHmEOHpNVN/bC7AgUjwMYPfVxF+DRRx/l0UcfLfn3r3zlK1x77bU8+OCDAHziE5+gvb2dD33oQ/ziF79gypQpnHHGGRx77LEsXboUgC9+8Yv87ne/42tf+xrr1pWu2mlhgnV+q+QVe3bwwVbKVvSIdTzwfCB3rAZbj3gcQNs07Is2BrvKXBs+zcAw67WX+pFVB9B9W+nCfvCErUU9QfyPJksPe3AQj+3oQ7sWE9B6lO5Wo8KPHsG1Ffv3J6tubEOveC1O8fqxL+l0eGKP8JTjgAMOYOzYsTzxxBP973V2drJkyRJmzpwJwMyZM9m8eXO/swPwxBNP0NfXx4wZM0ree9CgQTQ3NzuOpFI5omFP3+1ptLI4ao3XiG8puG/8UQ1bi82U2lcETP0IwwFMZt3w0laCzUtIlh6VHcDStiMYi5icTr6moBSVbceebSW4aOjwgu+Jj8ptBcq1l+T2mKVJtMPT0qKTu9rb2x3vt7e39/+tpaWF9eudz0TevXs3mzZt6r+mGFdeeSWdnZ39R2tra8lr48b9qNU00mArZXKMeB0mO6KyEQ+jg4ck6VE52gXhOoDJ0QL8tZXgHj0CWdAjHNsR/+BgDDpdfTflprTCdAC3Ftwt/vpRuW7UYxL8w3AAoyfRDk+YXH/99QwdOrT/GD8+/gpYimoiPNVvLgdJMuLj0L+nG7MIeE9Kd/BZi3hVNlpQzgEMLol7MEl4RpCfiAYEqUdyIhrgxXaE1aElr62sxZ7MLEaY0+GQJAfQvTMM4ekRLYl2eNra9LLGMWOcCW9jxozp/1tbWxujR492/L2uro599tmn/5pidHd3s3XrVseRVPyM0gp/TXCh2PiNlm3AWymVlArFjHhWR62V60YNJhEzjLB0F2Ypdvx6+EnwhzAiPPFr0QSMsF7Hm/8HSbId8U7hJEcP94OD3Zi1WeLwhMaqVatYt24dc+bM6X+vubmZGTNmsGjRIgAWLVrEiBEjmDZtWv81p5xyCrW1tSxZsiTyMgfNcIzDUnrSbU+jFezywTQ1UhAjXkgUo7Tk6OHeiDsdnuCn+MYQ95oQW4stOPOUnJSO8GQtOuzNdoQV8UpOBDD+wUH0xL5Kq6mpybGvzgEHHMDRRx/Npk2beOutt7j55pu56qqr+Nvf/saqVav49re/zdq1a/n1r38NwIoVK3jkkUe49dZb+dznPkdDQwPz5s3j3nvvzcQKLbtSbqDUc6OglBHfhp5kyFJegt9RWlYTMd138BDe0tJW4Gji1qMOE1fxO6UVzL5V3ejchxYq1dQw8Ts4KHSOhgAdVZUiTW0FwrcdybGl8U//Rk/sDs+xxx7Lk08+2f/vm266CYCf/exnfPKTn+SGG26gqamJH//4xwwfPpynn36a008/na6urv7PXHjhhcybN4/f//739PX1cf/99/OlL30p6p8SCn6NFuiKGazDM9z6rh2lLw2ZZIzS0mS0CrUwk4BZ1GMs2unpwewctSfFR63B6aHQeU0T0XrE5/B4GxwYPbrQGjYQhMOTnCk+d3pElcOTNtthSPOUVuwOz8KFC6mpKf+gvauvvpqrr7665N83b97MhRdeGHTREoG7VThhj1o70eO+IeiG+req7+iXykvSIY/z8F6SUiFoPZIxirfrxlr0DjDFKd5Wgq8ftsMTH8kaLA1Da19684Sw8RvhyaLtcJffFXa/Ej2JzuER3HbwYY9aISkN1dsy7D1HafbmctWRjFHrMMz/rZekVMjmyhO/0T/I5ije7wo+CFKPbegBEyRfj0ZMl5jt6LDdr3TiXODiJIrBUrSIw5Nw/O6zAtkcmVQ7SoMgnxHUCIys+m5+sbXYiPf8Lungw3QAkxXx8uMAZs121OIlvwvCz/8bi15BGQ9BDA7SmMMjDk/C8Talle1OrR7znOHSetSjsw+g1OZy1TfUHswuQPFFNbx1aGEmHsZfNyCJ0dBkRLyqmQ7PysqkFrRlKJ/fZWthHjsCQUeH29ATrg3E+TDm5AwOokUcnoQz0TqvLntVlNMW8Rmt/dAVdiflNh0sPkqDoPWwu5H9yl4VJvtbZz9TFsGO4G0t7L1s48GbHmFGQ209JpS9KmyqqR9ZbSvl87uKO8OF/6pej1600wNx1o/kTP9Gizg8CaYW01BXl70yilHam9Z5/7JXhckk67ym7FV2I+2lcLMsCLpTs/WYWPaqMJlknVeXvSoKZ3hjwf3jM+KTrPPqsldF0cHbNTS+ulGYcOyuvYRZP+LXY5J1XlX2quJ2NNjoMCRJj9Vlr4picBAt4vAkmLHo8XIPlZ4zHIUnnu5GCkHrYZdiUiB384P9zavLXlW+g28iKCNgl2JSIHfzg/3Nq8teFcWUlt1W9iOIrfv8MMk6r0VP0JQmigjg6gGlih77m1eXvap43YC821LJ4REiwG4Ob1Pu2S8QjSe+2jpPCuRufrC/eXXZqyobrXyN0sqP4ME5CeifePVoBvYdUJLiRJGXsA6zk008eTyTrPPqslcVf+wI5LWtRDVYsvWYFMjd/GB/8+qyV8mUlhAhk6zz6opXRhnhGQEMDeSOXplknVeXvap4Bw8S4SnE3lwOsjFqtb91I+WW2UI0q5L6iHvKc5J1Xl32quKPHYG8RjRKD5bCGTzGo0cdZuJ5dZnrKg0Ognn0SLSIw5NgJlnn1RWvjGIlznbMQyLjNeJ+RvAQtNGK14gPRk95gn8HMEsRQPtbV5e5RhPVypN468ck67y67FWFDo9zY4Ng9XgL7QTuTVwrkyZZ59Vlr6oc4clCxGs8esVZN2aDjeKUHxxA+qa1xOFJMJOs8+qyVzVi/OywjbhdkjQY8ajm4VsIYrGqV+zU8a3AprJXFo/w2J+FbDiAk6zz6opXRrW3SLzTFva3uhschF03CrvW6OtHDV5Xu0bVViYFcjev2N+6hsKHzRSjuANYGB0Wh0cIjEnWeXXZqwpHaWFn08fXUOswC+JXl70yqnn4TQV3jH7l2iTrvLrilVHnNE0K5G5esb91dcUro4rw2CVJsgMY1RQOxFk/xqCHJLsxm2sUJ+ocnuHEkR4wyTqvrnhlVA5xdIjDk2BsU1l+lGZXuV3opdiGLBnx/dBh2F2U2zgMTPe9bY+/hDeKj16PSdZ5dcUro161Np44ZvYnDShFacqvSmpAx0yrJw0Rr6imcApLEl9beZuBFnIgUU2Hx5seMMk6r654ZVT5kNEhDk9CcR+GtUcInXv8JTyjNSmwO7rF/sY3qRSGtfXYM3U1S6NW+xtXV7zS/rVh69GGDnbXE8fmlO7aCpjW4NQj2EePQJx1o3APnjfLXVimbmQpp2mSdV5d8Uq7bkRhS+PXo/yeRBCd7YgOcXgSSgt6pNlLpa3h4zBakwK7o1vsb1xd8Ur715Y2WlmIeE0aUILSVHaIg9FDYbrXSYHc0Qv2N64ue1XhuhJne+nDxHyC6dTskuxP1M9MmmSd16EjoqUR2+Gk9GApn3pUtqWSwyMEwiTr3EqlPXgqe+HBby6X5A4+H6NW9xGNynqkfdQ6BPMI1/LTv3aHVujeGIJ/nMJudPbI6EDu6JZJ1nl1xStLO8PBj+Dt0ojtcJYmyXpE6QBGgzg8CeUg6/x6xSsrN1IIOjF1FM5k6fCx9agmDJulKb4DB5SgNNkfxR9gnSvvwVNaCwi6k+/F7I8ebadm67G64pXZd4bBix5ROoDx6FGP2YOn/OAAorUd0SAOT0I52Dr/veKVpb3w4DeX6wQ2W6+jbai2Hn+reGVUUzgQZ0TDfmp8ZYc4+6N493WjvMOTFQfQu+0o3VaCiw7bWgxDr06KDvd6xOEATgrsjm6YhHZ6dlBpD54GzHYbUdiOaBCHJ6F4b6R7VkoIM6pxQLmLAicIoxV8I7XjTeMJam2PG2wt3gE6Kl4d5SjN1uOgslcFTRAdPITRVmw9Dix7VdAcYp2rcQCDjw7vxDwlPLr60YBxv93rEcVgKZ66UdhWyi/+KPylUTiA0SAOT0JJ7qjVjikcXPaqIBmG2Z81iCm+4LR4B20ca4nScLmvG4OsA6IxWrbLcUjZq4LG/rZqnOHCd4OrH/b/0OTA7uiGoKLD9hLu4PWIrn4cgE5T30al7Swg2pwV+39nX/S6umhw31ZsLXZQLItUprSEQAnKiAcf1XjNOkdnxO3xYBvFdtcZSJRhaYhDD+9GC8rtSxR83RhPlDleQUx3QphtJboOvhGTo5G86HD0Do/7tgLl9Ai+buzArL+NTo/kDqSjQRyeBDIC4/O/UfHquEatSWyk4CYvIbjN5SBOPdx3aNvQK5OcBG/EN6NThyHKCGDyIzzR1Y0D0Ua9Ax1/LE/piEbhu2nWw5/tiGqwlAbbEdVAOhrE4UkgdqVspdgelwNxZ7SCa6hJjmhAuYa6vchV1ZNkIx51hwZR67EXehduCM7hCT6iMYaoHiHgvkMDtxGeNEeH3etRi9lpOYocHogz4lVtNFRyeITASLbRspvK/kSVqOtPjz07tcLdV9JsxL1HNKI0WtHqYWdObaLSQ1TBrREPrm5sxSTqRtOpue/QoJJDHPwoPskdvLsk3WCjw9G2lXrMmrDkRUOjQRyeBBJUBw9hGK13gC3oqhPNagv3etSjx/wQ/Sg+GiPeBIy1XifTaEWrR1DRv8J306xHkLYjvKT2fYgqUdf7FE4X+unuTrIQHZ6Idth2YnaIKk0c0eHwEYcngXibd47DiEebjOndaEH0eQnjMSHx8LBdzA1ot7M8USfpQrI7+KgjGhCXA1htvhuE0VZ2EmWibgMmolFtkm7wjx6BONtK+SXpUCk6LDk8QmAEacTDTbYLPxRbuMmee4dnF2bLRSfBG/HNmCcfh5+oG0ZEYwhBPu0p2jC9v8FBlFN80S5NDyPCE85gKXw9JmGWpLeVv5RKdrTwL8Hp8QbalRqKzvMKl+TXjfARhyeBHGqdk1sxozNadge/nlLdVCHltYD0j+LDcHggyNiUrcVookjUTf6UVnTR0EHozDpwo0cNWY94BbUk3Sb4+tGF2XE5Oj2CjP5J0rJQFaPQW1H1AStdfWK4dS6+527ajdZh1vlVV1cPs86VjVZaE3WnWOcVrq4u36HtIozN5QrH09HVj9fKXmWT7VVrk9EGfQt6gFCeQhc3juhw+HrYbSWIugHpt6Xe9HA3OAju0SPRkKay5oLDrfMb6A6pPIMwG7wVX6OS9giPrccrrq4eYZ03l7wi7Z3aEdY5KD3CMeLR1I8RmATuIPQIR4voEnXttvKyq6ttLboptflF2iNe3vQYbp23lLwi7bbDX/3YUvSvhduYpinKIw5PwvDXwfdRKsIT7ihtLGHP4vrTo/QC5XCN+KFlr6qWGkxEI9kOYDR62Fqswc0O3FBJj3Dayk7gLev1lHIXVk3QznD4dSO4zLFi+NOjsu0IJzocbt0YitmB2120vHz9CCc6HD7i8CQMfx18B6Xy7sMxWp2YhY2Hl7uwarwZLXsEHXVEwy7dEWWvqpb90SHkbtzmJdh6RO0A2mPIqYHedSDe6ga4dXiCzzx6yTqHq0fQ0dBw2srr6NyVIZjHeoaDNz0q245w6kc0dcMeHLTi5oHDEN/gMVzE4UkYQRstO5sleCO+3DofGfidbRoxy7CD0sNu7MNKXuGHlWg3ZChhGnG7g19Jscf5FSMuPWwjHl7dAK8h+r0xD1ItbsS3WOcGzG5OwRCtHt46+NId2hbrPNxneYrTi4kxhKfHeHRr7MFtkm7ltrLFOg/3Xapi2Hb0IMJ8/py3tgJuHMAt1nm4j/LEhTg8CSNoh2fLgCuDI3yHZzJ6Welm3CwrhfiMVi8mjTi8kZq3ugFu9LD/Emz9sOvGwcDgQO9ciL8OvgfnNnKG7ZgwfTh6hFc3GjBZIN5yNKKuGxBFVMMeHPyNUhtUDCQuB/AddIp5LSYOEzxBR0ML/zLcT4FiQhyeBLEPZs8Zd6twvFXKYGfMw3d40tPBQ5R6eB+llTbi4ejRjjbktYQ55Rl0zkrhX8NxeMKrG4egnZ5O9LRFZeLs0JLYVvJhO9y1lVpMzDdq2xEu4vAkCNu/X02pMehA3DfSOoKea01aI4VkjFpFD024egxDT1tAcEmpEJYeK9CTkPti1pUFi/+6EUeHJrbDSdJsxzCMaxDH7EF4iMOTIMJopF3odSKFVwfDq2gjPhITlwoW/6O0bBtxd3rshXnMYZxTnuFMW9iDg7cot3NKIZVzEgr/GqweuzCZJOHoYUe7wsjRKKxJwWB38Iei41LB430KJ65oKITdVgrTw70NDrZTbkJQIjxCVdgdmrtlgxBvmH4XZq1QOJ18ukZpttGaQhhGfAI6QteD1xVavZRbtJ3WaYswchIgzETMcPUIo610oje8gKD1eAudLt9AWFsXhDGltcU6D/dRnvKEWzfswcE6KtV+G2/R0OE+yhQX4vAkiKOsc5ARDUhn4nIjJgnT+ygtDofnTXQX0UAYG+7ZHfxrmMTa8sQ5hQNpdXjSmqjrX4/S9UMRpu0IbxpnHLoT7sXtCq0aTLcdh+2w/9fGoqc9g8V/tMvd4EAiPIIv3mWdn3f9ibiNeHid2pFo1+Ed3CZhgpcITz1h7BAanhG368Yy15+Iu27Ybvs4wthh2L8e2XMA98JsW/ei60/F3amFN41zjHVegd4sojLuclbCqxvb0HvrQ5h6uK8bcduO8BCHJyFMQlecLtI0ag3PiE+zzu6dv8GYJdCl9diJ1hjC1OOoslf5wdZjqetPxN2hbQNWWa+D1aMG4/AErUf4beUI9BKC4DjKumMbZjvQyiTFdhwd+J2nW2f3daMwZ6W0i2RrMQQ9YAqWJOohU1pCSNgd2ku43TcC9KNGATaUvSo8o/VX63wkZlO3YPAe7bJDwT1USmMNTw/bpBwb+J1to+Vej8pJmBD2KC0cPQ5Ej8l34iXfLW4H8HV03speBL0jt/fBAXitH8M93dsNdt04LvA7e9fDXd0o3KE4LbajFhPhCVoPifCEwNVXX41SynG8+qoxc42NjcybN48NGzawdetW7rvvPkaPHh1jif3hz2jZv7P8s5HDq5ir0c7WIIIemXjXY4x1Xk+px2zYbLHOwevxF+t8HEHuejQCOMB6/ddyFzoo1KM04RotW4/jA72r7fy9iNsdp8G0lfayV4WnhwKes16Ho4f7EXw9plOLq368gB6cjEY/NCU4vA8O3LWVwicWhmc7gq0bk9ERqe3oHdrd4a5f2WKdxeEJmJdeeomWlpb+44QTTuj/20033cTZZ5/NRz/6UWbNmsW4ceP41a9+FWNp/eG9g6/HRDXKG3F7DBfOs5qftc7BNdR6zCSIez3cNVIIU4+X0HGH4ehdhoPBjnbZMQJ3uOvgN1rnRsLY2N6uG8GO4v0NDtx1arYewaeOQnL0sOtGL5UiPOHp0YXJKglOj1HoFY19aJfKHe7aCoSph+3wHEqQD3qx68YLmBV3lbHbSnk97HmFcNpKOKTC4ent7aW9vb3/2LhRV7uhQ4fyqU99in/5l3/hj3/8I88//zyf/OQnee9738uMGTPK3nPQoEE0Nzc7jjjxbrTs6azKRsuumCO9FsoVwRvxw9DZOFswqXyVcddIQSdCQxh69GJiMME5gGF28NvRGwyAqVHBsRRtZicFenfv+Uzg1YiH01aCH8U3YtJcvUc03qFSNNTWI/i6AWHoYdeN1yi3GcNAkmA7NmKs3fRyF3rCe7QL3NoOu240E/Q+TeGRCofnkEMOobW1lddff527776bCRP0g+6nT5/OoEGDeOKJJ/qvXblyJWvWrGHmzJll73nllVfS2dnZf7S2ul8LFDRj0VWsFy+Z9PaopLLRCq+RQhgRHttouZ++AS+jtHCNePAOYHVGK04jvhXzkJQ49ajD/LryethahNvBTyWox5NORa9m3IDeGMEd7ttKNLYjuLoR5uAA0usAhjE46MDkm4ZTP4In8Q7PkiVLuPjiizn99NP5/Oc/zwEHHMCf/vQnhgwZQktLC11dXXR0OAP97e3ttLSU3/33+uuvZ+jQof3H+PHjy14fJnalXIEZbVcmaY30MIJ6JnvYRitcIx6e0fKX3xW3AxisHhPRU5HdeNmvyv5luzGTEsWxtRhBGCtx3kZv/1aPSSWtjuraSlLqxrEE1RWFrUeaHMAaorMdaXF4gm/TAfPoo4/2v16+fDlLlixhzZo1nHfeeezcubPMJ8vT3d1Nd7e7XRrCJuxKGe6odQN6+fEBaMP1h6rvmO4O3jZa70I3L3fbBJaiGbONYXqN+EUEZcQLVzO6b72FUzjlMxk2WVfUonMTKqvnlb8AH0Q7gIuqvlvY0b9wO7RX0ZOqzejcFfdr7krhT4+kdPDBDg4OQg9Bd+FF2Trc5oaC1mMsYdnS4El8hGcgHR0dvPbaaxx88MG0tbXR2NjIsGHOJK8xY8bQ1tYWUwm9Y0++PVf2qoF4j2jsS9BPTLcJblqrAT+rTiA5EZ6/o9e2DCaI/WdsLd6k0uYDhRRO4SQlAhiMw2PfJawOvg+TEZeGKeCw9Qh3sLQb08qr12Nf/KxmhOREvJ5Ha7IfQTxk1q4bL+Jl2DUK7RZUjoZC2LY0eFLn8DQ1NXHQQQexbt06li5dSnd3N3PmzOn/++TJk5k4cSKLFlU/eoqCWozD8ydPn/S+sqCOsJYQLrHO7636TtPQ2Q0b8LKMEpIT4QFYbJ1PKHuVG+w7POPpUyPRNasPN25SuEZrGXrl2ijMfsD+sfX4s6dPuV/BB2GP4m27dGLVd2rGbAbhrX4kJcIDQephW59XMEum3ZGUwdJ2TBZncHr4qxuVo6GQvimtxDs83/3udznppJOYOHEiM2fO5IEHHmD37t3cc889dHZ2ctttt3HjjTcye/Zspk2bxu23384zzzzDkiVLKt88ARyBXsS8FbPXpjvcN9IejAEIp5NfaJ1PotpdZO0O7WnPn0yK0QJ40jrPrvpOttnz5wxvwM1ONeE6gN0Ykzu7qjs1YuIA3uqH+w4ewo5qLEJrMgG9haJ/3o1ubavw8vgV8DM4GERQGXoDedI6z676Tv7aivuEdoiig3/SOs+u+k7+9PDWVsIfPAZL4h2e/fbbj3vuuYeVK1fyf//3f2zcuJF3v/vdbNigpf7qV7/KQw89xP33389TTz1FW1sbH/7wh2MutXvsDn4RXjZRA7CTsr0Z8XAa6gvoaZyhmCwLf/hzeGoxTS4JEZ4nrfMsqplErMNE//x18O4iGmlxAI9FOz1tuH1ivI0/Ix6OHjsxEdHZVd0pisHBTnTcAcLS42n0hMtBaCfQP/708BYNjc52zK7qLsMx2xVEMThIS4Qn8UnLH/vYx8r+vauri0svvZRLL700ohIFi3+jZe9O6m4x6gb008fDaah9wFPAXHRD/UvZq8vhT49x6Krcje4Oy2M30r3R02f+U99L8Tw6ZrcPOo/H/SMuCzkKPW2xBfNYUnfYHcfbrq5OixG3R6ze24o3PcKN8IDW40S0Hj/1fRd/I3jwUz+a0Hq43xfLLdvQ2YvvRutxl6+77I3Jd/Omx37WuQ03Q87wO/in0Pb0MLTz4S9t/j1oN+413A57bGw93D2VTaa0BE9U7/CscXV1+Eb8j9b5ZN93OBTdcHbiNQnT1uJtKu1JBNrE2g8QDUePXozZne37LnaH9gxedkkFvXgb3NYN2yCG90CWZ4EdaAN+mO+72G3FewfvbXBgt5Xw9Ki+rTQA9taq3mzHEMwe4+70CL9+PGmdZ/u+w/FoTd7Cba238dZW7LoxjLA229uC2SN6tu+7+HeG/dmO8pvAJAdxeGJkAtoU92KC3O7YBz3mArejNDvuEV7FtI34ifgNHNod2hK8PEAVvHZooHdDgSDWQpTiSes82/cd/Hfw3oxW+FpUn8dTg0nC9D448KaHPbYNT4/FaJd7P/RUjnemoaMaG/C6mNtuK5twuxdx+Ho8aZ1n+76D/+ifN9uxBRMRTrIe1Q8OktJWgkUcnhixDfjz6PGve2wDvg63u5HYFTO87RWXo83vEPw+8dd/tMvWw73DY+sxzvN3ucV2AGfht5lFNd1pOzzN6P+9cHjSOvuLakzFJPd7myBswJhjd3qEXzcK83j86eFvtRoks638GT3sOxC/DxKNanAAUejxpHX2VzcaMUvSoxochKdFsIjDEyOnWuewQ/RgVnGEVzEVpqG+39cd7M0Fwh6VQBQN9a/oRO4RmMkH90xGd9Nd+MmI8ma0tmMeShqeHr+3zqfhJwI42zp7T+7fD23mdmImJMoTjRG39fiAr0/Pts5hT4VDFHpsw2zl4F2PQeicFQi/g4co9HgKHeM+FD8r+d6NdnrWoR847A1vDrE9WGoirFV8wSIOT4ycbp0fLXtVMbw7PNEY8Yes8wc9f/Jw9BTfTnRz94b3UavtAIYX8doN/M567V2PM6zzU5h8I3fUYJJSk2TEn0UnYA7Hzx4jdlt53PMn/Uc0xhLWRp0AD1rn9+E1G6QROMV67V+PJNUNgN9a57M9f/K96MhkG16T+yGZDmAHxgp618O2HU+UvaoY+2JSJd5y9Ymd6GEdpCPKIw5PTExFd7Y7iCbCE43RehidXjsNk+3vDruRLsTL88RskqqHbcT9OzyPeP5kC3rM24vblRYQhR596PoBXvUYjAnue9fDewdv57sNwmyyHzwvoDuVJoz74o4T0fk7a/Gz/i+JU1pg2socTKfrDrutPIqbJQsDSboeUdqOwlQJ98OsNE1ricMTE/aI9Y94HcGDqZjuvHAwEY0xhLkXwQZMcqq3kYmth/dGCsk1Wo+iQ9OH4yU5dS905g/40cN2/lrxMvkTjR52VMObEZ+F1uQtvDww1Mb7CL4Xsxg4iVGNwg7eO0mMaIBOvf47On71Pk+f9N/B741ZUJ00Pey6cRI6KuqOcejtLPqAxzx/p/e6AWZaSxweoST+p7NAz+0C/M31Jzagu95azNZS4eC9U2vCTHJ412MMevZ4N7Da9aeiMVodmF2o3Xdqs9FRjdXACs/feYh1XuXpU9Ho8Tg6fncg2gl0h/8ODeBg67za06eS7ABGrYetRbiDJfDjAO6Hjpbvxs/0nj0I2QR0uv5UNHXjDbR7X4/pLSpjX/ksbp6ENRBbj9WePiURHqEs1XXwdRiHx/2CVEVUnvhvrPMp6HU/lTkZPa5bhd4oyxv2vi6r8DIZFn4St43dqc11/YnqRvC2I/GKp09FY7R2YDILvOvhr4O39fAWG4pGjz+i152Nx2ybV56J6Brfi58Ofh/MxhTubcdGzFrQcPdbsdvKWbh9RI1dNxZjckncc4R19tdWwl+K7X1aq7q2Up0e4vAIRZmDzg/4O163yAf9POBGdOfhLfRod/Lesmu88ho6LjEI+JCrTwTToXlrpLYWIwhzKTYYB/Ak3KZIx6mHv0XBXvi1df64q6sPRK9Y68Gsa3JPDcYh9qfHxLJXVUs35n/ZnR523ViEWVnnHrturMY8MKIyCtOphavH0+hY9CjMGtbyxNFW7J3Pwm8rD1jnD+LGStWj10BCVvWoHnF4YuA86/zbsleVwq6UK/G6/649yVHdIwvdcLd1vrjilXXAudbr6vTw1ki3YbZFP8DX97rlTfS0Vi3wjxWvPho96bAT+IOv7/Onh/3IgHC1ALgP/eum4ua5a3bdeAodC/HGRHQ8tQuvD0WITo87rfOFuJkwsvV4qOxVpfBXNyAqPXqBe6zXF1W8eghmA4yHy11YEn96rEFb3iGE/dDMZ9F2vgn4SMWr56B3gG4Hlvr6Pn/R0OjaSvWIwxMxe2EClPf6uoO/ESuYihm+w3Mn2iScQqUx4Sx0bsBG/CyjhHTo8TPrXNmIX2CdH8btPriFDMb8Gn8OTws6lTM8OjBRHvd6/MLXdxUODrzt3hNd3ViA7qLGUGn/qjGY1Wr/5+u7qnd4wtfjDuv8ISrt7HI2uq6+hnkYgzf8TeH0YJaLRKeH+7byS7wOhUFvZdGM/nXe5h2iqxvVIw5PxHwAXa1Wof1379gdvLcN5cFUTH+b2XvhLcwExCfKXnm+db4fPb7zjn8jbm/KFX5DvQ89hTAF/dSf0thGy58zPBkdM9uE14cOdlifgihGarYR/zh6J+TiTEbHgHqAX/n6HrtD8762K7pRay/wc+t1+U7tI+j/3cV4TSu1qV6P8NvKUnT59sLEwotTXVsZhEngTrIed6Hdl9nApJJXNQLnWK/96WHb0dfwaolXW+ehhLmNQzCIwxMxdgfvb4QGcKR1TnIHDyaqcTGltm+rx4To/Y3g98WkUXpfzxSdA7gN02VfXPKqGWiTthWzZaE3/I1YbaIz4o+js0JGAmeWvOr8gqu9rziBavSwtRiH7nrDxXYAP4jOKitOdR08BKFHNLajclRjBGZFkv/BQT3a1Xe/X5VNdHq8jZncLj0lfjp6OustzMYg3vDvDHdh8niSHuURhydCmjDm3V8j3Ru9ywL4eeCA3UgnEcV//APopZ4HUmpfjVPRLksb5qEU3ni3dX4VL0mYNtEa8Z9Z53+g1L4adof2G8wDCr1h6/FXX5+OTo8+9MgV4NKSV33MOvvv4O1Herzg+ZOb0Q+KhHLj6qB4Ef1/1gh8pugVE9DPi+pDT1l4ZwJ6XVEvyY5ogM4B7EX/4uJ5XuegYzQv4ifWDdXUDYgyHxKM7fgc+lfvSaEz7H3zRTCRZ+9bWULUg2n/iMMTIeejXZaV+G1mx6FHJW/h9inphbSivfEGzMMHwmMn8BPr9RVFr7jYOt+HnzlnME/Q8TemiS7CA3qU9iJ6QvOSPf7agOng/UW7wOjh/ZGSYIxWNHrMR09WzaHYw2anoydvd2HWuXljX/QUIqSjftxknb9CsUdN/IN1fgo/8Qgwjyp+gWoGB+PRmWLhsg7TCi4reoUd6/DvDNt6+Gsr0daNX6Kt9zhMTTAMp9q8UEiXHv4RhydCvmCdb/V9h+o6eIXp1A4td2Fg3IheejsbE33QtAAftl7HpYe9beOBlBo3Bc13rPOXGdhtnItOSm3F7/47TcAx1mt/RsvW47CyVwXFW8D/Wq8v3+Ovdlu5Dy9bwhUy0zq/islO8oa9J1Q0etyDXtE3loF5b3XosT3AT33fv7oObSNGxWhsh91WPsLAuMERaIvSi4kTeqc6PaKtG91oWwrwdQamCFyMHki/CDzv6/77ozcr6cFvZmm0elSHkgPV3NyslFKqubk5lPsfD0qB2glqH9/3eVDp23zJdzl+YZXjXyPT9idWmX/teP/frXL8yfd96xVst+59qO/ybbLKcVQkWtQpeMMq8+cdf3vaKse/+773bOu+b/ou33FWGdZFVjcOt8q8W8Hk/vf3QbcTBWqG73tfb937Vt/l+4ZVhjsi0+PLVplfU1Db//6HrHKsB9Xo+97PW/f+qO/yLbTK8Q+R6fGwVeYfON7/gVWO+3zfd5R1X6VghK977AVqt3WTUZFoMUTBJqvMH+p/vwbUa1Y5PuP73h+z7rvEd/nOssrw18jqhvPw0H/HU8CkHWE7PD+zKsTtvu/RoGCz0rc51nc5rrLK8bPItJ2sdIemFExVgKoH9bZVjgt83/c91j03KqjxXb6nrHJ8PDI9vmCV+w0FgxSgjrbK0A2qxfd9r7bue4/vsu2NMeIjI9PDduJ/2v/e160yPFfVff9s3fdi3/f4oFWO5yPToknBBqvcF/S//7hVjut833e4gl7rvuN8l2+eVY7/ikyPk6wy71QwXgFqKKitVjlm+77vh637vlRV+WxH45TI9LjWKvdflG3z3m+VYTO6/fq774+s+97ou2yTrHLsQtv3aPQwhzg84Qnm+RiFGbEe5/s+pyt9i7Wqmg5+rlWOpZHq+wur7L9XgDrXKkMbqAbf9/yedc+7qirbfKss10emxV7W/6FScKUC1I+tMtxT1X1ftO55UVXl+xvVdiZejxlWuXcrOF7VglplleGTvu85zrqnUnZH6ec4EBOVrYtMj29Y5X5TQZOaYpWhF9T+vu/5CeueL1ZVts9ZZXk4Mi1Q8JRV9nsVoL5oleGlqu75c+ue/11V2X5lleVLkWkxSkGnVfZPKkD91irDjb7vWatgnXXP9/suWw2oTqssUyKtH/oQhyc8wTwf37EqwuKq7nOr0reZX1VZ4jHiE5WZfvqY+qtVhmuquudq635zqypbPEb841bZt6ux7K92WWV4r+/7HWrdr0vp0bz/sj1A1EYcBT+zyv8X9TFqlQK1AT1t4O9+X7Tu93RV5arBRBOiM+KDFbxulf96dYf1/Q9Udc/fWvf796rK9l6rLG9FWjeOUXZ0qp5T1GqrDJ/3fb9GZZyGGVWV7RqrLD+JVI9/scq+Xh3BcKXQUdlDfN9vlnW/jUqnCfgv2yJLj/Mi1UMf4vCEJ5inYySoDsuIn+n7PnUK3lGgFJxSVXlq0OFPBeqYSDX+NwVKNbJObWGo2gJqhO97HWtpsVXpDsJ/uezcqnci1QIFTypQ6hjuVwrU76u611WWHg9XXS57yvPnkWoxWsEWBUpdw2eVAnVFVfezowJfrrps9pTnRZHqcZZV/i71MocqBWq673sNU9oRVgqmVFWuIehIkwI1LlI9/p8CpUbwsuqiQb0NarDve33Q0mJN1eWypzxfjFSLeqWn4pQ6g3lKgfrfqu43z9LjtqrLZk95fi9SPfQhDk94gnk6zuZSNZ2/qD+xVxX3OUOBUtrpqau6TI/om6kvRKrxIAUrFCh1MT9V36zqXjdZetxbdbkaMNON/kdJfo4jFPQoUOrnfEy9p6p7vWTp8cmqy3WKpcWqSLVAwaUKlBrGZrWYg1ST7/tMUCZnbL+qy/Vflh7/E7keOrdpBovUvTRUcZ9PWlpUl69iH89bepwbqRbDFLQrUOoKrlOfq+pe91h6fK/qco2ytNgNalikeuioTA271aPMqcJuNShos/Q4vepyfdzSY1GkWuhDHJ7wBHN/T0ao0db86Piqck2eVgTUSMGM4qsbGXg/TmOWqrXC04P5Z5/3GaVgm6VH9Y0U4hrFoz7ItxQo1cg2pR0gP/eZa2nRqaqdzoL4RvGN1KnpVj0fyQsK3wMEe8T6RCDlmmtpsTziunE4E9Vwa1XOPtzi8z61yh5kwOWBlCuuUfwHOdf6HUrV8UGf9zlYmeTtdwVSLjvn7X0R63EGP1ag1BDWK/+O/WctLVoVVTnV+phkadFFNasJ/R3i8IQnmKfjAGapWmskD1f4uMfJ1md3KmgJpEwnE/1c/D6g2kFdz+XW7+lSeqWV13vZy42fDaxs9ij+tgj1OAVUL7VqDo9Zv2elgn193MtebnxtYGWzR/HnR6jHf4F6m3FqZP+I827lPTl/PwW7rM/PCqRco+nPflb7RqRFHahnQf2WM5X5ej/ROztXbIOCYOyaPYr/S4R1YyKobaC+wo3W79mi9JYGXu/1M+vzvw2sbHaO1bUR6vExUDsYrI5hqfV7lii9ws/LfQYpPa2nlI6uBlO2tZYeJ0WoB4jDE6ZgPo7PK/oN19c8fK5RmQ7N7yhvz2MvUDusAh0Zkb63Y+a7a7jP+k2dCk7wcJ/JykR3zgqsbKdaZVuLznEKW4u9QP3d+s7r2VeZBOwXlc5ncXuviwt03Cew8t1glS2q/WfeBarH+s6ZzFL0DxBuV4X70VQ+/tf63B8CLd8LVtkujEiPf7G+bzOoIVxj/abdytsKvKHKJD/7GWgVP1owDuDoiPR41Pq+J6hXJj+rXcGRHu5zvDLRnemBle0frLJFtXXBvuj9mBSoLzBJ6WRjpeBPyptTe4X1uVal+5lgynenVbbvRKSHfYjDE55gPg89faGP/1LuMuLnW9evV0FFd+zjQasw/xaBtrZDsRt7I7m9lZ5yUEqv3vqwi/vspczS62A7tEGYJZXHRqCH7VCsQU8haUfubeu3vargMBf3OUrBDuszwXVooEdnCp3IXRuyFnXoLRIUqHv73z9PGafnPqU770r3sgcVPara1TcDj2ut8lW3bYC740BQ263v+xQoHeWy7cBuBV9X7iJfD1ifWaX0pnXBlXGJVb6LI9DjH63v2omdYzdCwXPWb3tHuVvEMVLpZf5Kaac4uPLti9m7ar8I9LjL+q5l2Ft6HKfMhoRLlF4RW+k+s5Vx/i4OtHznWeV7OQItCg9xeMITrIrD9qrtKZmjS1zXoHRExzZy7wu8LJ8hmtD0OEyY8/uOvw1W8LsCPW5TpaMbY5XZSG6tgjGBl/M+qyD/GbIeZ2AM5BmOvx2kTIh5h4KvqNIjrxOV2TvjYVXNvkzFjjrMDtRhh6a/a33PRgZGDM5R0G39xlWq/B4hXy649quBl3GGVcYtVLM6qPIxGONM7Llq7/vW71MKHleFO1M7jyZl9pnZpYKMZtiHvUv6gyHXjUMtzRWoyx1/G6ZgcYEe31Ol89cOUbDMum6FCmpqr/Cwd0m/NGQ9PmF9Ty8DB2bvUmbDyi1KT3+WWtxyljIb2N4eeBmHYaK1h4asR+EhDk94glV5nKeMR64ULFB6990TFMxRep+FVwv+HrwBB73CoMv6krAeq9CIMeAvQpGVNw0KrlNmVc1OpR2ff1A6v+d0pY2ZHbbdrOC9oZT1o1Y53ya8/YkKDfiPil4zRsEjBf/3a5XOWTpLaSfnXKVXmdjRj2UqyKmswuNWwp/WskfvilKrft6t4O8FejyndITjZKVzdD6tTEK/7TQHX84azGaIYU5r2aP3DegE0D2v+YwyU7q7FfxKwT8r3SbmKL09wSrr791Kt6Nw6rFCd2xhJbYPB7XC+p6nKLZ7794Kfljwf9+pdCTsPKVtxweUfiSFvefOOuUv76fyYW+G+NcQ68YM6N+vq/j+ZQcoMyhUSu/kfo3SNvREpXfu/nXB359S/hcGlD/szRCjnNYShyc8wQI4xik9CrPDisWOTQrODLUc9nO15odw71pQd2MM+AFlrz9BwaIyWigFLygdBQlHiwZ0UrVC768R9P1H4jTgpXeYrlG6E7OjPaWOO5U2+uHoUfjsN//7JZU+3ovZDuBbZa8dovSW93ZHX+zoUnqzwXC0ALOy8amQ7n8lxomYXfbayQp+U6FutKqwBgb2Ya9svCqEew/C5O2sptKzqs5U2jaU02OhCjoloPAYganLx4dw/4mYKPkDlMszrFM6R7S9gh43qyBWZZU67P2J2q3/yzDroX2IwxOeYAEeExV8U+lpiTcULFc6XP3PKozQ68DD3nNlB6jxAd63DpO81gNqjuvPnqB05/ZnpRMun1f6sRQfUEHsP1TpsFdr/YVgk5fHoLfCV+i8HXcPG6xXelT2E6Vzl1Yq/Qyd76ugltRWOuzVWv6f4VT8OAmzg/EDrrXeV+lpvvuUfrjmy0onal6uqnk+lNtjHCYiOjvge1+B6Y0ucf25w5XOC3xc6bbyotJ25B9UmI6wfdirtTagn28V1H0Ho3c9V+iVWUe7/uz7ld6g8FkFf1PwV6VXZZ2igp7yLXb8zCrzbwO+70HQv7v0i9g5f5WOwUpPa92h4BWlZwyWKB0trm7zSTdHHag3rTJ/MeTvsg9xeMITLFOH/QTk2wO63xBQ91v37Ab1kQT8RrfHKEzy8scCuudkTGTnbevfcf9Ot8fZVrm3g5oQ0D0/hEnKfYxqHh8R/XGLVe4lBJPMXYt57IyCKjfjjPaoA/WKVe6gnkO3L6g/YOpcdA/lrP44GJO7cnJA95yGecjyq0S9u3V1h50j2k44EeKBhzg84QmWqcNOyFTozqiaex2Ozs5X6NHw3AT8Pq+HPXWxkepXXXwEVAcmNH9gAn6f18OeuniS6jr5BnTHqKzjIaLfnKzaY0zB/2e1Uzmj0Q6frcdlCfh9Xo+5Vtl7qeY5cPqYgYlkdII6MQG/z+thb8q4Bp2DVM29PoPJ2VlOdFsABHXUYxziX0bwfeLwhCdY5g57lLkVf4arCZ2HYYf83wb17gT8Lj9HA3rTN4U2NO6mn5zH/pgnKSu0szAmAb/Nz3EgJur1M/w5PbMwU3oKvUvvnkmo6TgutH7DbvSqGa+frwP1WcwquG2gLkjA7/J72BvvrQd1hI/PDwf1/zArF1eCmpqA3+XnGILZeflp3E4/OY8p6BV6yjp+TdSPrQjuOBYd5VeEn8AsDk94gmXuaAC1AJOk+mXcdUjjQH0DvV+Lso4HSd9oZOAxCRNKXoPeR8jN596FXt1kN/Ju9B4uae3c7WMuJlz/BO4iVfWgPoDTeLcT9TOYwjm+X/CbbgTV7OIzw9COzt8LPvscOioa9++p5hiCGSB0oB/P4iYn6wB0bpgdMVPoVWpB5gPFcRyFcWZfwX0S83vQ+zzZjt929AaUUWyEGubx6YL/3/vQG1eG8T1u++8a60XuaW5uprOzk6FDh7J169a4ixM5ewH3AHOtf68B/hd42nq9ExgCTALeBZwMnADUWdf/Hbgc+FVkJQ6XQ4CHgMnWvxcD9wF/AdahG80I4GDg3cBpwGEFn38C+ArwcjTFDZ1zgDvRdaAHeBB4GHgJ2AjUA2OBQ9H14v3AaOuz3cBtwDeAzZGWOhxqgBuAr1n/3gj8AvgDuh10otvTRGAqMAuYAwy2rn8H+DbwA2B3ZKUOjxHAA+jfCbASbUsWAW+i//+bgQOBY9FazCj4/IvAV9H6ZYHpwG+A8da//4DW569Au/XeSLSNeQ/wPrQ2Ng8A/wKsjqCsUfBpYD4wCNiG7mOC/r/20n/H7gUm4chzhKfw+CyoNsquaXQcC9ErNsLauybOYwiomzFTdZWOneil/mmdzqt0TAb1O5daKHQ9+h7R7EAbx3EmOpnUrR7L0dHTvRNQ9qCPOlBfRz8Ow40Wveio8lzSH8UodowE9VPMg3grHVvRC0fC2hMt7mMa+inq7xDOFJ1EeDyS9whPIXsBZwNnoqM544BGYAc62rMSeAp4nOyMQsrRApwPzEaP2EdZ728F3gCWA0+i9eiIvniRcxRwHnp0ehCwDzrqsxF4HViC1uNPQG88RYyMOnTE4kPAccB+6ChYF9AK/A34MzritzyeIkZKM/BhdITvGHTbqUPbjtXAq8BC4DF0pDTr7A9cgI5+HQbsC/Sh7cQb6KjPQnT92BFTGaPkILSNCBq3/bc4PBbi8AiCIAhC+nDbf9dGWCZBEARBEIRYyJTDc8kll7Bq1Sp27tzJ4sWLOe644+IukiAIgiAICSAzDs95553HjTfeyDXXXMO0adNYtmwZCxYsYNSoUZU/LAiCIAhC5ok9gzuIY/HixeqWW24x2dg1Nertt99Wl19+eaBZ3nLIIYcccsghR3IOt/13JiI8DQ0NTJ8+nSeeeKL/PaUUTzzxBDNnziz6mUGDBtHc3Ow4BEEQBEHIJplweEaOHEl9fT3t7e2O99vb22lpaSn6mSuvvJLOzs7+o7W1NYqiCoIgCIIQA5lwePxw/fXXM3To0P5j/PjxlT8kCIIgCEIqqY+7AEGwYcMGent7GTNmjOP9MWPG0NbWVvQz3d3ddHd3R1E8QRAEQRBiJhMRnp6eHpYuXcqcOXP636upqWHOnDksWrQoxpIJgiAIgpAEMhHhAbjxxhu54447eO6553j22Wf5yle+QlNTE7fffnvcRRMEQRAEIWYy4/D83//9H6NGjeJb3/oWLS0tvPDCC5x++umsX78+7qIJgiAIghAz8iwtC3mWliAIgiCkD3mWliAIgiAIgoU4PIIgCIIgZJ7M5PAEhey4LAiCIAjpwW2/LQ6PhS2Y7LgsCIIgCOmjubm5bA6PJC0XMG7cuMATlpubm2ltbWX8+PGSDB0ionN0iNbRIDpHg+gcDWHr3NzczNq1a8teIxGeAiqJVQ1bt26VxhQBonN0iNbRIDpHg+gcDWHp7OaekrQsCIIgCELmEYdHEARBEITMIw5PyHR1dfEf//EfdHV1xV2UTCM6R4doHQ2iczSIztGQBJ0laVkQBEEQhMwjER5BEARBEDKPODyCIAiCIGQecXgEQRAEQcg84vAIgiAIgpB5xOEJmUsuuYRVq1axc+dOFi9ezHHHHRd3kVLNiSeeyIMPPkhraytKKebOnbvHNddccw1r165lx44dPP744xx88MExlDTdXHHFFTz77LN0dnbS3t7OAw88wOTJkx3XNDY2Mm/ePDZs2MDWrVu57777GD16dEwlTief+9znWLZsGR0dHXR0dPDMM89w+umn9/9dNA6Hyy+/HKUUN910U/97onX1XH311SilHMerr77a//ckaKzkCOc477zz1K5du9TFF1+sDjvsMPU///M/atOmTWrUqFGxly2tx+mnn66+/e1vqw996ENKKaXmzp3r+Ptll12mNm/erD74wQ+qI488Uv36179Wr7/+umpsbIy97Gk6HnnkEXXRRRepww8/XB111FHqoYceUqtXr1Z77713/zU/+MEP1Jo1a9TJJ5+spk2bpp555hn19NNPx172NB1nnXWWOuOMM9TBBx+sDjnkEHXttdeqrq4udfjhh4vGIR3HHnuseuONN9QLL7ygbrrppv73Revqj6uvvlotX75cjRkzpv/Yd999k6Rx/CJl9Vi8eLG65ZZb+v9dU1Oj3n77bXX55ZfHXrYsHMUcnrVr16p//dd/7f/30KFD1c6dO9X5558fe3nTfIwcOVIppdSJJ57Yr2tXV5c699xz+6859NBDlVJKzZgxI/bypvnYuHGj+qd/+ifROISjqalJrVy5Us2ZM0f98Y9/7Hd4ROtgjquvvlr99a9/Lfq3JGgsU1oh0dDQwPTp03niiSf631NK8cQTTzBz5swYS5ZdDjjgAMaOHevQvLOzkyVLlojmVTJs2DAANm3aBMD06dMZNGiQQ+uVK1eyZs0a0dontbW1nH/++TQ1NbFo0SLROATmz5/Pww8/zO9//3vH+6J1cBxyyCG0trby+uuvc/fddzNhwgQgGRrLw0NDYuTIkdTX19Pe3u54v729nSlTpsRUqmzT0tICUFRz+2+Cd2pqarj55pt5+umnefnllwGtdVdXFx0dHY5rRWvvTJ06lUWLFjF48GC2bdvGOeecw6uvvsoxxxwjGgfI+eefz7Rp04rmUUp9DoYlS5Zw8cUXs3LlSsaOHcvVV1/Nn/70J6ZOnZoIjcXhEQShLPPnz2fq1KmccMIJcRclk6xcuZJjjjmGYcOG8ZGPfIQ77riDWbNmxV2sTLHffvvx/e9/n9NOO00eIREijz76aP/r5cuXs2TJEtasWcN5553Hzp07YyyZRqa0QmLDhg309vYyZswYx/tjxoyhra0tplJlG1tX0Tw4brnlFs466yxOPvlkWltb+99va2ujsbGxf6rLRrT2Tk9PD6+//jrPP/88//Zv/8ayZcv48pe/LBoHyPTp0xkzZgzPP/88PT099PT0MHv2bL70pS/R09NDe3u7aB0CHR0dvPbaaxx88MGJqM/i8IRET08PS5cuZc6cOf3v1dTUMGfOHBYtWhRjybLLqlWrWLdunUPz5uZmZsyYIZr74JZbbuGcc87hlFNOYfXq1Y6/LV26lO7ubofWkydPZuLEiaJ1ldTW1tLY2CgaB8jvf/97pk6dyjHHHNN//OUvf+HnP/85xxxzDM8995xoHQJNTU0cdNBBrFu3LjH1OfbM7qwe5513ntq5c6f6xCc+oaZMmaJ+9KMfqU2bNqnRo0fHXra0Hk1NTeroo49WRx99tFJKqa985Svq6KOPVhMmTFCgl6Vv2rRJnX322Wrq1KnqgQcekGXpPo758+erzZs3q5NOOsmxxHTw4MH91/zgBz9Qq1evVrNnz1bTpk1Tf/7zn9Wf//zn2MuepuO6665TJ554opo4caKaOnWquu6669Tu3bvVqaeeKhqHfBSu0hKtgzm++93vqpNOOklNnDhRzZw5Uz322GNq/fr1auTIkUnROH6Rsnx84QtfUKtXr1a7du1SixcvVscff3zsZUrzMWvWLFWM22+/vf+aa665Rq1bt07t3LlTPf744+qQQw6JvdxpO0px0UUX9V/T2Nio5s2bpzZu3Ki2bdum7r//fjVmzJjYy56m4yc/+YlatWqV2rVrl2pvb1ePP/54v7MjGod7DHR4ROvqj3vuuUe1traqXbt2qbfeekvdc8896sADD0yMxjXWC0EQBEEQhMwiOTyCIAiCIGQecXgEQRAEQcg84vAIgiAIgpB5xOERBEEQBCHziMMjCIIgCELmEYdHEARBEITMIw6PIAiCIAiZRxweQRAEQRAyjzg8giAIgiBkHnF4BEHIPDfeeCP3339/3MUQBCFGxOERBCHzHH/88Tz33HNxF0MQhBiRZ2kJgpBZGhoa2L59Ow0NDf3vLV68mJkzZ8ZYKkEQ4qA+7gIIgiCERW9vL+9973t59tlnOfroo2lvb2fXrl1xF0sQhBgQh0cQhMyilGLcuHFs2LCBF198Me7iCIIQI5LDIwhCpnnXu97FsmXL4i6GIAgxIw6PIAiZ5phjjhGHRxAEcXgEQcg2Rx55JC+88ELcxRAEIWbE4REEIdPU1tZy6KGHMnbsWIYOHRp3cQRBiAlxeARByDRXXXUVF198MWvXruWqq66KuziCIMSE7MMjCIIgCELmkQiPIAiCIAiZRxweQRAEQRAyjzg8giAIgiBkHnF4BEEQBEHIPOLwCIIgCIKQecThEQRBEAQh84jDIwiCIAhC5hGHRxAEQRCEzCMOjyAIgiAImUccHkEQBEEQMo84PIIgCIIgZJ7/D/62DrgOEGYRAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -248,7 +248,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "id": "bb098d93", "metadata": {}, "outputs": [ @@ -261,7 +261,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGwCAYAAACtlb+kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACEUElEQVR4nO2deZxdVZXvv5VUKmNVEghJZQASkDkMAqGRDiYiQcQWDPoAQQWablp8vLToaxponxFb5UkzpEFom/cQaJ+iqNAoCgYCibRhMEFiEmQQCIRKpcxcSSqpSiX7/bHPqX1O1R3OPK7v53M+5+bec0/t+8vea6+99tr7NAAKQRAEQRCEAjMo7QIIgiAIgiDEjTg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwtOYdgGyxKRJk9i+fXvaxRAEQRAEwQfNzc2sW7eu5jXi8FhMmjSJtra2tIshCIIgCEIAJk+eXNPpEYfHwo7sTJ48WaI8giAIgpATmpubaWtrq9t3i8PTj+3bt4vDIwiCIAgFQ5KWBUEQBEEoPOLwCIIgCIJQeMThEQRBEASh8EgOjyAIgiDkgBEjRjBu3DgaGhrSLkpiKKXYuHEjXV1doe8lDo8gCIIgZJiGhgYuv/xyZs+enXZRUmPx4sXcd999KKUC30McHkEQBEHIMJdffjmzZs3ixz/+Ma+++iq9vb1pFykxGhsbOfLII7ngggsA+N73vhf8XlEVShAEQRCEaBk5ciSzZ8/mxz/+Mb/85S/TLk4qvPnmmwBceOGF/OhHPwo8vSVJy4IgCIKQUfbff38AXn311ZRLki727x83blzge4jDIwiCIAgZxU5QLtM0ViXs3x8mYVscHkEQBEEQCo84PIIgCIIgFB5xeARBEARBKDzi8JSGwch/txPRQhAEoUyI1S8Fk4FNwPfTLkhG+BTQDVycdkEywl3Ae8DUlMuRBYYCLwNPAuXZzbY604HNwD+mXZCMcBWwAfjLtAuSEQ4BjkYPqLOPODyl4BPAaHQH/750i5IJbkVvQfUDpFMD+ALaKf5u2gXJAO8HjgfORLebsnMVMBb438D4lMuSBe4GxgH/lWopRqR0uBmErhvDgYkVy7l27Vquuuoq13sf+MAH2LlzJwcddFCg3x4GcXhKgdPJ+evUSpFNPpx2AVJmiuP1HCqZtXJxjOP11amVIjsc4Hh9eWqlyCbvT+WvjgB2pnS4rcMwx+v9K5b1+eefZ8aMGa73FixYwIIFC3j33Xd9//awiMNTCk5wvD4prUJkhGHoaIbNcWkVJCMc63g9CJnWmu54fXhqpcgOTgew7HpM7vfvw1IpRXYY7njdSKVprf4Oz2c/+1kOOuggbrrpJgA+9rGP8eqrr/L6669zxRVXxFxeebRESXB26v0bbdnoP988pdqFJWF6v39PAV5JoyAZwdnBT0TXlb0plSVtmnB36mVvK8f0+/eBqZSiCxiZyl/Wf9swvN+nTcAu1zvPP/883/72txk5ciT79u3jW9/6Fl/5ylfYsWMHgwcP5rbbbuNDH/oQnZ2dvPTSSzz88MNs2bIltvKLw1N4hgH7Of5ddqPV30iV3QE8pN+/y14/DnW8Hgy0Am0plSVtDgSGOP4tdcNNenoEe5JU1Azt9+8h9Hd4li1bxt69eznxxBM588wz2bRpU9/DP0855RRWr17NunXrAPjVr37FRz7yEX70ox/FVmJxeApP/7nV0ejxwc4UypIF9uv377IbcdHDTSU9yurw9NcinYhGdpC24qa/+9A04Iru7m5WrFjB+eefz5VXXsnHP/5xlFIATJo0ibY207bee+89Jk+OdwAqOTyFx3Z4OoBO63WZoxq2Hq9Z5zJrAcaI23qU2YgPBsZYr209ytzJ928rzUBLSmXJAnZbsR/iWea6ASY1YLd1HujwgJ7WmjdvHk899RRPP/103/uVnollO0NxIQ5P4bEb6Sb0XitQ7k7e1uMP1nkS5V6a3l+PMjs8YxyvV1rnMuth14216L14QPQAaSs2doTHnsYaUvGql19+md7eXv7hH/7B9X5bW5srojNlyhTa29tjKKdBHJ7CY4/SNmFC82VuqLYer6CTUYdQ7v1FxIgbbC22AWus16KHdnbswVKZoxr928pEyp0VYv92O6OocoTnkksu4e677+b11193vf/iiy8yffp0Jk2axKhRozjnnHP49a9/HV9xKff/VkmwO/jNgJ39LhEe+DOwHq3FFPSUXxnpb8SlQ5MO3qa/HschDiDoKa0edAc/ER0BKxsNmMi4HeExDk9DQwMHHHAAV1xxBUcccQRz584dcIe9e/fy5S9/mWeeeYZBgwZx8803s3nz5gHXRYk4PIXHOaW13npdeVfMcuCMeLWjHZ7W9IqTKkMwORmrrfMY6/09aRQoZZwdvN1WxqVUlizg1MPuzA6ocm0ZsPXYiB4wTUHXjzI6PLbroNCP6XG+Bx/84Ad5+umnefXVVzn//PPp7OzsfwMAfvGLX/CLX/wi1pI6EYen8Dg7+I3W6/6rDcqE04hvsl6PTaksaWP/7n3AO9bZ3i7+z2kVKkWc0VB7pCltxe3wiB6mfkyhvHrYrkOvdTjfgyVLljB4cPaeryU5PIXH6fDYU1plbaTg1qPsnZr9u7eijdbWfu+XDWc0tOx1AwZ28M73yojoYbCdmb24N+bMnpPjRByewjPGOm9BGimY3y56uA248yx6iBYgejgZiYlyiR7uCI9CR4dBHB4hZUZZ5+1IIx2EefxdJxLxsvN37Pn1steP0da5E6PFKKqtPik+th7bMG2lrNO/Y6zzHnSSbtlthzPCA5WmtbKIODyFx3Z4diJGy/ms351IB2/XjR3Wuex62E8o2oF2emxjXtb24tRD6oZG2orGdh3syI7dViTCI6SKs1NzNtIybrZna7EXvTuorUfZOzT7MSNlN+JOPRQyincOlqRuaKStaCTCI2QSZ0O1Dfhg9DbxZUOMlhuJ8LgRPdw420vZtZC64aZ/hEccHiETOBvqbswmUWWMaojRciMOoBvRwzAYGGa9dkaHRzjeLxNSN9zIlJaQSaShGvprUfYpi2p5CWV0hkHyNJyMdLzeic5pskfxZawfYkfd2K6DTGkJmWEQYsSdVIvwjKXcOU1ixDWih8G2G3sxO+mWeYAg0WE3diRHprSEzOBclWQ3VDFaAyM8gzFLtMuEjFrdiB6G/h08lFsPqRtuZEpLyBx2I92Hzt+Bck9b9I92dWMMWBkNV7VR6/4Vri0DooehfwcP5e7kqzk8w3APLMuCt6TltWvXctVVV7ne+8AHPsDOnTs56KCDYi1hJcThKTSVRmkS4XEb8a3WeTTlo78R32adyxjtAtHDSf/BAZS7rfS3HTswnX0a9WNESodN/2XplSM8zz//PDNmzHC9t2DBAhYsWMC7774b8LcHRxyeQlNplGbvqlvmZelOI27rIZ1aubVw7sItelQeHGy3zmI7NGnVjxHo/5c0DruNeJvS6u/wfPazn+Wggw7ipptuAuDhhx9m8+bN/OQnPwkuhw/E4Sk0lSI8YsQrO4Cih9FiKOV7nEL/Xbih3HWj1mBJ9NCUWY9qDo/bpXj++ec56qijGDlyJMOHD+db3/oWX/nKV9ixQ/dJd9xxB5/73OcSKTFkPaVaCIl08G4qjdJk1OoO09u0ABuTLU6qOPPd7L2qpG7IYMkmSxGvLtzbBiT9t2HgsvTKDw9dtmwZe/fu5cQTT+TMM89k06ZNfO973+v7fPHixcyaNSvOArsQh6fQiNFyIw6gm/71Y5/1ehTldXikbmikrbjJmi3tqn9JrPRflm47Pg3WoQDo7u5mxYoVnH/++Vx55ZV8/OMfRymVbFEdyJRWocnSqCQLSKfmplanVrb6IR28G2krbkQPN/2ntPY5PhuYxzNv3jyeeuopnn766SQKVxVxeAqNvQX8Lsd7ZW6kdp6Gc3RUZj3EiBtECzeihxtxiA1Ot8Hp6FROXH755Zfp7e3lH/7hH+IuWF1Sd3g+//nPs2LFCrZt28a2bdtYunQpZ599tuua+fPn09bWRldXF8888wxHH3206/OmpibuuOMONmzYwI4dO3j00UeZPHlykj8jowy3zuLwaMQBdCN6GGppMYzyJXHbtqPS4KBs0T+QtuLEuSt9fYfnkksu4e677+b111+Pu2B1Sd3hee+997juuus4+eSTOfnkk3n66ad59NFH+5yaa6+9li996UtcffXVzJgxg/Xr1/Pkk08yatSovnssWLCAuXPnctFFFzFz5kxGjRrFY489xqBBqf+8lLEb6W7He2VtpFBbj7IZ8cGYFD6pH5U7tO2O12WrH5Xaiq1H2eoGyODRid2v9s/FMSu1GhoaGD9+PNdffz1HHHEE8+fPr3inJ554gp/85Cecc845rF27lpNPPjmuQvehsnZs2rRJ/fVf/7UC1Lp169S1117b91lTU5PasmWLuvLKKxWgWlpaVHd3t7rgggv6rpk4caLq7e1VZ511lue/2dzcrJRSqrm5OfXfH90xX4FScJfjvWnWe9szUL6kj99av/08x3uft977aQbKl+QxyvrdSsEwx/s/s977uwyUMcnjfOt3/6bf+zus96dloIxJHt+1fvdXHO+dZr33egbKl/TxlvXbT3G89zXrve/E+rcPPvhg9R//8R/q4IMPzoAOKBiq4CQFJ/R7/0jr/dFq1qxZau/evWr16tXqlFNOieTv1tLBa/+dqRDIoEGDuPDCCxk5ciTPPfcc06ZNY+LEiSxcuLDvmp6eHpYsWcJpp50GwEknnURTU5Prmvb2dlatWtV3TSWamppobm52HcWj1ihtFBkI8CWMRLwMwxyvux2vyzqKr1Q3oLwRQIlouJGIl8Ge0trX730zpbVkyRIGDx7MMcccw4svvphg2WqTiR5v+vTpbN++ne7ubr773e8yd+5c/vjHP9La2gpAR0eH6/qOjo6+z1pbW+nu7mbr1q1Vr6nE9ddfT2dnZ9/R1tYW7Y/KBLbRqtTBgxhxKK8Rd9YN5XhfOng3Za0fMjhwI7bDUG9KK7sPEM2Ew/Paa69xwgkncOqpp/Jv//ZvPPDAAxx11FF9n/dft9/Q0FB3LX+9a2666SZaWlr6jmImOVfKS+jBjOjL1lDFiBvqRTRED43oYbC1GE75tnAT22HovyTdRhweT+zZs4c333yT5cuXc8MNN7BixQr+/u//nvXr1wMMiNSMHz++L+qzfv16hg4dypgxY6peU4menh62b9/uOopHpQgPyCheRmnSwfdH9HBTqa1IErc4PFB/SisTbkVFMlmyhoYGhg4dyttvv017eztz5szp+2zIkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a8pLpQgPlHfuWVZpGWQKx001PaStGPZi9qEpkx5DHa+THyzZMxWNjVmJqlWb0qr8eImosH9/mJ2aU1fwm9/8Jo8//jhr166lubmZiy66iNmzZ/ftxbNgwQJuuOEG3njjDd544w1uuOEGurq6+OEPfwhAZ2cn9957L7feeiubNm1i8+bN3HLLLaxcuZKnnnoqzZ+WAWTU6qbWqLUF55boxada3ZAO3k1Z20qt+jGScukx3PE6+QjPpk2bADjyyCN58803Y/1b3khnSuvII48EYOPG4I+8Sd3hmTBhAt///veZOHEi27Zt4w9/+ANnn312n7Ny8803M3z4cO6++27Gjh3LCy+8wFlnndX3tFWAa665ht7eXh566CGGDx/OokWLuOyyy9i3r/9/SNmQUbyhATNSq5bEPQp32L7ISAfvRlZpuallO1opV/2w68ZeoNfxfjJ1Y+fOnSxevJgLLrgAgFdffZXe3t4634qTscAEtOPbXeH9EUQ5cGxsbOTII4/kggsuYPHixXR1BX+OWOoOz9/8zd/UvebGG2/kxhtvrPp5d3c38+bNY968eVEWrQBIp2ZwhqWdenSjE7mb0HqUxeGp5wxLB68pY1sBsR1O6qUGjEB3pfE5Iffddx8AF154YWx/wzvNwH7oXbg3ON4fCYxD15nq+bNBWbx4cZ8OQUnd4RHiRDo1gzMsXUmPcWgjXsTtCSohHZob0cON6GGotvijfxL3lthKoJTie9/7Hj/60Y8YN24cDQ0N9b8UG58DbgB+Afwvx/sfBO4BVgJXRvbXlFJs3LgxVGTHRhyeQiN5GgZbi17MXLON0+EpC9KhuRE93EjEy1CtbuxB6zMcrUd8Do9NV1cX7777bux/pzY9aE06gXcc779tvd/S7/3skMlVWkJUiNEyVNMCyh3xqrUqKc1RZNLIKi03ktNkqDalBeW2pfkbHIjDU2hk1GqopgWUs1OrVzdAJ3GXBWkrbiQ6bKjWwUM560c1BzD7WojDU2gkh8fgJcKT3YYaPdWM1m50qB7KqYdENGAIZmlx/jq16Kk1WCpj/ajXVkaS1d2WxeEpNDJKM3gxWmXSw8uotUxGXKZ/Dc4Hy0rES6a0+uM1iTt7iMNTaEZYZzHiEuHpjziAbmRKy+B0eLr7fVZGPWoNDso8eOxvS/c43hOHR0iUJsdrMeISlu5PLQewzEa82qi1mfIkccvgwI0MDtzkN6dJHJ7C4iUsLR28JtuNNB7EiLupN6U1CJ2bUAZkcOBGprTc5HcBiDg8hcW50V5Pv8/K3Ej7h+gh6400HsThcVNNj12YHXTLoofUDTf5jWjEQ34dQHF4Ckul50bZlLGDr6VHthtpPEin5kb0MEjOihupG27y6wCKw1NY7A6+UkTDrpRNuJ8xVWS86JHNRhoPMm3hRvQwyODAjdQNN/m1peLwFBY7ablSpdzheJ3Nihk9+W2k8WDr0X+6E0SP/pRND2krbqRuuMlv/RCHp7DUqpT7cK8+KQP5baTxUMshLtu0xRDHa9HDW1spUxK3tBU3tepHtvUQh6ew1KqUkPWKGT219LAjXmVx/sCb0SqLHs5pXdHDdPCVIhq7MA/fLYse0lbceNEjm4+lEYensHh1eMrSUGuFpcumBYgRdyIOj5t6tqNsAwRpK27ya0vF4Sks4vC48RKWHgY0JlOc1BEjbrC12AOoCp+XVY96tiObo/jokbbixostzaYe4vAUllpeOMgozYnzGTBlM+KV6kdZ64a0FY0MltxIW3GTXwdQHJ7CIqM0N7X06MUsOc1mQ40eL6M0qRuasupRzQHMdqcWPV7aShPu5PciIw6PkDlqNVLIesWMHhm1usmv0YoeaStuRA83XqPDZdCjAePY5S/iJQ5PYZEO3o0kYroRh8cgbcWNtBU3tfTYS9afEB4tzodS5y86LA5PYREj7kbC9G7yu7Q0eqRuuBHb4Ub0MOR7RaM4PIVFGqkbr2H6snTytfZasbUoy+Zy0lbcSE6TG3GIDU6HR5alC5lBjLgb0cMw2Dqgsh5d6N24oRx6yBSOm1rOMJSrrUD9wVKZ6ocfO9oQf3F8Ig5PYZGltm7E4THUC0tDueqHRP/cSFtxIxEvg1dnGLIYHRaHp7CIEXcjRtzgxeEpU/2QuuFG9HAjehjqabGbLD96RByewiKN1I1MWxhsLfZhjFN/ylQ/JEfDjdgON6KHoZ4WkOXBkjg8hUUaqRvp1Az1on9QLj28tpWhlGNzOZkOdyO2w+DH4cmeHuLwFBZxeNzIZmqGfBut6PEa/YNy6CHT4W7EdhjqOX+QZT3E4Sks4vC4kcRDgzg8burpUbZHj4jtcDPMOst0eN6jw+LwFBavYekydPAgRtyJF4enjEbcy6i1DO1F2orBOYUpeuR9sCQOT2HxarRkczlNdhtp9PgJS0sHrylj/ZC2Iisa+5PvwZI4PIWlXuhxJ2ZzuTI1VEnEzHtYOnrE4XHjZ+PB7G0uFy31dhaGctWNfA+WxOEpLPn2xKNlENBovZZRq3Tw/RE93PhJ4i56dNjWohczQOxPmepGvgdL4vAUFjHihnpP+IXyaAFSN/ojeripp8cuzP5N2RvFR0u+O/joyXdbEYensOS7YkaLzMO7kbrhxkvSclmioSD1w4lEyt3ku26Iw1NY8l0xo8Xp8Oypco2txTDM9FdRyfdeGtGT791jo0fqh0HsqJt86yEOT2HxYrTKMjKxtdhd45oybS7nJUxfpm0L8m3Eo0emcQziDLvJdzRUHJ7C4sdoFb2henH+yrS5nHTwbkQPN6KHwU+0qwl3vmARybcDKA5PYZFRmsGLFlAePaRDcyN6uJG8FYOfaCgUX498txVxeAqLn91js1cxo0UcHjdSN9yIHoZBwGDrdT73WokWLx38XqDLel30+pHv/K7UHZ7rrruOF198kc7OTjo6OnjkkUc4/PDDXdfcd999KKVcx3PPPee6pqmpiTvuuIMNGzawY8cOHn30USZPnpzkT8kYYsQNXrSA8unhdZRW9M3l/Iziy1I3IK+j+GjxOlgqW/3IZ91I3eGZNWsWd911F6eeeipz5syhsbGRhQsXMmLECNd1jz/+OK2trX3HOeec4/p8wYIFzJ07l4suuoiZM2cyatQoHnvsMQYNSv0npoQ4PAa/Dk/RR61+6gYUf3M5eZaWwenwiO2QwVJ/8t2vpL7+9qMf/ajr35dffjkbNmzgpJNO4tlnn+17v7u7m46Ojor3aGlp4YorruCzn/0sixYtAuAzn/kMa9eu5cwzz2ThwoUDvtPU1MTQoWa5cnNz9v5zwiGrtAxitNx40cPeXG4wupPfUePavJNvIx4tToen2hYOUD49ZLCk8bNKaxQ6OqxiLZEfMhf+GD16NACbN292vT979mw6Ojp47bXXuOeeezjggAP6PjvppJNoampyOTbt7e2sWrWK0047reLfuf766+ns7Ow72traYvg1aeF3Hl6MlkYcQDeih0HaihvRw43oYXBGh7PlAGbO4bntttt49tlnWb16dd97jz/+OJdccglnnHEGX/7yl5kxYwZPP/00TU1a/NbWVrq7u9m6davrXh0dHbS2tlb8OzfddBMtLS19R7HyffyGpbNVKaNHjJYb0cONODwGL5FhEGe4P2WpH1702I3e5gOy1rekPqXl5Dvf+Q7HHXccM2fOdL3/0EMP9b1evXo1y5Yt45133uFjH/sYjzzySNX7NTQ0oFTlcFpPTw89PfUqcV6ReXg3YrTciB5uxOExyBSOG2krbvzoMRatR3usJfJDZiI8d9xxB+eeey4f+tCH6k4vrV+/nnfeeYfDDjus799Dhw5lzJgxruvGjx9fNe+n2Mg8vBsxWm5EDzd+8hKKvrmc1A03Mv3rJt/1IxMOz5133sn555/PGWecwZo1a+pev99++3HggQfS3q49x+XLl9PT08OcOXP6rmltbWX69OksXbo0rmJnGLtS7qF2wlg2K2X0yKjVTb6NVvT4zUsosh5SN9yIHm7yrUfqU1p33XUXF198Meeddx7bt29nwoQJAGzbto3du3czcuRIvva1r/Gzn/2M9vZ2pk6dyre+9S02btzYN53V2dnJvffey6233sqmTZvYvHkzt9xyCytXruSpp55K8+elRL4rZfSIHm7EAXTjRY+96JVrw9F6bIq7UCkhbcWNtBU3+d6XKHWH5wtf+AIAS5Yscb1/2WWX8cADD7B3716OPfZYPve5zzFmzBja29t55plnuPDCC9mxwyyVveaaa+jt7eWhhx5i+PDhLFq0iMsuu4x9+/Yl+nuyQZAwbLaWD0aLhKXdSGKqGz+d2nCKrYc4PG5EDzf51iN1h6ehofYurrt37+bss8+ue5/u7m7mzZvHvHnzoipajvH7KAWAEcDOeIqTOvlupNEjerjxo8d4iq2HDA7cSFtxk++IVyZyeISo8Vopu9Cheih2QxWj5Ub0MAxxvBY9gnVoRX70iLQVN/nWQxyeQuK1UkI5Rmpep3Cy2UijJ99GK1q8buEA5WgrfusGFPvRI9JW3ORbD3F4CokfhyebFTNa8t1Io0f0MPhxeMqkR73pcOfmcmXQQ5xhTb5thzg8hUQcHjf5nneOHtHDYGuxDzO9W40y6SG2QyNtxU2+HUBxeAqJTGm58dtIh+LO7Sga+TZa0SIdvBvRw02+IxrRk289xOEpJGK03ATJSxA9pG70R/RwIw6xoQx1A/Ie8RKHp5AEMeLZqpjR4lUPe3M5KLbhEiNuEIfHjejhxm9bGYJZJFFE8m07xOEpJGK03Igebvzu01QGLSSioZHBkhu/079Q3PoxCLN1nzg8QmaQDt6N6OEm36O0aJG64Ub0cONVj33ofc2guHrkf88qcXgKiRgtNzJqdSObyxm87tEEUjf6I7bDTdHrR/73rBKHp5CI0XIj0xZuZHM5g9fpPZC20h/Rw03R9XA6PHvqXJtNLcThKSTSwbsRo2XwMw+/m+I/ekTqhhuxHW6kfhhsLfZQ/0HTthYjyZKbkZ2SCBEiYXo3YrQMfubhofh6SN1wI3q4ET0MQbSALEWHxeEpJNJI3YgeBj/z8FAePSSioZGcFTdiOwx+BtLdmGmv7OghDk8hkUbqRvQw+JmHh/LoIXVDI3q4EYfY4EcLyGL9EIenkIjRciN6GPzMw0PxR/FB6sYQ3I5jkZC24kYiXgZxeIRMIkbLTZBRmhgtTdHrR5C6AaIHFL9uQLB8yKLq4dd2ZC/iJQ5PIZEwrBsx4ob8G61o8aPHXoq/uZzYDjdiOwxBB0vZGTyKw1NIgoZhi7q5nBgtg0R43IgebqStuJEIjyH/bUUcnkKS/+WD0SKbyxnyb7SiRSJebmRLC0Oj47U4PEWwHeLwFBI/HfwuZHM5J9lrpNGSf6MVLaKHG4kOG/xu4VB0Zzj/bUUcnkKS/4oZLeLwGPI/Dx8tooeboNHhIuohe1a5yX+/Ig5PIcl/xYwWWaVlkLrhRvRw40ePbG4uFx1Oh6fXw/VlcYa9zBxAFiNe4vAUEjHihkZMNZdRmr8cDSi+HtJW3EhOk8FvBy91w032HEBxeAqJGC1D0LB0U7/vFgWpG27E4XEjehhECzf510McnkKS/4oZHUETD6HYekjd0IgD6Cb/o/jokLbiJv96iMNTSMRoGfzOwxd9c7n8G61oET3ciB6GoM5wIzAs+uKkTv7rhjg8hST/FTM6/M7DQzn0EGdYI3q4kbwVQ1CHB0QPyGLdEIenkOS/YkaHXy2g2NMWUjfciB5uRA+DXy32ATut10V0iPM//SsOTyERo2UI4vAUeRQfJqJR5M3lpK1o8t+pRUcY2yF6ZFELcXgKSf4rZnSI0XITtG6AOIBQ7LrRAAyxXoseMh3en/xP/4rDU0hklGYQh8eNXyPejUn2LrIe0laMswN57tSiQ2yHm6AOz0iy4mpkoxRCxOTfE48OMVpuRA83EuEx+N3CAcqhh+T/afIfHRaHp5DIbroG6eDdSE6TGxkcGJwOz56qV7mRtuJG9DD0OK7Nhh7i8BQOmYd3I6M0N2LE3cgybIOtRS96xZEXyqCHDA40+bel4vAUjjDz8NmolNEiRsuNODxugkZ4hmAiqUVB6oYb0cNN/vUQh6dwyDy8m/w30mgRPdzI5nKG/I/go0Xaipv8Dx7F4SkcQRweMVpuxGi5kfph2EdxHz2S/w4tWsR2uMm/HuLwFA67Uu7F/zx8dpYPRkf+G2m0iB5uRA+DaOFGBgdu8l8/ita7CaEqJWinp0jkv5FGi4zi3YgeBmkrbkQPN35X/0LW9Ejd4bnuuut48cUX6ezspKOjg0ceeYTDDz98wHXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkaGCLI76G6Ku7mcjNLchDHiLRGXJQuIHoYwWkh0WNNpncV2aMThcTFr1izuuusuTj31VObMmUNjYyMLFy5kxIgRfddce+21fOlLX+Lqq69mxowZrF+/nieffJJRo8wIa8GCBcydO5eLLrqImTNnMmrUKB577DEGDUr9JyZMkEoJYsSdbLPORdMCwhlx0UNT1PoRpm6A6AHSVvpj6zE64rIER2XpGDdunFJKqdNPP73vvXXr1qlrr722799NTU1qy5Yt6sorr1SAamlpUd3d3eqCCy7ou2bixImqt7dXnXXWWZ7+bnNzs1JKqebm5tQ1CHecoEApWOvze29b3zslA78hyuNa63d9z8d3DrO+sy0D5Y/6eMr6bRf6+M4XrO/8JAPlj/IYZP0upWCsj+89an3nbzPwG6I8zrZ+1+98fq/L+t7BGfgNUR63Wb/rmz6+M9P6zmsZKH/Ux2rrt83y8Z2vW9+5M9ayee2/Mxf+GD16NACbN28GYNq0aUycOJGFCxf2XdPT08OSJUs47bTTADjppJNoampyXdPe3s6qVav6rulPU1MTzc3NrqMYBI3w2KPW0RGWJQuEHcFnromEJIweRa0bIHqA2I7+SFtxk/9oaOas+W233cazzz7L6tWrAWhtbQWgo6PDdV1HR0ffZ62trXR3d7N169aq1/Tn+uuvp7Ozs+9oa2uL+JekhRgtN0ES7bY5XhfFEbbJv9GKDnF43ARpK1D8+pHvKZzoyL8DmCmH5zvf+Q7HHXccn/70pwd8ppRy/buhoWHAe/2pdc1NN91ES0tL31GcBGdxeNwE0aMbk/QtRrz4dQO8PzsKpIPvT9HrR5C2Mgx3/SoC+bcdmXF47rjjDs4991w+9KEPuaIt69evBxgQqRk/fnxf1Gf9+vUMHTqUMWPGVL2mPz09PWzfvt11FIOgRquoIxMx4m7yb7SiQ+qGG7EdbsImcYseWasbmXB47rzzTs4//3zOOOMM1qxZ4/rs7bffpr29nTlz5vS9N2TIEGbNmsXSpUsBWL58OT09Pa5rWltbmT59et815UGMuBvRw02QaYtsGa3okLrhRvRwE0SPfciKVyfZqhuNaRfgrrvu4uKLL+a8885j+/btTJgwAYBt27axe/duQC85v+GGG3jjjTd44403uOGGG+jq6uKHP/whAJ2dndx7773ceuutbNq0ic2bN3PLLbewcuVKnnrqqdR+WzqI0XIjergJY7RGoE1Gb41r84TUDTeih5swejRTXD387PGWrenf1B2eL3zhCwAsWbLE9f5ll13GAw88AMDNN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mAf5XXPNNfT29vLQQw8xfPhwFi1axGWXXca+fV4fr1AUwhqtbFTM6JAwvZsowvSboitOqgRN0pW64UZshxupH4ZsOcOpOzwNDQ2errvxxhu58cYbq37e3d3NvHnzmDdvXlRFyykySnMjergJosde9O7To9CdWlEcHung3UhbcSN6GIY4XgdxeIYAw4FdkZUoCJnI4RGixB61+ll1AsVspCCdWn/EiBtECzeihxvRwxB0C4ed6AETZEEPcXgKR5B5VihmIwUxWv2RML1B6oYbqRtuZLBkCOrwQJbqhzg8hcOO8IjDoxE93EgnbwirRRN6v5WiIHXDjUTLDXbd2GcdfsiOHuLwFA4xWm4k4mVwjtJEj+DO8A6M0Rc9ilk3ILjtyE5EIzqC1g3IUsRLHJ7CEbRiFrGRgqzEcRImLJ0doxUdQQcHCrPXShHrh9QNjTiAhigcnvT1EIencIRtpEMd9ygCYfUokhF3/r+KES/KqDU6pIN3I3oYgjrDkKXBozg8hSNoxXQ+WqNIRlym+AzOnITaz6EbSHaMVnSEMeJFrh9Bo8NFshsgES8nEuERMknQirmPYnZqMkozSAfvphhGPDrCdvCD0Xs1FQWxHYZi2A5xeApHMSpmdEjSskE6eDeih5ugeuzCrGQSPWTg2J/sRLzE4SkcYsTdBE1azk4jjQ6pG25kcOCmGJ1adMh0uKEYtkMcnsIRNKIBWaqY0RE2LN0IjIyuOKkSRQdfpA4tjBEvYt6KOIAG2cLBjSQtC5kkaEQDpKE66cI8FbwonVoxRmnRIXq4icIBLIoeUWzhMAqd11QEitFWxOEpHMWomNEhRtxQjFFadEhEw43oYYhiCweA5gjKkgWK0a+Iw1M4pFMzDMKMsPLdUKOhGEYrOkQPN6KHIcwWDnswTwUvih7FmA4Xh6dwSOKhwTlKk1FrdHWjKGZDOng3YjsMYTp4KN7gsRhtpSiWS+hDwtKGMGFpKJ4eUdQNKM5eK9JW3IgehjAdPBRPjzCLYbLj/InDUziK4YlHgzPx0O8Tj6F4eoSpGz3Abuu16FHMVVqS72YQh8dNFIthhgNDoilOQMThKRzi8BjCGq2idWoSpncjEQ03YjsMYdtK0ab4onCGIe36IQ5P4RAjbpBRmhvRw4108G7EdhikrbgJUzf2YZ7VKA6PEClixA1RjdKKoocYcTdRtJUR6M0pi4DYDkNU0WHRQ5ONiJc4PIVDRmkG6eDdiAPoJootHKAYegwmmi0cijKFI23FTTEcQF8Oz5QpU+IqhxAZMkozhFlZAMXToxijtOgIo8deYIf1ugh6hNlZGLLSoUWHDJbcFMMB9OXwvPrqq3z9619nxIgRcZVHCE0Uz9IqSpg+zMoCkA6+P9KpuSmSHrKFgxsZHLgphgPoy+GZM2cOZ511Fm+88QaXXXZZTEUSwjHMOgfp5Lc7XhehoUqH5qYYo7ToED0MzghPb9WrqlMkLUDqRn9K6PA899xznHrqqVx33XV8/etf56WXXmLWrFlxlU3wjXOPgyAVsxfYab0uQkOVKS03xTBa0SF6GGwtdte8qjq2Fk2YQVeekcGSm2Is0w+UtPz973+fww8/nF/84hf88pe/5OGHH+bQQw+NumyCb8LOw0MxjbhooZFRqxtxeAxhtdiBXn4MaXdq0SB1w00x9Ai8SquhoYGFCxdyzz33cO6557Jq1SpuueUWRo0qyrbz+eKTwGdDz8NDVipmGIYA/wgcKREeAA4CbgaGF8RoheVM4J8AcQA1VwMfCa2FwkQ1xoQtUmq0AN8AJkndAOAY4NvA4IJsWuorM/Xv/u7vmDFjBjNmzOCoo45i7969/OEPf+Cuu+7i5Zdf5pJLLuGVV15h7ty5LF++PK4yC/04A/gp0E4T3wf0CpJ9tb5Sg/w31JuBLwKTGco8IHgj3Wqdh6LD9EHD/ekxCPgtMAV4hKE8BwR3eLZa5zFhi5UaBwFPWq//haFWzSivHp8G7gReYii/BoJrAVqPMeRZjweATwAbGcoCoMx1Yxjwe/QA8t8ZyltAcD22WOcxocsVBl8Ozz/90z/x/PPP88ADD/D888+zbNkyenpMZ3Lfffdx/fXXc//993PsscdGXlihMt+2zt2hR/BgKubYEPdIjwPQzg5AU2g9tqOdx8FoPdpDlS0N/hva2YEoRq35rhsA8x2vw49a869H9LZjKnnV42i0swMwJrQedt0YjR52BB2ApseVmKzQ/UM7PFutc7p1w5fDc9BBB9W95t577+Wf//mfAxdI8McI4P3W62iM1lbrnE+jdarjdU/oKS3QeuyPHpnkz+E53fE6fP3Yap3HBC1O6nzQ8XpvyfWYChxove4J7fxB3vVwtpXwemxxvB4DbA54n/RwLkdSkekxJnB5oiDynZb//Oc/c8YZZ0R9W6EKJ6LjDzswjbQhlNHKRsUMygzr3Imzg49Cj3w6gCdb561E4fDkW4sxwPus11uAnpLrEW3dgKLosYUo9OjFbEw5JkSp0sPWYxtRDpZyFOHxym9+85s4bitU4BTrvBAYYVXKRrrZE/iO+TZatsPzA6KK8ORXjyHACdbrHxPlqHWkdffgtSwNbAP+J+AN1xYO5ZzSstvKz9BTFqBtR5BdeDT51sOuHw8RZcRrFHnUYzw6320fOj+0KIMleZZWzrEb6e+AtVYjbZKIhquRNpZUj+nodOvNwNNEYbS2YXIR8qfHSdZ5GfBmJCsa81s3wLSVpcB6y3YMK2lbGYpuLxBVBw951sNuK68BfyAKB3CrdR4TvFARIA5PzjncOr8CrLUa6dCSNtKxwDjr9VJgm6VHS0n1OMI6rwLeJgqjpTCr+PKnx5HWeSXwlsvhybcRD4pTjzZLj5ElbSvvQ093bEGvarQdnuEl1eMo67wSWEOUEZ7BQHPwgoVEHJ6cY2/3+CdgndWhlbWR2vkZbegF5JssPUaXXI8/4TZajSVNarf1eBNYY9WNQfQSfAVNfuvGcGCS9fpPmAjPyEiSlvOnh21H3wR2AZ2WHvuVNOLl7FfeJgqHZzdmW48xwQsWEnF4coy9dgjgLaDdqpQjStpInR08wCZLj3BGa6t1zp8eTiO+Adht6TE+EgdwTIh7pIPTiL8baTS0BT1yzQ+HWOct1rHe0qO5pHXD6QwDbLH0GFdSPZy24x1MdHh4zm2pODw5xm6k76F952iM1lbrnO8OHmCr1Uj3L6nR6m/Euyw9JpXQIR4BTLRev4mZ/h1GNw2B77rV8XpM4LukgdP5A9hg6VHWaGh/27Et0sFBfvX4E+4Vr5Nzroc4PDmmv9HaFElYOv8dvK1Hp9VIx+S8kQalvxG3IzzROID50sOOaGxGuymbHQn+wfcU34vZMj9fevR3hrdZeowqoTMMA9tKV990eL4jGkEYDBxsvbb12NM3eMz3Pk3i8OSY/kbL7uBHRdKhDQdXYmf2GRjRsEet5TPi/SMaYMLS4YxWPvXo36H1Oqa0xlX8hle2Wucxoe6SNP312BHplFa+6gYMHDzusvQYW0I9DkJvOrEbWAc4H0p9QM71EIcnx9i7pK6xzjscS0uDP8LVfpwC5LGhgtFjt6VHGSM8U63zVswv2FPiCM9U6/x23zsmwhPO4cmnHtOs81vWeWckKxq3Wucx5KlrGYSJaNj1Y3df/l/5psPtuvE2el2mc+AbzuFZh07ASO8xG7FsPCgkg/2MpDbrvMcxat0fs8+nPxTmcQpjgfVhipgYgzARjfes8+6+UVr5wtK2M7zW8V5vJHkJW61zPvV4t++dqCI8+XR4+tePLseU1lCCrsVxPk6hBXeOU3aZgI5o7MWOaJhoaBlXaQ20HSbCMyGUHn8b4rvRkLobfvrpp/Pzn/+ctrY2lFKcd955rs/vu+8+lFKu47nnnnNd09TUxB133MGGDRvYsWMHjz76KJMnT07yZ6SC/Qvf63unvEZ8Atp73wt0WO919xmt8kU0bGfYGK1B7LPGNweUMMdroBEvb1uBgfWju99gKRh7gJ3W6/zoYdeNdZjY9p5IV2nlRwuoZDvs7Sz2cIAV88krqTs8I0eOZMWKFVx99dVVr3n88cdpbW3tO8455xzX5wsWLGDu3LlcdNFFzJw5k1GjRvHYY48xaFDqPy9W+kd4nGH64EYL8thQbeevHWO0ehxh6eA1of/jFPJBrVFaawmNeDU9wreVrdZ5TKi7JMkoTGnFAazUwRuHJ9wUzlbrnB8tIM7BQfqkPqX1xBNP8MQTT9S8pru7m46OjoqftbS0cMUVV/DZz36WRYsWAfCZz3yGtWvXcuaZZ7Jw4cKK32tqamLoUDM32dyc3u6PQRiBaUbRR3i2Wuf8NNSBzp+ZwhlGD2OBTYHuvM3xegx6R5vsU81oAUwUh4cyd/C2Flsw8Zhoc5qmkEc9nA7PXkuP6KKhDZCT6EitwUHeHZ5chEBmz55NR0cHr732Gvfccw8HHHBA32cnnXQSTU1NLsemvb2dVatWcdppp1W95/XXX09nZ2ff0dbWVvXaLGJHNHZgFsZKhMft8Nh6hOvU9mEcwP0C3yVpas/Dh3nop1038qPFYAbmd0Xn8Gy2zvnRo1IHTyRTWpDH+mHr8Z7jvb2OR20E37bArhvpPk7BLwP1KE6EJ/MOz+OPP84ll1zCGWecwZe//GVmzJjB008/TVOTNuCtra10d3ezdetW1/c6OjpobW2tet+bbrqJlpaWviNvOT8D83cgOqNlN9T8OTyV9AjvANqxofwZ8f4RjSa6OaDC9d7JnxYT0V1ODya/K7pRa/4cHjsa6m4rUemRv/pRzwEMrkc30GW9DmeBkqRaDk8RHJ7Up7Tq8dBDD/W9Xr16NcuWLeOdd97hYx/7GI888kjV7zU0NKBU9RBiT08PPT1hwpXpUjmiEVXFtI1W/hpp9BEe0J3aoeTRiJtOzXRoI9C7LO0KdGe7gx9l3TP7bcjWog3npEJ520p8HTzk0QGsrIfbAXyToGxCJyDsh3NThKwyEjPMrTSlFW6wlD6Zj/D0Z/369bzzzjscdthhff8eOnQoY8aMcV03fvz4qnk/RaBWBx/dqDU/RrxexKtMndpotOGCymFpCNMdbcOkheejU6sc0TDRv3C/In8dfC09htId8pfkq61AfdsRLs6dL1tq141tOLc1MVo0k4MoSQ1y5/Dst99+HHjggbS3twOwfPlyenp6mDNnTt81ra2tTJ8+naVLl6ZVzNip10iDzztDHsPSlR1A06mF0yNfnZr9FOwtOKM4WoshlsMTXA9F3vI07Pydda53TfQvmraSjw4NTP2oNliKpq3kQ48GTP0wegzGfhhs2WxpvboBeoelvJK6szZy5Eje97739f172rRpHH/88WzevJnNmzfzta99jZ/97Ge0t7czdepUvvWtb7Fx48a+6azOzk7uvfdebr31VjZt2sTmzZu55ZZbWLlyJU899VRaPyt26kV4ymbEKzuAplML10jzpYdtwNtd72otGi2jFb5+jCMvethG3O3wRDU4yFcHD9Xqh9Ej3ANl8tXBj0NvNrGPgfld+lW5HMBadcM5WNpMPknd4Tn55JNZvHhx379vv/12AO6//36uuuoqjj32WD73uc8xZswY2tvbeeaZZ7jwwgvZscME3K655hp6e3t56KGHGD58OIsWLeKyyy5j3770trCOm3gjPPlqpM4pnGo5TWWM8FTq4AeHjvBA3vSo5QA2WY9hGYyZqPOH3cEPI0xmVJLUcwCHhbp7vmyHXTc2AL197w51vCpnhCc+25EuqTs8S5YsoaGhoernZ599dt17dHd3M2/ePObNmxdl0TJNMhGefDRSW4vN6AfeGcoZ8ao1ShscWYQH8qJHvQ4edJh+C0HYgd5heAhaj/dqX54yjdCXeFrNASyT7ajVVgAa6S3V4LHW4KAhEtuRLrnL4RG00bIX3Mcb4RmLPZedZSpHuxqxq3fZIl6VO3httAZJhMdCt5Vo9MhPJz8B3Sr2ABtdn5QzOlyrrTSymwbKUzeg9uCgwTE4yCvi8OSQVozR+rPrE2O0RhHmP9c5Qzsm8F2SolbCMsioVeM2WhLh0Z3avkhGrfnp5O26sZ7++/5GleBfnLYS7eAg+3UDkrAd6SIOTw6xIxrr6G+0osqm34vZXTj7DbVWwjLIqFVj61GuDn4YZl+RSqPWfSWL8FSuGxDdqjW7bjSSh1hA7WholNO/2a8bUFsPJVNaQhpU3nQQTFSjXCOTWpswwl4a2RvRKq18GK3Ky7CjrBv50cPWogvnI1ggHocn+22l8gge+q/SCr5Sazdmd+H81I/4Ihr5saNQWw8lER4hDSpP4YDtie8p2cikVgJ3NIl2ttFqJg9PTLdHafEZrfwY8XoRjd6SRbzq6RHNXit516Ocg4Nm9P7pUNl2RDM4SBdxeHLIwI2ybHTF3FPSTq1yhCcKLbaid+qArBuuFvRG9lB5pcXeSDq0/BjxehGN3pJ1avX06BE9iHYKx7kAJNvdra3FNkyMTuO2HeLwCIlSeQQP/Y1WWTbbqz2FoxvpcMLEZpy7C2dbD7tubKX/jjBRjtLy5wxXi2hEEw0tgh66fnSXrH7Ush3RRkMHhb5T3NSrG9EMDtJFHJ4cUs+I7y7RlFYjMN56XXmU1t33Thn0qGzAIdopnHxoARLR6E9lPcxQYFeJ6sf+mFR+91MX3YODcAPHPcB2x1/MLtUH0lEODtJFHJ4cUs+Il2mUZu8r0oveLdVgprTsPbnLoEe96F80ozRbi+HWkV3qjVqjiYbmo25AvZyVctkOW4s/o90Sg3sKpxEzTRyMfETLqw+W3LYj+2vvqiMOTw6pF+HZFWmeRj4a6cB9RcwybHt1TnOov2Rv0xbuuetx49VojRrwuR+2Y08V5kWPaqPWHut3hNMjH3VjMNWiocbh2VUiPeoNHPfR3Ze5VwbbUW+wZOeGhtMiXcThyRnV9xWB/hGeMhiteiN4Z4QnXEO140cH1LwqbbyGpcMbrXzpUa+tlKFuVI+G2oODXrqsLr4MevixHeFsqa1Htm1pvcFBdLYjPcThyRl2pdyFzqY3mI32dkVSMfNhtOpFNKC7bwa9DA5gPT3sKZzhhH1oSL70qDf9G01b2Z8sP4ql3i7L0Q8O8lo3THTYth3RRHiybUu9Tv+Gs6PpIg5Pzqg/KoHd1iM0y+Dw1ItoRGe08qGH1yRdKL4ewzBps/US/MNp4XwUS3YTdetNhTvbSjSDg+zWDfAW4RHbAdEODtJFHJ6cUX0EP6zv1a5IR63jgOpPs0+b6kbLTqbdVSqjVa9T29eXtRJVmD67etgP2B0YDQXbiO+OZNS6F5Pzll096nVo0sHbmC0tyhTx8rr6dxg6kTuPiMOTM6pHNEwHH828sz1KayTLCxGrGy3bAdwdcVg620arukMctQOYfT2qG3Cw68euSKKhkIdOrboeUbeV7GsBXiI8u0sT8RpFtV2Wwa4f3VZbgfxGecThyRn1IzxRGa0ezNOHsttQvRjxaBMPs6tF9a3hIb5OLbt6VHeGwdajKzKHJ/udWvKDg6Gh7xQn1fUoX3TYtqOdwM4Bn+r6sbcvHprfPB5xeHJG9QiPbbSiaqSQp4YqU1rureF3Dfi0fKP46m2lAePwaKXCG/Ds14/kosO7MN1mdvVIzgHMflupPTiI2pamhzg8OaN+Bx9VI4WsG/FGTMmSG7WOJKub7VV+pphNXFOe2awbUP+ZcwA7rQjPYML+r+anUxuoR9RtBbKux36YWuDFASz6Ki0v07/R1o90EIcnZ3iZ0oqmQ4OsG63q+4pA9I20k6xvtpes0cq2MwxeBgew0xELK2+nFscIPtt6VN9lGSq1lWimw0cT5ol+cVLbdkTtAKaHODw5o/6UVpReeLaNVvV9RSD6iAZkvZOvXjcgvim+bDp/4CW/qxfYWwoHcDB6gABJ5P9B1vVIdnCwFV3XIKvtxa8eksMjxE7tXZYHdmjhN5cTo+Um2w5gsnrYWuxHVs2Il8EBUAoH0I6G7sH8zxlM/l9ZosNeIxrR1A1F1rctkCktIXNU32UZKlVKKPaoNflGWgwjHk2nZhvwQWT1eWtepnCAUuQ02VrUjobK4EAzMD1AbAdI0rKQKF4b6R6IeHO5bDbS5FcWiANocG62l736MZxa0dA4IzzFqBvRRYezVzfAfwdflunwgXo0YmpClA5gOojDkyOqJyxD/1FrGZ4BI1NabkQPg91WdmJ2kzLE0VaK1cFDORzAWns0laWtgJcNSyFaBzAdxOHJEV4bKZRj1FrbAYxz1Vo29Ug+LJ1dPbw6fxD14CCbm+0lHx3OdgcvbcXQgt5sA2rlu0F0jx5JD3F4coTXDh6iMuJ/ts7jQ90lLpJdlQTQYZ2zp8cYzC8eqMcQTFOP0gG09ZhQ86o08OPwRLfZnl3T8qZHHBGv7NYNSCOHJ7t62FpsodKGpXHUjfQQhydH+DFa0Rhxu5EOJ4tV3O8UTvjN5Ww9WmtelQa2FpvA8Tx0m8ph6TIY8eQ6eNApwZDl+pHcYCm7WjTgffAY3RROXttK5cFB9noDb4jDkyOSn9LahcmAyFZDrb3LMjj1cD4bJhojni0twKvR2gf0SAcfS1uBonRq0UZ4sjdYOgBtP/ZhSukmjuhw3m2Hu25IDo8QO8lPaUFWoxq1d1kGp9FSRB3xyq7Rqj29V74Ovt50J5RDDz8LHqIZxWd3is+uGx3otYYDKWd0ONloaDqIw5MjxIgbnFoM3FcE4h+1toS6U9T4cYYlhycuPbIZ8RqCyTpLdhSfzU6+dt0Apy3tcrxb1Jym5GcO0kMcnpxQe5dl+wqIvmJm04jX3oMHyjbFl84UTjbrBqQdDc1W3bD/d7qBzRWviDunKVt61G4rgzHPu9qNIioH0K4bI8iauyARHiFz2Aa8i0q7LEPZRvF+RmlQ/E4tiNEaQdjN5bKpBaRlxLOpR/22Ui4H0JszDNHq0UXWp/iSjYamgzg8OaF+RKNcK0/8RniKPm0RJMIDUa7iy84U3yhMaZIN02d7CsdvWym6Hsk6PJDPiJdEeIQUkFGaGz9haSi7Hm6j1UNUm8tlc4rPdoY7MZ23mzi2cIB8dmhQrVMrpx62He1Br+MSB1DjtqPhHz2SDuLw5IT0HJ48RzSgLBEvP0YL4jDi2enUZHDgRvRw42fxB8SRxJ0dPfZD7w0O/qKhkM8ojzg8OcHvlFbRc3hq6+HeDh2KbcT3B5qs1+srXuFelg7FdgDT7+CzNcWXfr5bduoG+B8cFHlKy9ZiIybq68ZdN5yPHhGHR4gNifC48RuWLnKY3tZiA9ogDcTWY+CotYgOYP2clbg6+GxO8fm1HdFF/7LXVgZjSuNl+heK7QDWTuCGWg5gHhOXxeHJCekswwbTSIein9iUPvV3WR5otIo8D++3Q4Ni77UStIMfjDs2GIzsOoD1Izxx7cOTHS3Go/+fq29YGmeEJ3t6+I3+Qb4Tl8XhyQnphaW7ga3W62w01Pq7LIvRchOnA5i9UbxfPZyJzeV2iOOa0srOFJ+txXrs2G9/4sx3y2NbidOWJo84PDkh6Kg1mrBjtoy4312WoRzz8OkYrWzVDfCvh/PRI0WbAh6GTkyFanoMdbyOOjrsnOLLhh5hIhrljIYOzP/L8wNEU3d4Tj/9dH7+85/T1taGUorzzjtvwDXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkLsDMPsslw/L8FttMJvLgdZM+LeE7jjmMKxtXD+r6RLumFp+39hUs2rkiSIEY9ej4k1r0qK+huWOp8QFeWztGyypUe6gwP7r2ZDC/CzR1McDmDypO7wjBw5khUrVnD11VdX/Pzaa6/lS1/6EldffTUzZsxg/fr1PPnkk4waZeResGABc+fO5aKLLmLmzJmMGjWKxx57jEGDUv95kTDFOu+gmtEahKmY+tng0W0uB6ahZsOJtPV4r+oVI6yzeRJOdEa8BzORlg097FKkk8PTZp2z4/BkQ49s1Y36Hdpe9CRx1B1a3vRIwhkeCowLfbcoCNNW8hjhaUy7AE888QRPPPFE1c+/+MUv8s1vfpNHHnkEgEsvvZSOjg4uvvhi7rnnHlpaWrjiiiv47Gc/y6JFiwD4zGc+w9q1aznzzDNZuHBhIr8jTg60zmurXuEcpelO3t5crgldMSs7Sl7JltGy9ajv8OzseyfaRroOnTY9GVgVyR3DUL9+xOkA2nVjAtqc9Ia+Yxj2x7SGtqpXDawf0euRjbZiDw781I3+0eHKTxT3Sv71iK5u9KKntSag9dgY+o5hCWI78uzwZDoEMm3aNCZOnOhyWnp6eliyZAmnnXYaACeddBJNTU2ua9rb21m1alXfNZVoamqiubnZdWSV+hGNkY7XxR+1hjHi0fwv500Pu37E4QBuQLvWg8jClKetxZ+xd2CqhK1HHPUjW3WjfodWXQsoXnTYewc/sK0ULeLViGmx9fuWOBzA5Mm0w9Paqv87Ojo6XO93dHT0fdba2kp3dzdbt26tek0lrr/+ejo7O/uOtrbq48G08ddITRpvUUet3o14XBGe7OgxFL3UFvxN8UWnh8KE6tPXo37dgHgjgNmpGxCsg+/B7OcUnR7ZmPIM4wAWzXZMQjsAPegBQmXidgCTJdMOj41S7rU4DQ0NA97rT71rbrrpJlpaWvqOLCc5e4/wdLneLboRD9LBF22UZteNLmBz1auqO4DR6JGdUbw3h6d6pxZdRKMlkruFxbvt2Ol6t6jR4TARnmgdnvQdQKcdrd5Txj14TJZMOzzr1+sVMf0jNePHj++L+qxfv56hQ4cyZsyYqtdUoqenh+3bt7uOrBKkkUIcDk/6jbQBYzr9RHjsaFcjUWwulx09/EU04gpLZ0eP+h18E2bdYhw5PDswS7HT1yNIjgYUc7A0FvNrq8fz457CyY4eYQcH4vBEzNtvv017eztz5szpe2/IkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a/JOkIgGxDFqTX91wQFWKfZRa2VB9Q4eimXE63fwUKYpPu9TFlCGaYsg078Q12CpIfTdwmBrUTu/K+4pnOxEQ73ZjjgT/JMn9VVaI0eO5H3ve1/fv6dNm8bxxx/P5s2bWbt2LQsWLOCGG27gjTfe4I033uCGG26gq6uLH/7whwB0dnZy7733cuutt7Jp0yY2b97MLbfcwsqVK3nqqafS+lmREiQpFaKsmHvQZmI8aa8usLVYT631QANHJfbmcqPQelTeodkr2TFa2Ril5bGD78FZg6LX4yjS1qMJsz2m3whPtBsx7gOGoIcr1bNF4iZsW7Gjw7sJQ57aCsQ7/Zs8qTs8J598MosXL+779+233w7A/fffz+WXX87NN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mDH7NddcQ29vLw899BDDhw9n0aJFXHbZZezbV3nz8DwxHL3UFtIMS4NuqLbDsyKSOwYhaFIqaD1GEWVewgS0Ia/8yM4kCJukW7ScprDTv0XSw/7ru/CX3wVR6tGLdnJa0VGe9ByeoBENpzLNlM3hiTunKVlSd3iWLFlCQ0PtUOeNN97IjTfeWPXz7u5u5s2bx7x586IuXurYlXI7JjNgIHEnLYNuqO8n7YZaP9oF1fSIbtS6ER0UH4reNfXd0HcMStAprWjD0tmJeAVN8C9inkbQ/C6Iw3a0ovV4OZI7BiFoRCPa6LBdN8ah7Uf1ybW4qa/HYMyjRySHR0gAbx18eUat9fOZIP4kbshKJx+0U7O1GEkURiAbScvO/C4/mw5CMaf4/HXwoocmblu6BfOYhnTbi7/93YqRwyMOT8bx18HLqFWTVMQLsq9HA7XC0hDlFF8zaZpBW4sOak0yJlE3suEMhxksie1IYrCUnsPThNl0sP70716ckag85/CIw5NxvDk85RmlBZ2Hh7hWW6RntLzldw187Aho82U7BeH16AK2Wq/Tqx/Zi4amO4L3ZzviWuEJWXMAw+hRFFvqzO+qvgSlthbRPJg6WcThyTgHW+c1Na9Kah4e0jZath7v1LwqCaNlm80pNa+KE2d+V/VnpTnD0rtcn0Q7ik9fj4Osc7r5XWC0mEiaXYI/PeIcLKVfNxoIN6UVT/04sOZVcRJFagDkL8ojDk/GmWqd19S8KolRmp2Ye1DNq+KkEWMy19S8MgmjZetxcM2r4mSqdV5T8yqnM+zeTzXaTi0veiTRwa9Hx9AaSXOAMNU6v13zqiQGS/bwJL26MQG9pLyXcNPh0djS9PWYap3X1LyqshbRPnokWcThyThTrfOamlclkYhpN9IxwOhI7uiXKejx8i50nkZ1kojwrLHOUyO5WxDsv7ym5lWVO3goqx5JTGkpTLeal04tzsGBXYL0tXiPek9/T9KWpq/HmppX1bcdEuERIqMBE08JMoUTrdHqwizITKehTrXOtbWAZDq1vBityiN4KKsetZ3hIZiFuOGw9Zha66LY2A/T7mtvmhD3Lu2g3Yx96Hyy8XWujYep1nlNzauGYqYgk4h4Ta11UazYf3lNzasq21HI79J0cXgyzER0Nn0vtZbZQjKjEki7U5tqndfUvTKJML1digm4E4OTY2q/klQmqQhPXhyeym2l/+Zy4bFLkW5bWUe9nV6SmOLbg0lczrLtGOF4Hefg0S5F1ttK5cEBiMMjxMBU67wWr2HYOEdpkPa0hf1Xa0d4Km+WBVEbra2YrSDTyWuaap3X1LyqeoQnHiM+NZK7+aUZs2ItSDR0H6bLL4IDONU6r6l7ZVKDJbskUyO7ox/sv7qmxjXVHjsCceVDjiat9ICp1nlNzauqR3jyuhePODwZZqp1XlP3ytph+mg2l3OWJMtG3DlKk4hX8hGeyaSxgbv9P7AJ9yqSgdQP00c7xTc1krv5xf6r9ad/k8h3c5Yky20lqSkcZ3rA1Eju6IfBmFVaa2peWT/CIzk8QmRMtc5r6l5Ze+NBKIYR97ZE326k++gfzC/SqHUYesrTWYrKJNXBd6D1Hkway4+nWuc1da9MKkxvlyTLHTwks6IR0rYd9l8NEv2DOG1H8vXDHpL0AO01r0xqsJQc4vBkGG97zoCpdu6xrXNzufIYcbv73jHgk+hHJemNWu1JtO3UejAkJGfEFWnqMdU6r6l7ZXUjHm0nb2txEHr5QbJMtc5r6l5Zf3O5vEeHG/A7WIp7+hey0Fbeof9GFf2pv+BBHB4hMqZa5zV1r2yxzgMfLxptJ2+XZGokd/ODM25Q2wG0tRg4sVGkUav9F9fUvbKyMwzFMuLeOjSopUf0G3XuReeTtda5NnqmWuc1Na8ajOnU3HpEv7lcenXD3oNnL/U22rN/adx2FLLg8NTenwmStR3JIA5PhplqndfUvTIpI2430nG4d/CNnynoMGw3elu36ti/tLrRKkJYemq/ElSnvjNchCk++y+uqXGNpn5biaZT68V0r1mtH85fGnd0OP3BwXv0T0XuT/XBUnw5TVMju6NX7L+4pu6V9W2p5PAIkeAMw9aOaDRZB8TviTsnUJI14lOtc/0wbFLOn10ayHtEo0ij1jV1r0zSAUxHD+978Nha7KbS41bjmeJrBsZGckevTLXOa+pemaTtsEuTh7aShB7JIA5PRpmMDobvod5W6M4qVz1vJe8jk0Otc5gwrP1OI1FtLrfGOk9Cb1mXHIf0K0F10nAAp0Z2R69EoUdRpvimWed2tCtTnepaON+NxiHejdkfPR091tS9srozXJS6AUaPoLmhznfE4REi4X3W+W3q7cFjN9KuilcWZWRi6/FG3SurG63oN5fbgNZ9EEk/CNDW4091r0zSiK+xzsnWjbHoqAbAm3WvLr4DGEXdgOJMeXrXI41o6AEknR5wmHXOlu1IBnF4Mor/RlrbaEW/+eC0WhdFThRGK/rN5cDocUitiyLHu9FKsoO3428Hk+RePHbdeI/+z4PvTwPJ5iXYeqRTN+oPDrxFeKKvH4fWvCpq/OtRvW5E9+iRbcAW63VytnQE5nG2YeqH5PAIkeI9opG00bLH0O+reVXUROHwON+NTg+7RIfVvCpKxqH3Z91HNBGN6IzWOrTL0UiSo3jvzl/1JF3nO9HVDbv1Hh7ZHb3gP8JTua1EP4q39UiurUA0ekQfHQZ43TonVz9sV3Mzxt2qTpL5bskgDk9GiWIED3EYreQbKUTv8ETXySevh1033qPec5IgWaOlSKNT8z/duYdK2S3xtZWDMAsL4se/7UgqOpx83RiF2aAzjB7xRIez3FZAcniExMhuRMNuKoeSVPUZjy7/XrwkLSedl5Ce0apfN8BLku4ootwaL3k9ohocRF83Oqy7DibJaS3/DmDStiO5umFHNDagJ5Fq402PPDuAUdsOcXiESIgqLB19I30XHVcYRlKJurY5eBe9HXptko54ZX2UVn9pKZTFiCcd/YOk9WhBDxAgughP9BGvA4Hhkd21FsE6+OIOlrznMw3DrDyVfXiEGJmITi7rxc/SwaQaqTNzJJmGGtWoxPlu9Eb8EJJK1PUe0YBa9WM3ZiO2PE/xRbGCD+IK0yerh63FeiptUtGfpHN4NmP28UomB9B7Bw/JR7zSayvenWGotd1JdA+mToY8lbU02JXyHSptB9afpCMakJYR99bBJx3xWodemp5coq53PYajp1OgqNMWY9BJ3BAugdv5brRtJVk94hgc5DniFWWEJ77ocGukd62F/yXpO6i01Ws80eH4EYcng0SVWOZ8Nx6HJ39GK55EXbtkyTiA3ketttFyply6ic+IH0wSibp23bDdztokHdGApDv4YBGNJCNeWdYjaQewE/iz9Tr+iNdwzPMIwyzRB53U0NvvyjwgDk8GyXZEA5JebisOoGF/dFQD4K26V9fWwvlJtIm6nWjTEv9+K8HqRlKrkiCttpLN6V8oQnQ4Hgcwfj3stPktmInF6qRhO+JHHJ4MYld9MVqaYDkrxRzFO5ek195kD/wYrbxOW0RZN+x3nU+nC4/dVqaQRKKuPz2KHfEaiX7oC3jRYwg6URfSyfFKrq1EEf2DfCYui8OTQY62zq94unqMda686DJeozWVuJ8hNQm9yV4vXo34aOuc5Cg+OQfwSOv8qqera3dozk/y2qkdZZ1fr3mVjbcOHvKbqGvr8Zqnq4udw3OEdf4zsLXu1c7/8WI6gLbt8NZWJMIjJMAQTNX35vDYTx6uHKSMp1K2o5t/I3Fvi247f2/gJYF7JMYBq7yPaN47+GOss7+6UX1P1bwntdv1Y7Wnq2vrsQ+TB5TH+jEe/UyxvXh1eGrrEW9biT9R11/dGGOdd1Dt6YV5tx3B2srWqlfkcS8ecXgyxvvQXXYn0ObpG96MVvTLB5OZe/YX7bK16KFakm68YemDiHvaIpge1R2eePU4ouZVYRns+AtRODwQdwTwyJpXhcV2ht+i3lPSbdJweDrRi+Yh7voRbHBQPbslz3UDoh8sSYRHCI2/Dg28Gi2I+pm8f7TOx9S8Kiz+Gqn9zOykIxobgI3o5nRUnWvD4W+UZutR34hHq4dduumR3rU/h6CzLnbiZb8q8GPEW6peEYRV1jlePfzZjkGY6d/KesQ3gk+mfvjTo77tiKduvIqesB+LyTiKHqdlitoBFIdHCEzUDk83ZnfiaBvqSut8bKR37U/UEQ0702l01SuCEr8eIzE7/WRbj1fR0wL7Y55kFD123fgjlXYKqUR9I77VOkerh+3wZKmtjMaY/8r1Y6t1HknUW2omazuiiv5ttc5jApanMj2YKE98ehyMjj3vxsvqTvDiAG61zmMClyp5xOHJGP6M1gjMepL6FXNs1SuCkE+HZ6t1HhOwPNWx9Yhv1GqP0DrwsqwUvOhhfxJt3diNmfKMTw//gwPvRjyetnIEcSb529FQfx38Tqo9sGVrhaujIf6I13DMMmx/EZ76zvCYYEWqQfx62HXjVXSuWn28244xAcuUBuLwZIxgHXwvtTaSj6dTs434kcT1SIUJmCRMbysL0urgIQkH0N+IFbwY8Tzr4W+6E9KrH2vRsbQhxJm3EvXgYB8mAjgmYJkqE3/dOALduW2wjvqUw3b4bytp2I74EIcnQziTMKMyWs5Po62Y76ITEJuIy4jbjTSqJEznJ8Mwu25EQ/zTFlFPdzo/id5oJaeHNwewAdNtp2HE49VjHHAA2knxtmVB/Q4N4tLD/h+biJ72jB5pK27yEw2NF3F4MsQhwFB0kPldT99I0+GBuBuq/4iGt0Q7e0v0eML0kzDGIlr8TVmAnym++Eat8YTpB2HWtUSVs+L8JG962HXjbbxsSAleOjSIq37sxGSSxKuH/w6+vjPsrEnRYNeNoyO/s00ctkMiPEIo7A7+VfwmYabl8MQbio1jlAZxGfEd6O4G4jLicYzS4puHt+vGMcRhZqah8zR2AWs8fcP+3+6iWs4KJJHjla+2En/9yNpgqf7gAKJOan8LXS+HEcfmlA34XaEFfqa0xgQoU1qIw5MhjrPOUUY0IIlRfDxGy75rlB2889M86TECvyu0IN15eNuIDyeOZ2rFkYTp/DS+aGhWIhppTmlB3NHh4BGe6vXDmSkZrR6KOJfqH4xeadcNvOnpG0Mwuw3JlJYQE++3zi95/kbaRjy+Dr4Bo8fvPX8rbT3iM+LHoxvrOvSOP/Vx5qzUj/A496iOhn2Y7iZ6I27XjRWev5GVDn4acTx9yNbjD56/keaUFsQ5xdeM2bfYux5p14/4bOkJ1vkVqu0h3R/nr6v8yCKQKS0hJCda5/w5PFOJepefw9DdQhdet8mH7OhxXM2rgmDXjeWev9GCToOHWno4nzgWnx7HR35n/3qkHf3bjNk7Pdr6MQjTqXnXIytt5Vii7oZOsM7vAJs8fysrekTfVk6yzsHqRvX4qTOnqSFAudJAHJ6MsD869AjwsudvHWCda4/542ukWzB73L6/1oW+cY7gvY1KwKz4qG3m4tPDNiknEPVSfdtoeXeG7Q6+Cx3Mrsw+4hzF23qcHPmd/Q8O0o5oQFx6HIGe8tyB1ydhg5ckXYgzT+M1dPJyM1Gv8vRfNyD9+pG/tmJ/Opj87LaceYdn/vz5KKVcR3t7+4Br2tra6Orq4plnnuHoo4+ucrfsYnfwb1Dr+bT9GW+d/1zzqnhDj7+zzqdEetdgRmuCde6oedVW6xy9Hn+y7j6cqEP1/vWwtahdNyDO+hFP3RgPTEE7a96ntOy2Urtu5LGt2M7w7/GazwTp2469mNo8I9I7+x8cjMBMM6alx0toTQ5EP1g1Ovzr4a1udGO2C8nLtFbmHR6AVatW0dra2ncce6yZ57z22mv50pe+xNVXX82MGTNYv349Tz75JKNGRT9PHidxdvD2GC6exdIvWue0HZ7hmHFG7YYanx4K06lFZ8SHYpIw/Rut2nUDTDwsej1WoFdEHYCJX4bHrht2jMAb3hxAW4tmzB7m0WG3lWg7+Dhth61HPLvlZEUPu63sot5wMz49dmJy3qLTYxL6f7oXP4MDb3UDzNxCPPUjenLh8PT29tLR0dF3bNxopnC++MUv8s1vfpNHHnmE1atXc+mllzJixAguvvjimvdsamqiubnZdaRJMKPlzRO31Rrn695eyZrR2o07M2Ug9s6r8egR/Sj+WPQE2QbgPc/f8h7hsevHATWvCkI3Jm00Oj385++An+ifvU9T9EZ8mXU+nCgnifyP4MFr/YivbkAcbWUEZn8m7/XDewefjO2IzpbadeOPeN28FbJhO+IhFw7PYYcdRltbG2+99RYPPvgg06ZNA2DatGlMnDiRhQsX9l3b09PDkiVLOO2002re8/rrr6ezs7PvaGtrq3l93PhfoQVeR/F2I92POP7Dl6MD6QdjGko4DkaXtQc/S/S9RzTibaTRO4DhOrS0jXhW9PBWPxRmFB99/diMWRgcTa6GczWj9w5+GGaRgTfbEW/dOJ6o4mnHo3NK1uGl5ttkpYOP3gGMc3AAcdeP6Mm8w/PCCy/wuc99jo985CP87d/+La2trSxdupT99tuP1lY919nR4f6P6ejo6PusGjfddBMtLS19x+TJk2P7DfVoRo/5wM8S7KGYUaK3KZxBxDFtsYOoQ7F2I10J7PH8Le9GK5lR2nT0eDM84aJ/aTuA8RnxuBzAPEVE34e2H7vw+kgJMHWjm1rLjsGtRfQrcd62/sJQolq5FnfdkMGBm3jbSvRk3uF54oknePjhh1m1ahWLFi3iYx/7GACXXnpp3zVKufclbmhoGPBef3p6eti+fbvrSIsTrPO7+FlGaXdPPbj3AB1IL8bpyUOnlu8Ofh16+fFgolq5lu9Rmm3ETyIKc7MfZgPGl319078eeWgrdofmbzWjf+evkah3F7axp/mi6eTz3cGvRDuh+xHVZp1JDQ5kSismurq6WLlyJYcddhjr168HGBDNGT9+/ICoT5b5gHVeVvOq/niPaEBSnVo0RvxU6xysg087wgOmU/uL0HcaitmKLI4cDYjbaL2KjgKOwmxwHxx7IuhP1ItNOHFGQ9Pu1KJtK7abEFeH1oPJiIt3CjgfesTbVvZgYvzh9ZgITEYnHLzs65tZGSxFT+4cnqamJo466ija29t5++23aW9vZ86cOX2fDxkyhFmzZrF06dIUS+mPv7TOz/r6lvdRCcTdUF+wzqdiNrsLRiPG4fkvX9/0P0obRhx73gI8Z51nhr7TDHR3vR7zpC5vZMVo7cPUj9ND381W9Le+vuU9GgpxOzwvWeWYhH5ccDhsPfxZO+91A+LWw24r4evGGMxmEM/VuG4gWRosRaeH3a/8AT+rGSE707/Rk3mH51/+5V/44Ac/yNSpUznllFP46U9/SktLCw888AAACxYs4IYbbuATn/gExxxzDPfffz9dXV388Ic/TLnk3mjAVEx/RjxYhCceh2cFuiMZTdhpnOPRTsgW/DwHB/zo0WUdEFdDXWydZxE288E2e/6cYcjOFB8YPWaHvpOthz9nOEttZRfGAZwd6k4jMFMWcQ6W4tXjt+hJ90PRe9AEx7ajr+H1f9rGfwc/Cj1gip7F1nl26DsFsx3BoqEypRURU6ZM4cEHH+S1117j4Ycfpqenh1NPPZV3330XgJtvvpkFCxZw9913s2zZMiZPnsxZZ53Fjh076tw5GxyJXv7ahZ+EZTCbU/kzWvGN4n9jvf5QqDs5R/Denhhv40+PeBvqS+j9PPYj7LNxbD38dfBDMOnpWRi1LrbOs0PdZQhmktCfEc9SRAOi0uMv0BHRtej8P+/4cwDj1WM7ZvJ6Vqg7BWsr4Kd+dKLjcxCXHr9B29OjCLvqNZjDYzvD3qKhMqUVMZ/+9KeZPHkyQ4cOZcqUKXzqU5/ij3/8o+uaG2+8kUmTJjF8+HBmz57N6tXeFzOnjd1In8fs/+GNg6yzN1MXvyf+jHWeHeouwY2WPz3ibai9mF8Q3AEcBNibK/gzWlOs8y68pMHbdWMsUT8Qw+ZFqywTCJPHcxJ6e8kN+Hm+GpjIgbddjOKNaEBUDk/w6J8/PZKzHeEGS8H1sNuLt61J4nUAt2IyboI7gC2YdW/+bKmtxTpPV8uUluCL8B38OzWvsonfiNtG63TCdJvB9GjAGPHiOIDT0cHl7fh56jOYXY29abEZs8InHj16MBO2swPfJWlneHzNq8LwHHo1zoGEWY2TlB52HCg+PRZb59mB7zAMk7Dsz+HZD5PJt9bTN+z6Ec2uY5VYbJ2DO4AfQGdTvgm017nWjW07vPUrdt0YR9jszWQQhydl7HnnuI3Weusc7VNanPwBHU1oxiwO9ceh6PJ1E2TFWhO62/Y2MrGNwERff8cPi63zBwmax+NMSPW+5Bj8Gi2FqR/x6zE78B2Cd/D+9LBrUHxahM/jGYxZ3ek/opE1Pew8nkMwds0fM9AWoB14y9c37b/Xgde9iOPXY7F1nh34DnZb8V83/A+ke9GORHwOYHSIw5MiE9Gd/F70lJY//I3i7UYa3/aKClhivQ42MrEb6e+o9XzvSthatOHVNbD1mOTr7/jhJfSM/37oVGz/JDWChyT0WGydZxPEAWwgjBEP1lb2R6dwxsNi6xysrZyASe73N4E/AhPH86dHfHVjB2aIMzvQHcLXDW8dPCShx7PoPJ4jCepWBUvuhyCDJXvwGJ8e0SEOT4p82Dq/jJ8npINeDWVvDe8tDGvPTsdbKZ+2zh8J9G1bj7hHJZCE0dqL6dQ+GugOs61zMYz4i+haPh6ztsg709EOyE78JveD3/qxFR2DgThH8Yus80cIYoZnW+el+E3ut6d+t+F1J6P46wbAU9b5nEDfnm2d4+7gIQk9tmIcQP+2YxhBk/vB7+AAkqof0SAOT4qcbZ2f8P1N24BvwJjm2theeDNx7T0D8EvrPBO/D7FowLhJv/b9d/03UtsBjPeBIr+wzuf6/ubx6M52B373FIFsOoB7MDXdvx52W1mM3+T+Rsz/cpaM+G/R2VPjMJNT3rG7wSd9fzOLHTyYtnI2ej2ed0Zg0nv965HFtgJGj4/7/uZstNOzFnjd97ezWj+iQRyelBiE6eCDOzzeDfhOzHguvoq5Bp3L04jfkcmJ6LH/dvxuogbZnMIBeMw6n4rfGW5bvacxy2C9k9VRWnAH0Nbjcd/fnIzOeOnGz+Mkk4kA/sp67U+PkZgpC/96+K8b9mBpJCauHD2/Q2eSjUbnvXlnNnrqcQ1+nidmk/W2chZ+d/wJ3lZAHB4hFk5Ej+22ESZ/x9t0lk0yUY2fW2d/RtwewT+FnweG2gQ3WhOJ46GINusxW+d/zNc3wxmtrI5af4Xu6E/AzyZzzZgcDf96OJ1h75M/yehhtxV/o/gz0Am6bxFkBO+/buxC5wpBnHoozADBn+0oZge/Al1nR6D/x71j21L/eoxBtzYI4hCLwyNUxdnB+wvRAxxhnd/w9a1kjfjZaLPsjeDTe2CeNf+m52+sR6cFNqFzQ+LDvwPYgtl/x78eU9Ajwj143WcFkqobmzDL07138h9GT3K8jt8VOKCfJw56/O+dZPT4NTp+dxRwmOdvhevgs6xHsGmccHrY2wJ4f3CLrUUrcQ6WIEhE9BC0NdyDyRLzjq3FeryuWAOJ8AgeCNfBH22d/1jzqv4kUzGXWX+pBa8rLsZgshj86zEEY8S9P4yiF7OHRDIO4Bz0tnn1ORM9KfgqfrslMHXjDfy40skZLVuP8zx/I1yHZuvhby1TMnp0YhLbvXdq0ejh78EtySUu7wKm4XWH8sPQ3XQ3ZsmEd1rRuYZ78RMr60APloYQ94Z7TgfQm2tl143/wu9CGIBjrHMW60Y0iMOTAvthHpAZzOGxd6v1VzHtKa0pNa8Ki8J0ahd6+sYcdJbFK/jdIh+0yWtEdx7edkq1sa8OtvOHV1ai4xIj8NrJp9Gh2VpMIK5nBNn8p3U+A695TeEGB8GMuK3HwTWvioL/tM4Xe7r6SGAquoN/pvalFRiMiQ77cwCT0aMLWGi99qaH3Vaexe8DMsG0lTfxsxHGXsw0Trx6PINesTUJr4PHNGyHHUeO145Ggzg8KXA+2vT8Hj+TDjYtmCwcfxEeO2gb/hnN9fh/1vkCdKpjbf6bdf5FzauqEayRgtFjWqC/64fvW+fL6l7ZCHzCev3LGtdVJ5gem9AuI8RtxN9Ep6U3ApfUvXoG2pDuxMRC/BFMD3vqLP668WP0tNaJmGd9V+eT1vlpzANwvXMoOr13J36HFsnp8R/W+bN46Z5sPZJsK5CUHj3o+gFwad2rR6OjwxBWD3/OsG1Hx2IeO5pVxOFJATvu8aNA37ajO22YLsobdiON3+H5LXpKZRTavavOKOCvrNc/rnVhVYJFuyBJPWwjfib1Ar8fRofJO0i2g4ck9XjAOtc34hdZ50fxk1VgMwrjvgVzeCbjJxMtCJsxrr53PYK1FedUuL/de5KrG4+hNZmM2ZmrMpMx67l+EuhvBYv+QRpt5ZPUGzx+Au3OriLIL4KgenRhdmqP3yEOhzg8CTMes7fqQ4HuYHfw/qI74G6k8SbbAdxvnS+redXH0ZktrxNkQzkI08HbKc7xG6230E9BHgx8puaVdof2E/w+TsImDw7Pj9Huy3HoFVuVaSCqwUE7Zp2RNzag90AaRBLTWnan9hlqPZHoGHQMqBszEeYPu0Pz/3Dl5OpGD/Cg9bq2A3iBdf4NfiezbYJFNCBJPZ5DW8dRmHhWZWzbEaytjEBPlkK2bUc4xOFJmE+hTdoLBElIBZPM579SvotOYx1GnDvI2nwfndp3BrW6jHAjVjBGPLgDGPzxjX6wO7XLql4xFJhrvQ5mtCaiA8v+kjBtkjNa29AxG6ilx0z0KH4rQTajhDAjeEhSj8fRKfSt6H1XKnOR42pveyT3J3xE40D8bgsYBLutzKXWzj+fts7B2grkI8IDJkJc3QEch5nOCqbHkWh34M+YRyt7RxweoSLhRqxg0p1/5/ubezG7TcRfMddiFkZ+vuIVozEJqcH0aMEYreW+v51sI/0JOnfiKKrtq3E2WpO1BNl8EUzdeAW/TyODpPW43zpfitn7w43dwT9MkM0XwWyw/3KgbyenRy/wA+v1/6h6VbgRPITRowM9dZFMxOt36Do8Arii4hWHovO79gI/DfQ3DkVvSNFNkMFScvmQ4B48Vs7z+iQ6K+53+Nmcw8kp1nlFoG8nFy0Phzg8CfI+9JzzPoLOOQ/FPIk8WJdoV8xkohp3WuerqDRS+zQ6PyL4nPNfoKvwm/jZRdfmXbTBHE4SEa/twL3W6+sqXvE56/wQfjMsbOzde35b86pqJFs3fo3uaMYAfzfg06GYKYvg0b9weiQbAbwTXRs/ip7qc/MBtP3YSdDk/lZ0d7SPIFudQtJ63G6dv0SlmJI9MbwIPf3on7+0zssJMzg4CO1oxMu7wM+s19dWvMK2HcGdYVuPPLSV4IjDkyB2nONXBJ1zPhHdFXQQZAs2gD9Z5yNqXhUVj6HdmdFop8fNf7fO/yfw/e0OLZjz14sZqR0ZuAx+uM36q3Po/wDNAzGL1r8X+P7hjJa9jeVh1MokiQoF3Gy9vob+qcEXosP072AeK+mP0ZjRcDA97EnBo2peFRVvY7L6/nHAp3Zb+TFBVmeBqRsr8bvYwcbWI5m28h/oHV6m0H+J+hCMi5xWW2lHD2Ea8bNlZBi+bZ0/Tf8F4CegLWEPJk7on3B6JNtWgiMOT0IMBy63Xt8d+C729nzBOnjQ7gd43dYrLArTUK/BucPL6ejuaCdmxt4/4UbwoM0/JKXHO5iETHen9ndoJ+Npgka7wkf/1qATdYdhtnKMlx+gN2aYhF6GbLA7+H9DxyT8cyravP0Js8WkP+y2Un+xeFTYDuCFmARSvdDB3rrhO4HvHa5Dg6RtRw+wwHp9Lc5lFnPREdn16OnOYESnRzL1Yzna9W9ER70Mdlv5KUHi3KDVnIaOMAaL/tlp31PI/tJ0JQequblZKaVUc3NzLPe/DJQC9SaoQYHv80ulb/M/A5djplWONYlp26jgbavc/73v/R9Z5fhu4PsOVbDduu9xgcv3dasc9ySmx3SrzHsVHKkA1QSqwyrH+YHvO8u6b3uo8j1vleNTienxJavcrysYogA1wyrDblDjAt/3m9Z97w9cttFWOZT1Ohk9Hrf+5Hf73vsnqwxLQ913mXXfiwPf41NWOZ5PTIsWBVutcn+y7/0lVjm+Fvi+4+z/VgUHBC7fPdZNvp6YHmdaZd6hYIIC1FhQXVY5Tgt834us+74UqnxrrHLMTEwPc/jov5MvXBaPuB2eZVZl+IfA9xitoFvp2xwZuBxjMEa8JTF9r7L+5AYF+6mJoHqsMhwX+J4ft+75roKGwGX7b1Y5nktMCxQ8YpX91wpQF1tlWAtqcOB73mHd875QZfs/hO1M/B6jFHRYZf+yAtQDVhkeCHXfV617fjpU+d4lbGfi95hplbtXwftVo1UvlFVPgt3zYMc9xwcu25FWObaDakhMj69bZX9bwXB1rFWGPaAmBb7n31r3XBaqbPOssjycmBYoeM4q+wMKUF+2yvBSqHs+ZN3zplBl+4VVls8nqoc+xOGJTzDfx0etirAT1P6B73OJ0rdZHbo8thH/y8T0HaxghVX+f1cLrL+/JNQ9H7Dud3uosqVjxA9RsEuBUg18Uq20yvBPge/XoKDN0uOcUGX7e9Iw4pdZZd+uDmRynzM8I/D9jrXut0tphyp42X5JGkb8h1b5l6rLaFAK1Hp0JDDY/b5s3W9RqHINRkfdFKhDE9NihIJ3rPLfqB60/v6PQ93z19b9/jFU2T5kleVPidaNk5WODivVxEzVZpXhilD67rT0ODFU2W6yynJ3onroQxye+ATzffyWQUqB+pdQ93lYgVJ6xBOuPI/qG6kvJqrxX1rlV2oJf6EUqDMC32uIgi3W/f4yVLkGo50dBeqYRPX4mgKlRvCu2s5ItZkw0yZ2VGCLgqZQ5bKnPNsS1aJBwW8VKHUKDyoF6olQ97OjAo+ELps95XlfonpMUtCpQKmbuUwpUF8Kdb/nLT0+H7psL1h6fDpRPc5XoFQDu9SfOCRkZHh/BXssPQ4JVa4xmGh58IFskOO7CpQaxwq1h8FqDWGc4U9ZP+HN0OWypzyXJ6qFPsThiU8wX8fJzFaH8Zp6iSPU+MD32V9BlwKl4PjQZfpHfSP1k8R1vk+BUsewUv2KESHuc56lxToVZjrLPp6y9PjbRLUYpuAtBUpdyXfV9aHudZelxwOhyzUMM914cKJ6nKD0lItSP+GTIaI7DQpes/QInq9iH2dbWryWqBYoO7dpLJvU8xyshgW+zyGWFnuVnfcR5rjN0uPOxPXQUZmZ/Eb9PxpD3OfvLD2WR1KuVZYef5WoFvsp2KhAqa/yNXV5qHv9zNLjf4cu12RLi15QIxOuH+LwxCeYr2MGTyhQajyrlU7CC3KfbygibKT2KH5dwhofzAGqlXUKlDqAH4a41wuWHuEbKaQ1ikd9hDNVQ194+tKA92lVxhk+I5Jy2YnLyY7iUefyvxUoNYxOBUcEvI89Yt2iIHxbHoMZxQdPoPZ/DKdRnWDV8wP4ndJJ+kHudY9V/McjKVdao/jjOES1WAnMY7k14H0aFfzJ0uOLkZTLznn7VsJ6nMfF1u9QahAfDXifo5U9PaYXU4Qv1xqrULMT1kMcnvgE83XszwQ1mrVK14PHFL5HJ2MUbLO+/4lIyjQMVDdJz8WjngT1G2aqwfRYv+fLAe7zEeu7O1WYFRbOwx7Fv5mgFgeA2gjq63zF+j1dCk4JcK/brO//V2Rls0fx/5agHmeD2sNgNYunrd+zWsFYn/dpULDS+v5XIyvbakuPuQnqcSuodzhQjWWD9XvuU/6jmVMVfW3tA5GUaxJmFJ/UoodGUL8H9UhfZFcpndPo916XWd9drwgVYTbH5VaB/ivBunEoemXWVX2R3c0q2ADhQev7P42sbD+09PhqgnqAODxxChbgOEmZUfjPlL88C7tS/0FFMX1jH8/om6r/kZC+l1p/rwvU/vwP6zf5HWkNUyb5+ZbIyjYKk4x5REJ62IZhGQ2qgZ9bv2mrglN93OdoZerVnMjKdo5VtncS0mKU9bcUqK8xXsF71m96SenpXK/3utL63halVzVGU74FVtn+T0J6zEA7FArUyZyp7Kk+Ha3xYwN+an3viUjL94pVtqS2LrjO+nsbQQ3nJus39Sp/U5ZjlUl+/lJkZTsQ4wDul5Aei6y/+RhNyqzaaldwlI/7/KUy0Z3g23r0P/7aKtsLCWlhH+LwxCdYwOMcZa/M0QZonIfvXGBdH22HBjoJUoFamIC240Ftsv7e/+x73zZcSsE/K72Sq969/q91/XoVZnltpeOJAeWL7/gYxkieCApGKlhs/bZOBed6uM8oBX+0vhNthzYMvaJQgTo2AT3+FRNhGwFKO3Lt1m9bpbyNXk9Upn1F16EB6kzMFHDcK/mGgPqD9fe+3/f+xco4PQ8qb1N1f29d363Crr7pf3zbKt/9CdSNw0Htsv7eZ0DBIGXswF6lB0z1nMAGpaPrSukprWiiO/bxslW+SxLQ4wrrb+0ANQ2U7kdetn5bh9L7cdW7zwRlVnXeH2n5WjFTwBMS0MM+xOGJT7AQx4eV3jTK9sjPV9Ub62XKGPBvRF6Ww/SNVTd686q4fnMjZkSynP77zHzV+n1KwVJVfR65SdkrE7ThjyZXxXlcbRXktzFqAXpEuN76W992fTZcwUKHHv+uqk/ZTVFm5c27ypvz7O+wV/LFHZo+1/xg9WHXZ4crE+nZqeBqVT0y+iFl9vL5TxVlJBS0E9JplfHUmPWwnb8/03/lzwXKrC56U+lN6Krd58uOa/974LJUO07HRFyCrw6qfwxH2wwF6nHXZw0K/k2ZqvO4gvdVuU+zgh9b13WpKBZ99D++YRXkpzHXjWMw9fAa12f7KbOx5F6lcxurRTiPUHoQYQ8mRkZezhetMv5dzHo4D3F44hMs5HG8MhXOzlW4XmkDNkvBpUrvl2F//lPlLfrh//i99Ufmxfh7F1h/oxPU0RWvuViZJeZKwa+U3qhwptIO4v9UZtXNXqU7vujLORG9mZkCdVRMWjgN+O+tf7uvaVLwbYcWXUqPZi9RcJqCs5Xed2iz9fkmFSzvp/5xiVWItwmzM3jtw2nA76h4zUTldgLfU3oH5Y9Z9eOTSndmdvTjJRXlVJbzuJ/4p7Xs0btCO4IDr/lLZXYtV0on7/9PBbOt40plpjiU0k5B9OUcjNkM8b/FqIe9G3sHqCkVr7lKmSndXqVt5d9YOp2p9IDKnsbqVnBhLOW0N0PsRufmxfE39kNHQBWop6nUJkcq+D+O//ttCu5UOon/NKXbzHeV2Z2+TelBRfRltTdDTHJaSxye+ASL4BiqdNRmq8LYuH5Hr4L/paIerTqPq6w/tjqm+1/p+EHn1bz2QAU/UqbjqnRsVDphOb7/l0esP3ZbDPcejN4sTaEN+EE1r5+tTASn2rFM6aTUeLQYBmqz9cfOjuH+49Ebtil0BLCx6rUNCr6gTLSn2vE9pXO84tHDXtm4g3iSdWdhFhLU3oCyRcG/KtPRVzp2K738Oh4twKxsfCqm+8/HOBG1N0g9SsEv6tSNdxX8Rax62Csbr43h3kMxUfI3qbfnz7nKJO5XOxapqFMCnMc4TF0+IUbNnYc4PPEJFuHRorQxf1DpKMYfld6Abb7STkC8f78Fs+le1CtQnM7OfM/fO8T67Y8rHbb/g9L7b1yhwu6Y6+WwV2vtQM9FR3XfRujbIbYHP8+amaX0KqznlM49+L1VVz6q4or6OQ97tVa4ZzgNPCaB+qN177fwumlbk9KRru8pHSF9VcGLSke8op+mqHTYe67Mj/i+H8bkTHnfQXicgmuUXgTxhtKR4t8oHfFpjV2LgzER0ah3bP8qxnb8jefvTVd6ELlI6bayQmlH6GKlp4vj1eMyq7zriXYPmuHoPEuFjoZ62xy1QWkbcaeC31n14yWlV/rNVnEOou3DXpTxs5j/jn2IwxOfYIU6bkRXzFeJbj7+eozBiiNaEuex1Cr3v0d0v2ZMPkw3qE9k4Dd6PVoxHfEnI7rnUZjIzhqS3RYh7PFJTMczMaJ7fgqTlPsrCLHBYPLHv1vl/i3RTHsORi/HV9ZxXQZ+o9ejEdQbVrm/FtE9DwD1G+ue20F9MAO/0+txFGalYRKPMBKHJz7BCnU0Y5Jobw95r7HoZzAp6/jfGfh9fg87IVOhl2eHudexaEdSoTu1j2Xg9/k97KmLPxM+6nURJqL4J+pN62XzeM4q/0LCrdhqAnULpq49QrwJwHEckx3/n/8Y8l6t6NwUW48vZuD3+T3sTRn3gDol5L1Ow+RJbQX1gQz8Pr+HvSnjm8S/Z5M4PPEJVrjD3ndFoR8e6ff7Degk1w7rHrvxE4rO3nG79Tu2gfqLAN8fid551X5Ew7uEN4BpHU3oJzErdKJ1kL1GpoH6OaaOPUV8yZ1xH4ejpzwVqHsI5vScgZnSU+jVeoMD3CcLh73x3l6CPc29EdQX0J26QkfPooompnHYU9fr0Q8m9vv9/dAP39xr3ecV4ltEEfcxGr3oQYFajL3lRDyHODzxCVbIYz7GAN+Dt6XqI9Fz16sc310F6uQM/J4wx1DMaLML1H/HW4c0GdT/Qi/XtfV4mGQfSRDHcSiodkzOzWyP3zsJ1PcwuR7d6HB/Xjt3+/gUJlz/a1BTPXxnCHrl1WJM3WinXjJ/Po5/w+28eclhGYN2dN5yfPcFktv4M66jBTNA2IreO8iLU3yopZ29alGh286oDPymMMeJGGd2Jaj3x/R3xOGJT7DCHv+EGVlsQzs+F6Iz7Q9BjzTmoMPNj2DC2QrUFvSc+5AM/I4ojhGgHnP8vrfQ+218FL28/lD0E5vPQ+dBPevQTqGnsiovLc7ncSQm90aht9K/Bp1XcJh1nIIe5d+JO4Kh0Bs7BhnxZvW4AJPf1I1+EO/laGf/EHTHPRu9F8n/A7XBocVu9DL80Rn4HVEcDZjtJ5T1W+8EdT66jUxDt5mPolcx/Qqzs7lCR0OuIr7tD5I+9ke3D/v3rUYPhM5Et4FD0Tb1fFA3YfatsY+X0Kv20v4dUR1/gRkw7SWe3CxxeOITrNDHbMzOoV6O19Dz90k9VyfJowEd3fmzDz0Wo53Eohhv59EC6juYqbp6Rxd6tUbwJ59n+zgKHeHxWjfaQd2MXqWWdtnjOM4F9boPPVagN/wcuB9V/o9G9OKNbR616EVvrpjsU9eTO8ajHX+Fzk+K+v5e++8G60XpaW5uprOzk5aWFrZv3552cVKlAZgFnA+cAhwEtADdwDrgT8BSYBHwUkplTJIRwCeAs4ETgVZgCLAbeAd4FVgCPAm8m04RE2UicBG6jhwDHGC9vx14C1gBLAaeAjpTKF/SnABcAJwGHAKMBfYAG4E3gRfQejwL7E2lhMkxGDgLOA84GZgCjES3lTbgdeC36LqxOqUyJkkL8Em0JicAE9Aa7QTWAK+gbcdCoCOVEibL+9D9R9R47b/F4bEQh0cQBEEQ8ofX/ntQgmUSBEEQBEFIhUI5PFdddRVvvfUWu3btYtmyZcycOTPtIgmCIAiCkAEK4/BccMEFLFiwgG9+85u8//3v59lnn+Xxxx/nwAMPTLtogiAIgiCkTGFyeJ5//nleeuklvvCFL/S998orr/Cf//mf3HDDDXW/Lzk8giAIgpA/SpXDM2TIEE466SQWLlzoen/hwoWcdtppFb/T1NREc3Oz6xAEQRAEoZgUwuEZN24cjY2NdHS4F/Z1dHTQ2tpa8TvXX389nZ2dfUdbW1sSRRUEQRAEIQUK4fDYKOWenWtoaBjwns1NN91ES0tL3zF58uQkiigIgiAIQgo0pl2AKNi4cSO9vb0Dojnjx48fEPWx6enpoaenJ4niCYIgCIKQMoWI8OzZs4fly5czZ84c1/tz5sxh6dKlKZVKEARBEISsUIgID8Btt93G97//fZYtW8Zzzz3HlVdeyUEHHcR3v/vdtIsmCIIgCELKFMbheeihh9h///356le/ysSJE1m1ahXnnHMO775bhqcbCYIgCIJQi8LswxMW2YdHEARBEPJHqfbhEQRBEARBqIU4PIIgCIIgFJ7C5PBEhey4LAiCIAj5wWu/LQ6PhS2Y7LgsCIIgCPmjubm5Zg6PJC07mDRpUuQJy83NzbS1tTF58mRJho4Z0ToZROdkEJ2TQXROhrh1bm5uZt26dTWvkQiPg3pihWH79u3SmBJCtE4G0TkZROdkEJ2TIS6dvdxTkpYFQRAEQSg84vAIgiAIglB4xOGJme7ubr72ta/R3d2ddlEKj2idDKJzMojOySA6J0MWdJakZUEQBEEQCo9EeARBEARBKDzi8AiCIAiCUHjE4REEQRAEofCIwyMIgiAIQuERhydmrrrqKt566y127drFsmXLmDlzZtpFyjWnn346P//5z2lra0MpxXnnnTfgmvnz59PW1kZXVxfPPPMMRx99dAolzTfXXXcdL774Ip2dnXR0dPDII49w+OGHD7hOtA7H5z//eVasWMG2bdvYtm0bS5cu5eyzz3ZdIxpHz3XXXYdSittvv931vmgdnvnz56OUch3t7e0DrklLZyVHPMcFF1yguru71RVXXKGOPPJIdfvtt6vt27erAw88MPWy5fU4++yz1T//8z+ruXPnKqWUOu+881yfX3vttWrbtm1q7ty56phjjlEPPvigamtrU6NGjUq97Hk6Hn/8cXXppZeqo48+Wh133HHqF7/4hVqzZo0aMWKEaB3h8Vd/9Vfqox/9qDrssMPUYYcdpr7xjW+o7u5udfTRR4vGMR0nn3yyeuutt9TLL7+sbr/99r73Retojvnz56uVK1eqCRMm9B3jxo3Lis7pC1TU4/nnn1d33323671XXnlFfetb30q9bEU4Kjk869atU9dee23fv5uamtSWLVvUlVdemXp583yMGzdOKaXU6aefLlrHfGzatEn99V//tWgcwzFy5Ej12muvqQ9/+MPqmWeecTk8onU0x/z589Xvf//7qp+nqbNMacXEkCFDOOmkk1i4cKHr/YULF3LaaaelVKpiM23aNCZOnOjSvKenhyVLlojmIRk9ejQAmzdvBkTrOBg0aBAXXnghI0eO5LnnnhONY+Cuu+7il7/8JYsWLXK9L1pHy2GHHUZbWxtvvfUWDz74INOmTQPS11keHhoT48aNo7GxkY6ODtf7HR0dtLa2plSqYmPrWknzgw8+OI0iFYbbbruNZ599ltWrVwOidZRMnz6d5557jmHDhrFjxw7mzp3LH//4Rz7wgQ8AonFUXHjhhZx44onMmDFjwGdSn6PjhRde4HOf+xyvv/46EyZM4Ctf+QpLly7lmGOOSV1ncXhiRinl+ndDQ8OA94RoEc2j5Tvf+Q7HHXdcxYR70To8r732GieccAJjxozhk5/8JA888ACzZs3q+1w0Ds+UKVP413/9V84666yajzYQrcPzxBNP9L1etWoVzz33HG+++SaXXnopzz//PJCezjKlFRMbN26kt7d3QDRn/PjxA7xbIRrWr18PIJpHyB133MG5557Lhz70Idra2vreF62jY8+ePbz55pssX76cG264gRUrVvD3f//3onGEnHTSSUyYMIHly5ezZ88e9uzZw+zZs5k3bx579uzp01O0jp6uri5WrlzJYYcdlnqdFocnJvbs2cPy5cuZM2eO6/05c+awdOnSlEpVbN5++23a29tdmg8ZMoRZs2aJ5gG48847Of/88znjjDNYs2aN6zPROj4aGhoYOnSoaBwhixYtYvr06Zxwwgl9x+9+9zt+8IMfcMIJJ/DWW2+J1jHR1NTEUUcdRXt7eybqdOpZ3UU97GXpl19+uTryyCPVbbfdprZv364OOuig1MuW12PkyJHq+OOPV8cff7xSSqkvfvGL6vjjj+9b6n/ttdeqLVu2qE984hPqmGOOUT/4wQ9kaWmA46677lJbtmxRH/zgB13LS4cNG9Z3jWgd/vjmN7+pZs6cqQ4++GA1ffp09Y1vfEP19vaqM888UzSO+ei/Sku0jub4l3/5F/XBD35QTZ06VZ1yyinq5z//udq2bVtfv5eyzukLVOTjqquuUm+//bbavXu3WrZsmWtZrxz+j1mzZqlK3HfffX3XzJ8/X61bt07t2rVLLV68WB1zzDGplztvRzUuvfRS13Widbjj//7f/9tnHzo6OtSTTz7Z5+yIxvEe/R0e0Tqaw95Xp7u7W7333nvqpz/9qTrqqKMyoXOD9UIQBEEQBKGwSA6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwiMOjyAIgiAIhUccHkEQCs/tt9/OI488knYxBEFIEXF4BEEoPDNmzODFF19MuxiCIKSIPEtLEITC0tjYyM6dO2lqaup774UXXuDUU09NsVSCIKRBY9oFEARBiIu9e/cyc+ZMXnzxRY4//ng6OjrYvXt32sUSBCEFxOERBKGwKKWYNGkSGzdu5A9/+EPaxREEIUUkh0cQhELz/ve/nxUrVqRdDEEQUkYcHkEQCs0JJ5wgDo8gCOLwCIJQbI499liZzhIEQRweQRCKzaBBgzjuuOOYOHEiLS0taRdHEISUEIdHEIRC85WvfIULL7yQdevW8dWvfjXt4giCkBKyD48gCIIgCIVHIjyCIAiCIBQecXgEQRAEQSg84vAIgiAIglB4xOERBEEQBKHwiMMjCIIgCELhEYdHEARBEITCIw6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeP4/cZ4Fv1Dm5tcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGwCAYAAACtlb+kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACF10lEQVR4nO2deZgdVZn/P72lA53OAlk6CSFhCwHCYgLEKJBAQEHAiCigzAiOOiriNqMsIyODMjDiCPgjUUdEZHHAEUQRhAAqQSQJEiSEJUEhCdBJd8jWnbWX9Pn9car63Orcpapu7fV+nqeeurldt+6535zznve85z2nagCFIAiCIAhChqmNuwCCIAiCIAhhIw6PIAiCIAiZRxweQRAEQRAyjzg8giAIgiBkHnF4BEEQBEHIPOLwCIIgCIKQecThEQRBEAQh89THXYAkMW7cOLZu3Rp3MQRBEARB8EBzczNr164te404PBbjxo2jtbU17mIIgiAIguCD8ePHl3V6xOGxsCM748ePlyiPIAiCIKSE5uZmWltbK/bd4vAMYOvWreLwCIIgCELGkKRlQRAEQRAyjzg8giAIgiBkHnF4BEEQBEHIPJLDIwiCIAgJp76+nrFjx1Jbm684hVKKDRs2sGPHjqrvJQ6PIAiCICSY0aNHc+211zJ48OC4ixIbTz75JLfffjtKKd/3EIdHEARBEBJKTU0Nn/70p9m2bRv//d//TVdXV9xFipT6+nqmTJnCeeedB8BPf/pT//cKqlCCIAiCIATL8OHDmTJlCj/4wQ947bXX4i5OLLz++usAnH/++dx7772+p7fyNRkoCIIgCCmiubkZgPXr18dcknhZsWIFACNHjvR9D3F4BEEQBCGh1NTUALB79+6YSxIvvb29gNHDD+LwCIIgCIKQecThEQRBEAQh84jDIwiCIAhC5hGHJzc0xF2AhCFVXxAEIU+I1c8FZwPdwD/HXZCE8P+AjcBhcRckATQAS4E/AXUxlyUJTAE2Ad+MuyAJ4VPotjI75nIkhbuBVwH/K4WyQy1wBHBA3AVxjTg8ueAG6/w/yH85wBeB4cDtMZcjCRwBTANOAD4Sc1mSwKeBEcA1wNiYy5IE/gfYB/hj3AVJAI3AhWin+NuxlmTvmA4nzcBgdP0YUrScb731Fp///Ocd782cOZPt27ez//77+/rt1SC9X+44Ne4CxMzogtcz0I02z0wteP2F2EqRHMYUvP50bKVIDoVLgGfEVopkMKXg9cdwahMdewPbYzqcTk/hYy5GU4wlS5Zw3HHHOd67+eabuemmm3jzzTc9//ZqEYcn8zQABxb8e3pcBUkIRw349yGxlCI5HFnwekrJq/JDoQM4ObZSJINROLuIvOtRWDeGofXJM3sVvC7+jK/Fixc7HJ5//Md/ZMKECVx//fUAnHnmmaxYsYLXXnuNT33qU2EWFpBHS+SAKcCggn+Pj6sgCWGgw7Mf8HwcBUkIhUZ8FDpsn69n9RjqcDp9+8VVkIRwxIB/ix5OJgDR7368A2iK/FvNdxsKHZ7ii2IWL17Mf/3Xf9HU1IRSiuuuu46rrrqK7du3U1dXx4033sjJJ59MR0cHS5cu5YEHHmDTpk2hlV8cnswz0MHJu9GaMODfeXcADxzw7/HAG3EUJAGMwzlSzXtbOWjAv0UPJ/uhE/6jx9+TpIKmseB1PToa2Oe4YunSpfT19TFt2jROPfVU3nnnHW6/XedOHn/88bz88susXbsWgEceeYT3ve993HvvvaGVWByezLPvgH/nvYPfZ8C/827Ei+mRV4dH6oaTgXoMHCzkDakfTgau6mxgYHR4586dLF++nHPPPZfPfOYzfOADH0ApBcC4ceNobW3tv7a1tZXx48PtnySHJ/PYDo/9lN28Ozy2Hiutc971sI24rUeejbitxd+s82DyvfzYbisrrHOe6waY+mHrkWcHsDBWsss6Dyp2IYsXL+aLX/wiCxYsYOHChaGXrBzi8GQeu5G+aJ3HkO/A3kA98mzEmzF1QfQwdaPNOkD0AKkbNqKHwY7u7Ebv8QalHJ5ly5bR09PD17/+dcf7a9eudUR0xo8f3z+9FRbi8GSewohGN/q/PM/7i9h62EYrzxEe24DvxEQ18mzEbT02AW9br0UP01ZGUWo1Tj4Qh8dgD5R6MQ5P8cTlCy64gHnz5vH666873n/22WeZOnUq48aNo6mpiTPOOIMFCxaEVmLI91A/J9gd/AZgLTAJ3cm/FVeBYkaMlqFYB5/nMH2hHgo4FtED4HV0muzeaNvxeslPZJd6YKj1epl1znPdKIzw9FivTYSnpqaGUaNG8alPfYpDDjmEuXPn7nGH3bt386//+q/88Y9/pLa2lhtuuCHUFVogDk8OsI3WRozDk9cITw16F12Al63zEPQiz+2xlChebGd4I2YKJ897ixQ6PHbyZZ5zeAptRxt6Rd8o8unw2HajD5MPmee6URjh6RnwHpx00kn84Q9/YMWKFZx77rls3bq16F1++9vf8tvf/jbUkhYiDk/mKezUNlivB642yAvDMCOTt9CdWiPamOXR4Sns4DcNeC+P2G2l0OHJsx4D68eB5FcP+3dvAd6xXg9Fd6G9cRQoZgodnt4B78HChQupq0ves/kkhyfzFDo8m63XeTVathZb0fPOee/kxeFxUhjRED2kfhRSqEUHZr+ZEcUvzzyFU1q7B7yXXMThyTzDrfNmxGjZv9t2/EQPjXRoGtHD0IjZz1f0cNaNPnSkp/D9vFE+wpNUxOHJPPZTbLciRsvWotM65z3iZSdhdmLqRgOlnnycfYZZ50I98l43QOtht5W8RjSGW+cO65x321EY4RGHR0gEgzBLBbcjRssesdr5Onnv1GzHZht6abq9gVhe9bDrxzakbhS2FYXoUVg3QPSwXYc+zJRWLXE9Qd4t4vBkmsKR+nakkRZ28GD0EAdQk/f6UahH3rWw24rUDY20FSfFcngK308m4vBkGruR7kJXyrw3UjFaTko5gKKHaCFtxYm0FSeFER5Iy7SWODyZZmAjzfuUlhgtJ9KpOSnUw24r9ehHcOQNaStOpK04GejwpGOlljg8mUYaqZOBeuQ98bBUXkIeHeJGjLHeho6K7rD+ncf6IbbDiejhxHYdbEdHIjxC7JQapdkbZuUNGbU6kTwNw8B8N8i3HtLBOxHb4cQeHMiUlpAYBjbSLQV/y+MoXjp4J9KpGQrz3Wwjnmc9yiX4J3slTjhIW3EiU1pC4hjYSAs3zMqjwyNLS52U6tT2LXJt1hmoBeRbj1IdfB3OPXryQik98lg3wG3S8ltvvcXnP/95x3szZ85k+/bt7L///qGWsBji8GSaYkY8z3krAyM8W6zzsD0vzQUDjbi9qZp0aBrRw9iObvReTZDP9jLQdsRdN/aO6QAd4bOjfLsHnJ0RniVLlnDcccc53rv55pu56aabePPNN/3/fJ+Iw5Npihlxe5fhPK48GWjEC7XIc5h+oB7SwWvyrMfADh70bu0gtgPirRt7o/9f4jj2xuk2lJ/SWrx4scPh+cd//EcmTJjA9ddfD8CvfvUrNm3axC9/+Uv/cnhAHJ5MUyzCI0bcGHFbi1qMQcsLA3fhBqkbUHxwkEc9yg2WRI98a2G7DargvdIOz2GHHUZTUxN777031113HVdddRXbt2sdv//97/OJT3wi9BLbJDulWqgSMeJOBo7SdqHnnu29VrYV+1BGKXTwxIgX7+AloiGDJZuBttSuG01oB6Bvj0+Exw7iG6DtAAZbrwt3WLZ/vzOGsnTpUvr6+pg2bRqnnnoq77zzDrfffnv/3xcuXMisWbPCLLADcXgyjRgtJ6UcwH3QeqyLvETxYdeNLkzCoW3E81g3pK04kcGSk1JTWqAd4g6iZUflS0JjYMIylIrw7Ny5k+XLl3Puuefymc98hg984AMopYgLmdLKNDIP70TC9IZyHVoe64Z08E6krTgZqEc3erAA+dNj4KaDha/3XJa+ePFivvjFL7JgwQIWLlwYduHKIg5PprFDjzsL3suz0bJXGRSOjvKqh3RoTkQPJ6KHoQGd8waiB3iJ8AAsW7aMnp4evv71r4ddsIrE7vB87nOfY9myZXR0dNDR0cEzzzzD6aef3v/3xsZG5s2bx4YNG9i6dSv33Xcfo0ePdtxjwoQJPPTQQ2zfvp329nZuuOEG6uqSvQFSNOxlncXh0YgDaCinRR6TuKVuOLFtR7HBQd4igIMLXkv98OrwXHDBBcybN4/XX3897IJVJPYcnrfffpsrrriCv/3tb9TU1HDRRRfxm9/8hne961288sor3HTTTZx55pl89KMfpaOjg3nz5vGrX/2KE044AYDa2loefvhh2traeM973sPYsWO588476enp4Rvf+EbMvy5u7Ia6q+C9vDZSKK9HXo14oRY7MUncQ3GOZrOOODxOitWPvOZ47VXwuqvgdV7rR7FVWs6k5ZqaGkaNGsWnPvUpDjnkEObOnVv0To8//jhHH300TU1NvPXWW3z0ox9l8eLFoZXcLnWijo0bN6p/+qd/UkOHDlVdXV3q3HPP7f/boYceqpRSasaMGQpQp59+uurt7VWjR4/uv+azn/2s2rJli2poaHD9nc3NzUoppZqbm2P//cEdf1SgFHy04L1PWu/9NgHli/JosH63UjCs4P17rfcuTUAZozzOsn734gHvb7TePzQBZYzy+H/W7/5WwXvHWu+tSUD5oj5WWL/9hIL3/s1678cJKF+Ux/7W794x4P0nrfc/Eur3T5w4Ud15551q4sSJCdACBSMVTFdwUMF7NdZ70xXUqlmzZqndu3erl19+WR1//PGh6+C2/459SquQ2tpazj//fJqamli0aBHTp09n0KBBPPHEE/3XrFy5kjVr1jBz5kxAb1O9fPly1q9f33/NggULGDZsGEcccUTJ7xo0aBDNzc2OI3vIKM1QGJaWiFfxugFSPyT6p5HpcIO0FSf2Jq2FU1q2TwFQx8KFC6mrq+OII47g2WefjbZ4ZUiEwzN16lS2bt1KV1cXP/rRjzjnnHN49dVXaWlpoauri44O55K/9vZ2WlpaAGhpaaG9vX2Pv9t/K8WVV15JZ2dn/9Ha2hrwr0oCttGSDl7C0gMp1qFBfjt56eCdyHS4oVJbyZsexaa0IA0PEE2Ew7Ny5UqOOeYYZsyYwQ9/+EPuuOMODjvssFC/8/rrr2fo0KH9x/jx40P9vniQvARDMS1A9Bg4ahU9DLYWdZgVfnlBHB6DtBUnxZKWIQ0OT+xJywA9PT39GdzPP/88xx13HF/+8pf5xS9+QWNjI8OGDXNEecaMGUNbWxsAbW1tHH/88Y77jRkzpv9vpeju7qa7uzvon5IwykV4ZASvyavREiPupJgeO9BG3H5CeJybvUVNuYhX3myHtBUnxaa0wDg8iYijFCWRJautraWxsZGlS5fS3d3NnDlz+v82efJkJk6cyKJFiwBYtGgRRx55JKNGjeq/5rTTTqOjo4NXXnkl8rIni2JRjbzOO1cyWnkz4uIAOimlRx7bSx3mOWsS4Yk7OmzvTJycrVZKTWnZDlA45ayv1/GZanZqjj3Cc9111/HII4/w5ptv0tzczMc//nFmz57N+9//fjo7O7ntttu48cYb2bRpE52dndxyyy0888wzLFmyBIDHHnuMV155hbvuuovLLruMlpYWrr32WubPn5+DCE4lyoWlG9GbaeVFI+nQnEgippNyDvFw8qVHY8FrWfBQPFIOUTk8W7dq3UePHs0bb7wR6ne5I54prSlTpgCwYcMG3/eI3eEZPXo0d955J2PHjqWjo4MXX3yR97///f0rs7761a/S19fH/fffT2NjIwsWLOCSSy7p/3xfXx9nnXUWP/zhD1m0aBHbt2/njjvu4Jvf/GZcPylBFOvktxa8Hgr4rzzpQsLSTkQPJxIBNBQm+EuEJ+66sWXLFlasWMF5553Hpk2b6OrqqvyhUBmPHgSA2YEaYAwwDB35GUJQ1NfXM2XKFM477zyefPJJduzwP7Ucu8Pz6U9/uuzfu7q6uPTSS7n00ktLXvPmm29y5plnBl20lFMqLN2HfgDeEMThgfwacVml5USm+Ax2W+nGOYq3tahH6zVQq6xSakormoiXUopbb72V//zP/+Sqq64K9bvcMRK9E/smnAPofdB2YwthPEz1ySefdDxp3Q+xOzxCWJTaDh204RpCvjo16dCciAPoRPQwlNJiO9oBqkXrkReHJ94pLYB33nmHSy65hJaWlgTk8swDjgf+HfhlwftfAz4N3AZ8N7BvU0qxYcOGqiI7NuLwZJZSG+1BPufipUNzIno4ET0MpQYH4Mxpai/y9yySjLrR29vL22+/Hcl3lacerUkbsKbg/Xbr/foB7yeHRK7SEoLANlpd7JlNL0bcYGsxGDMFmAckiduJ6GEo1cFDPqc8ZQ8vJ/FHvPwiDk9mcWO0klsxg6eUHtsKXufRiKfPaIWD6GEoZzvy6ACmt4MPh/Q6gOLwZJZKYWnIVwdfSo/dmKeCJ7ehBk96jVY4VOrUpK1o8lg/KjnD9ThTCLJOegcH4vBkFhmlOZGIlxPp4A2F+86IAyhtZSClBgd2EjfkS4/0RrzE4cksMkpzIno4Se8oLXjKJfjnWQ9xeDSlOniFmRLPkx6VosPJHSyJw5NZxGg5kURMJ5WSdPciP0ncdt3oA3oG/C2P0VAZHDgRW+pEIjxC4pAO3okYcSeVHi0B+akfUjeciO1wUiqiAVI/Ckn+4EAcnsxSyguHfDfSYtuyJ7+hBk8po9WLeSp4XvSQEbwT0cOJ2FInlaa0BuHMi0sO4vBkFrvCSQevsfUQo6WRTs0gWjgp18Hn0XZI/TCUemQROLf4SKYe4vBklnIOT94aKYgeA5FpC4No4UQGB06kfhgKIzcDbaki6fVDHJ7MYj/FVjp4jTg8Tmw9uov8LW96uNFib/LzJB5pK06krRjKOTyQdD3E4cksboxWXkYlIEZ8IOUc4rxNW7jRAvLTXqStOJG2YrDrxm7rGEiy9RCHJ7NIDo+TcnrYc8956dAGFbwuVz/yoke5utGLmcrIix52/SgW0chbWwF3tjQvepTTAoweQyIoi3fE4cksbhppMitlOJQLS+fVaIEYcXBvxEWP/GkBokch5ewoJF0PcXgyi5tGWofOTcgDbsLSeXEACx0ecQDF4RmIDJaciMNjKGdHIel6iMOTWcp54jsKXiezYgaPGC2DrUUPemXFQPI2bVFp1JpXPcTh0ZSrH1I3nCTblorDk1nKVUxF/gyXODwGt6M0qRuavOpRLvpXCzRFU5zYkeiwQRweIZGkO/QYPOLwGNJttIJH2oqTcnrsxKzOyYseYjsM6Y6GisOTWaRTcyKrtAxSN5yIHk4q6ZGn9lKD2VlYHJ60R4fF4cksYsSduAnTDyYfm8tJ3XCS7pUnwSP1wyArGp2ku26Iw5NZ0l0xg8ft5nLJHJkES7l9ViB/dUPaihPJaTLIikYn6W4r4vBklnRXzOCRzeUMUjecyBSOE3GIDYWbdJZbpTVowLVZJd22QxyezJLu5LJgqcdU9XQ21GCRDt5JuvMSgifdnVqwuNUC8lE/0u0Mi8OTWcSIGyrNw0PSG2qwyJSFE+ngnYgehkpa7EavXAPRA5I+WBKHJ7OI0TK4cXiS3VCDxW2Sbt4cnnSOWoNHbIehkhYgehSSbNshDk9mEaNlKHzCb1+Ja/Kkh9voX142l5O24kSmww2VtIB81Y90txVxeDJLuitmsFTq4CFfelSqGzvI1+Zy0lacyHS4QWyHEy/R0Jrwi+MRcXgyixhxg5ewdB6MuBs98jiKl+lOjdgOg7QVJ26dYUhidFgcnswiYWmDzMM7ESPuxO3Kkzw4wyAOTyFiO5xU0mMXepsPSKIe4vBkFjFaBjFaTrzkJeShk5e2YijcS0b0kOjwQNI9WBKHJ7PIPLzBTQef3EYaPJKX4MStw9OIea5SVqm00R5I3RhIHvVI52BJHJ7MIqNWgxgtJ6KHEy+by2VdD9nCwYms0nKS7sGSODyZpBbzEExxeNLeSINHHB4nsrmcwdaiB1AlrknuCD54xHY4SbftEIcnk3jZWTgPRkvm4Z2k22gFT6WkZchPVEPqhpN056wET7rrhzg8mcSLw5OHzeXS3UiDR8L0TsQhNkjdcCK2w0m69RCHJ5MUOjy9Ja7Zgdl1OHkVM1jS3UiDx02Y3h61Zr2DB6kfhXidwkne5nLBIs6wk3RHQ8XhySR2pdxV4bq8dGqySsuJdPBORA+DFy0gP9FhiXhp0u0AisOTSdyM0iA/DVUSD51IB+9E9DC40WIX+Xn0iNgOJ+luK+LwZBI3YUdIcsUMFjFaTtzUD9HDSV708Go7kjeKD5Z0d/DBk+6IV+wOzxVXXMGzzz5LZ2cn7e3tPPDAA0yePNlxzR//+EeUUo7jhz/8oeOaCRMm8NBDD7F9+3ba29u54YYbqKuri/KnJAhxeJx46dDytLmcGHGow5hBWYkj0eGBeMl3y7oWkHbbUV/5knCZNWsW8+fP5y9/+Qv19fVcd911PPbYYxx++OHs2LGj/7of//jHfPOb3+z/d+Hfamtrefjhh2lra+M973kPY8eO5c4776Snp4dvfOMbkf6eZCAOjxMvDg/oUevm8IoTOxLRMLjZWRjyE9EQ2+FE2oqTdOsRu8NzxhlnOP598cUX88477zB9+nT+9Kc/9b+/Y8cO2tvbi97jfe97H4cffjinnnoq69evZ9myZfz7v/873/nOd/iP//gPenp69vjMoEGDaGw0q5mam5P3n+MfN2FHyM/IxE0jtTeX2wutR94dnrwktHt1eKStaEQPg61Fg3V9Je3SjKzSCpRhw4YBsGnTJsf7F154Ie+88w7Lly/nuuuuY6+99ur/28yZM1m+fDnr16/vf2/BggUMGzaMI444ouj3XHnllXR2dvYfra2tIfyauBCj5cStHsltqMGS7lFasBQ6PHsOjAx500Nsh8ZLBw+iByS5bsQe4SmkpqaGm2++maeffpqXX365//3//d//Zc2aNaxdu5ajjjqK73znOxx66KGce+65ALS0tOwR/bH/3dLSUvS7rr/+em688cb+fzc3N2fI6ZHEQyde9BhFEhtqsKTbaAWLdPBOJDrsxG10eAewN1qPjWEXKka82I7k9SuJcnjmz5/P1KlTOeGEExzv33rrrf2vX3rpJdatW8cf/vAHDjzwQN544w1f39Xd3U13d1ZDj2LEnYgeTrw6PDWUfq5S2pG64UQGS0686GE7PFkm3YOlxExp3XLLLZx11lmcfPLJFSMtS5YsAeDggw8GoK2tjTFjxjiusf/d1tYWQmmTjhhxJ6KHE69J3FneXE6mO51IW3Ei9cOJODxVc8stt3DOOedwyimnsHr16orXH3PMMQCsW7cOgEWLFnHkkUcyatSo/mtOO+00Ojo6eOWVV8IocsIRo+VERq1O3Oixk3xsLidtxYno4UT0cOJ1SitZjx6JfUpr/vz5fPzjH2fu3Lls3bq1PzLT0dHBrl27OPDAA/n4xz/O7373OzZu3MhRRx3FTTfdxMKFC1m+fDkAjz32GK+88gp33XUXl112GS0tLVx77bXMnz8/w9NW5ZBG6kT0cOJFj+Fk2wEUZ9iJtBUnUj8MhfuTudmXCLQeW0tdGDmxR3guueQShg8fzsKFC2lra+s/zj//fEDn2px66qk89thjrFixgu9973vcf//9nH322f336Ovr46yzzmL37t0sWrSIu+++mzvvvNOxb0++kDCsE9HDiSSmGqSDdyJ6OBE9DG63cNiFeWh1svSIPcJTU1M+5PX2228ze/bsivd58803OfPMMwMqVdrxultqlkclIEZrIKKHQbRwIoMDJ1I/DG4dHtB6jCBpfUvsER4hDKSROhE9nIgeBq9aDMJp+LOG1A0noofB1mI30Ffh2mTqIQ5PJpFG6sTtFE4e9Cichxc9vEc0QPQAiQ4PRNqKk2TqIQ5PJpFG6kT0MHgNS0M+9Kikhf3oEciHHvLwUI1M8RnE4RESiZ8OPlnLB4NFRq0GPw5PHvTwYsRFj6R2aMEjtsPgpa0k0wEUhyeT+AnTy+ZySW2kwWJr0YfZZ6cUedIjvaPWYBGHx4noYUh/WxGHJ5O4rZg7kM3lCklmIw2W9ButYBE9nHgdHCRvc7lgEdthSH80VByeTOIn9JisihksYrQM0sE7ET2ceG0rILYDpG4MJJl6iMOTSdJfMYNFjJbBbVIq5EuP9OYlBItbPQo3lxOHR9rKQJKphzg8mST9FTNYxGgZpG44ET2ciB6GWszevJL/l4W6IQ5PJkl/xQwWP5vLNZS7MMWkfx4+WNzu0QT50ENsh8HPnlVSNzTJdADF4ckkYrScyOZyBqkbTmSKz4nUD4PsWeUk/XVDHJ5Mkn5PPFhkczmD1A0n6TfiwSL1w1Do8PRUuNauGw2YqGHWSH90WByeTCJheoOXeXjIfqcmHbwT0cOJ6GGwtegBVIVrJTrsJJl1QxyeTJL+ihkcXubhIft6SN1wIhENJ+kfxQeHFy36gO3W66zWDz8D6WRpIQ5PJpFOzeBlHh7yo4fXDi2rm8tJW3Eiehi8aAHZd4jTXzfE4ckk6a+YweFlHh7yo4eXugHZffSIRDSciO0weHV4sl4/0l83xOHJJOmvmMFha9GLDjtXIus7T3upG4Wby2W9fkhb0YgeBi9TOJB9PfxM/zaRJDcjOSURAkTyEgx+R2mih0bqhyHrdQPEdhQitsNJ+qPD4vBkEjHiBjFaTkQPJ9JWnIgeBmkrTrzo0YVJIUiOHuLwZBLJSzB42VgOxGgNRPQwZD2iATDYOovtkLYykPTrIQ5PJpHdYw3pb6TBIno48TM4yOrmcvUFryXCI9O/A0m/7RCHJ5NIWNqQ/kYaLLLyxImfCA9kUw/ZwsGJ2A4n6ddDHJ5MIg6Pwe8oLYsdGmTBaAWLFz12Azus11nUQxweJzI4cOI1PSB5ES9xeDKJbC5nkKWlTkQPJ+IAGgodnt6SVxmS16EFi9QNJ+l3AMXhyRx1mP9WCdOL0RqI5CU4kfphkAR/J1I3nKRfD3F4MofXsPROdKgeklQxgyP9jTRYRA8n4gAa/NaNZG0uFxzSVpykX48s1tKc49XhgSSGHoMj/Y00WEQPJ6KHwa8WkKTN5YJDnGEn6W8r4vBkDq/z8JDEihkc6W+kwZL+efhgET0MXqe0krm5XHCI7XCSfj3E4ckcXo0WJLFiBoeM0pyk32gFi+hh8KoFiB6FZNkZhizYUnF4MocYLSd+jVYDzmhZVpAO3onoYfBjO5LXqQWH1A0n6ddDHJ7MIQ6PE7+jEhA9INt1A0SPQsR2OJFVa07SH/EShydzyCjNiVc98rK5XHo3DwuOGnQkD9Icpg+Oahye5HRqweG3g6/HPJMsS6R/cCAOT+YQo+VERq1O0m+0gqOh4LXoIW1lIF712F7wWvRIYt0QhydzeN1JF5JYMYNDjLiT9Ielg0O2cHAibcWJVz36ME6P6JHEuiEOT+YQo+VEpvicVOPwZO3RI9U4PFI3NKKHE3GIDcmzo+LwZA4xWk7EaDmpZnO5rOlha9GLHp27QdqKE9HDiehhSJ4W4vBkDmmkTkQPJ171yPLmclI3nEg01InUDyd+HZ69SYqrkYxSCAEiRsuJGC0nUj8MooUTiYY6EdvhJP3RYXF4Moc0UieihxPRwyBaOBE9nIhD7MSrHt0F1yZDD3F4MoeM0pyIEXci9cMgWjiRtuJE9DDUWQekWY/YHZ4rrriCZ599ls7OTtrb23nggQeYPHmy45rGxkbmzZvHhg0b2Lp1K/fddx+jR492XDNhwgQeeughtm/fTnt7OzfccAN1dXXkD3mWlhMZpTmpxogPDbgscVONFg1kb3M5qRtO/OjRaZ2zZjv8rGiEpPUtsTs8s2bNYv78+bz73e/mtNNOo6Ghgccee4y99967/5qbbrqJs88+m49+9KPMmjWLcePG8atf/ar/77W1tTz88MMMGjSI97znPVx00UVcfPHFfOtb34rjJ8WMGC0nfvTosM6ih8Y24lnTo5q2AqIHZLdugOhRiF+Hx9ZjWIBlqQ6VpGPkyJFKKaVOPPFEBaihQ4eqrq4ude655/Zfc+ihhyqllJoxY4YC1Omnn656e3vV6NGj+6/57Gc/q7Zs2aIaGhpcfW9zc7NSSqnm5ubYNaju+IoCpeAuD5+ZaH1mRwLKH/TxO+u3fcLDZz5jfeY3CSh/0Eev9dvGePjM/1mf+UICyh/kcYr1u5Z5/FyH9blDEvAbgjz+y/pd3/XwmeOtz6xKQPmDPp63fttpHj5zlfWZ/0lA+YM8Rlm/S3n83FPWZ86t8vvLH27779gjPAMZNmwYAJs2bQJg+vTpDBo0iCeeeKL/mpUrV7JmzRpmzpwJwMyZM1m+fDnr16/vv2bBggUMGzaMI444ouj3DBo0iObmZseRDaqJaOyFc7v9LFCNHsMCLkvc1OJvHj6revipGyB6FJJVLUD0KKTatpKMiFeiHJ6amhpuvvlmnn76aV5++WUAWlpa6OrqoqOjw3Fte3s7LS0t/de0t7fv8Xf7b8W48sor6ezs7D9aW1uD/jkxUU0YFrLXUP08aiPrRgtkig/E4RlINW0la3UDqrOlWasb2WgriXJ45s+fz9SpU7ngggtC/67rr7+eoUOH9h/jx48P/TujwU/F7MPkJiSjYgaH5PAYqnV4pG5osl4//NSNOqAp2OLEjkR4DOLwBMott9zCWWedxcknn+yItrS1tdHY2Ng/1WUzZswY2tra+q8ZM2bMHn+3/1aM7u5utm7d6jiygd+KKSMTQ7IaaXAUOjw9Ja/ak6zrkW4jHhx+9NiJfjQHiB4gdWMgyepXEuHw3HLLLZxzzjmccsoprF692vG3pUuX0t3dzZw5c/rfmzx5MhMnTmTRokUALFq0iCOPPJJRo0b1X3PaaafR0dHBK6+8EslvSA5ixJ2I0TL4mbKApBmt4JC24kT0cCLRYUM26kZ93AWYP38+H//4x5k7dy5bt27tj8x0dHSwa9cuOjs7ue2227jxxhvZtGkTnZ2d3HLLLTzzzDMsWbIEgMcee4xXXnmFu+66i8suu4yWlhauvfZa5s+fT3e31/+gtJONihkc1RitevRzYHYEWqL4kLrhRPRwUo0e+yJ6QPbrhpf93SBpDmDsDs8ll1wCwMKFCx3vX3zxxdxxxx0AfPWrX6Wvr4/777+fxsZGFixY0P85gL6+Ps466yx++MMfsmjRIrZv384dd9zBN7/5zeh+SGKQvAQnfvTYDuxG5yUMQxyerBpxiXg5EdvhpNqNB2vR+ZFZIBu2I3aHp6ampuI1XV1dXHrppVx66aUlr3nzzTc588wzgyxaSslGxQyOauaeR6D1WBdoieJDOjQnoocTsR1Oqlm1Brp+bAmsNPGSjbqRiBweIUjsRuolKRWSVjGDQzo1QzaMVnCIHk5ED0NhLMCLHt3ALut1lvSQpGUhkVQ715qMihkcYsQN1RqtZqByRDY9SN1wko1OLRj8buEAMlgqJFltRRyezGFHeMTh0YgehmqNVi1JeQhgMGTDiAeH6GFoLHgt0XJTN9KthTg8mUOMlqEG86gMcXj8O39dBZ8RPbJZN0D0KMS2o32YfYbcksWIV7V1IxmPLRKHJ3P4rZhZbKTVhKWzrIefrRokTG/IYt0AyXcrxK8dhWw6gNX2K5CE+iEOT+aQUZqhMCyd7v0jgkGMuJNq20qW6gaI7ShE2ooTv85wH7DNeh2/HuLwZA4ZpRmCSDyMv5EGRzVGPItRjWrbShMJ2NkjQCQ6bJBoqJNsOIDi8GQOGaUZCpfoK4+fzaIeQRjxLOmRjTB9cEj+nyEbHXxwZMN2iMOTOcRoGfwu0Yds6iFG3IlfPXrRu3GD6AFSNwaSxYhXELYj/sGBODyZo1qjNQT9SIUs4PfRASBGfCBZ1CMbo9bgkJwmg9QNJ9mwHeLwZI5qNx6E7BiubDTS4JC8BCdBjOKzokfhFg4SHRbbMZBqbEdyIl7i8GQOv1GNXsxDMuOvmMEQRCPNSocGYsQHInoYChP8/eY0NeJcGZlmJMLjJBttRRyezJGNihkMooWTbIzSgkM6NUM1Kxq3Yp4KnhU9spGzEhzZsKXi8GQO6dQMkrTsJBtGKzhED0NhZMar7VBopweyp4fUDU02psPF4ckUdZiEYxmZBJO0PBjn6DfNiBF3InoYCtuK1y0cIHu2QwaOTrLRVsThyRTVhKUhSRUzGKpppFsLXmdFj2yM0oJDprQM1WgB2dNDprScVBMtT44DKA5PpqjmUQqQPaNVTSPtI0kNNRiyMUoLDlmlZahGC5C2UojdVurQ23xkgWxs8SEOT6awK6WfJ/xCkipmMFTTSCF7nZqE6Z1IhMdQrcOTNT2qqRs7MPY3K7YjG4MlcXgyhYSlnYgRd5INoxUcoodBbIcTsR1OsjE4EIcnU0gjdSJG3EkQHXw9sHcwxYkdcXgMYjucyBSfk2zkNInDkymkg3ciRtxJNfVjOyZML3pkr24E1Vbi79SCQWypk6Dy3eJ1OTx9+3777RdWOYRAkA7eSTVJy5A9PYIatWahU5MtHJxU28FLRMNJ1mxHEIMDgOYAyuIfTw7PihUruOaaa9hrr73CKo9QFUF18Fkx4tUmLWdVDwnTV7+iMUtagHTwA5GIl5Nq9OgGdlmv460fnhye0047jfe///387W9/46KLLgqrTIJvglqVJEZLkzU9JExvCGrPqmb0gzfTjtQNJ6KHk2w4xJ4cnkWLFvHud7+bK6+8km9/+9s899xznHDCCWGVTfBMNiplcMiUlhOpH4agtnCoJe4wfTBI3XAigyUnQTmA8Ua8fGUQ3XXXXRx66KE8/PDDPPLII/zyl79k0qRJARdN8I6MSpwENaWVFT2kfhiq7dC6Cj4reiSlQwsOcQCdZEOPqlKmH3vsMX7yk59wzjnn8Morr/Cd73yHpqamoMomuKQO+BdgamCVMt1h+hbgP4EhEuEBYBbwTSArRqtaPgecVbXzB1nQYwjwbWBCYM7w8GqLFCtTgBuAehkcAPAh4F+BrCS113u5+LOf/SzHHXccxx13HIcddhh9fX289NJL/OhHP2LZsmVccMEFvPLKK3z4wx9m6dKlYZVZGMC1wBXATxjEZ4DqG6kdpu8sc20yqQWeAg4BHqORhYB/PbZY5+HVFis2xgNPWq+/SyM7Af8OzxbrPLyaIsXKucAPgZdo5CHAvxag9RhNmvW4FbgA2EEj1wN5rhuDgKXoXaZ+SiMrgDzrcQTwAPpRst+rerC02ToPr7JU1eHJ4fnGN77BkiVLuPPOO1m8eDFLly5l165d/X+/9dZbufLKK/nZz37GkUceGXhhhT0ZDlxmva4PJEy/E9gLGEEaHZ65aGcHYGxgjXREVWWKk6sKXjcwyHJ4/DqA6dfjBuvcHUiEJ916HIx2dgCaA2sre6EjidU4kvHwT5gtNUdV7fCku26AjvwB9FKPmQyq1gGMVw9PDs/+++9f8ZrbbruNb3/72xWvE4LheAqrYrVGC3TFtB2eNVXcJx4KU+i7q57S2mKdh/stTuycWPC6r+r6scU6D/dbnFgZDxxovQ6urUBa9SjeVvw6gFvRCeC1aD3a/RcsJmYVvN5dtR7pd3hsPbqrXtEISYnwBL7t4fr16znllFOCvq1QguOt81aCHrUOr+Ie8XGcde6ksFPLp9FqAg6zXm8hiE4+3Xoca503E5TDkw09thCEHoqkjOL9Emz9SLcdPQDYB+gBtlS9ZxUkpW6Ess/zU089FcZthSLYDs9diBGvA6ZZr39OEBEeW4sGtPuQLqahG/hbwJ+BnpyPWm1n+NfAdkuLhhxPadl6/AKxHcPRU3wAvySIweMW65w+LcA4fy8Ar/TXjd3W4Ydk1A15llbKsSvmfZhGOiinRnwK2i3pBB4niAjPjoLPpk8Pu278Bfi7IyydzwjPdOu8BHjbqhuNOe3g64GjrdeFtiOvOU123fg78FeCjPAMwWPmSCKwbcdzwBtW3airqm5ssc7Dq7hH9YjDk2KGAGOt10uBTVYjbc6pEZ9snV8B3kBGrYda55eAVYHOw6dPC9AOMcByoNWqG3vnNIfnAHRq8XZgIbDL0qMpp22lsG6sIgjbsaXgdfr0sKfClwOrLS0aMlA3xOFJMQdZ53fQUY0NVqc2LAMV0w92SPp1dLq1iXjlW4+/A6syNA/vh0GAveTidWCdVTf2zmlEw7Ydr2PnaWg99glkFJ9uPVYTRMSrD7PNR3r1+DuwJtBo6PAq7lE94vCkmMIODWCDVTGH59SIF+qxBdhp6TFGjHi/0aqnB51g6ge7bjQCg6sqW9RMQhu7bej1Q205j4YW1g0w0eGRGejU/DBwsGRHeIbmUI8azGrG14G3LeevMQN2VByeFFPYSAE2W41030DC9Ok34jushjo2h0ZrYETj7YL8Lv8ZBVsxz51KV/0YWDfaA+3Q0qUFOEfwAB2BOjzp1eN19HO97Sm+8TnUYxx6ONODdv7WBjL9a2sxjDh38ReHJ8UMNFqdVqcWTIRneBX3iIeBEa+dOTbik3BGNDYVhKX3rerOW6xzuvQY6PB0WG1lSM6joQMHB3mMDg+MaICZ0to3A1ENr9htZQ16TdYmS4u96K7CVdlinWuJ83lr4vCkmD2Nlu7U8pjDMwiYYL229ejqj3jlz4jbRusN66wKIjwjq7pzuvWw68a2QKa0tljn4VXcIx72jIba0+H5sx0DIxpQQ6/VXvI4WNpzcGAGS8N937UbveoV4tQjfevlhH7sDn61dd6Z41HafmjvfSew3nqvp3+Ulj+jdYB1fqP/naAiPOnUY5J1XmWd7X14mgNpK03ovZp6qrhXtEyyznb9sKdw9snhdLjdVt7C3mXGrGgcncPp8IG2o6/AdozE/CrvrEHv4h9f/p9EeFLMfta51TrbRmtEDjv48db57YL3eiw9RuUwLG07w2/1v+M0Wv7ZYp3Tqceb1nl7QV7CEN937UCvxoE06bEv5plRdnvpDmSVVjo7+IF1o9Dhqc52pNOW7mk7gooOH452p1ZUdZdqiN3hOfHEE3nwwQdpbW1FKcXcuXMdf7/99ttRSjmORx55xHHNiBEjuPvuu+no6GDz5s385Cc/oakpfTvjemEfjJ+81jp3BTJKS2cjHej8gXkezqgc6xG80Up3p2br0RuIA6hI49Jju260YxZdd+c4363U4ABgdA4dnj1tR1CDpfiJ3eFpampi2bJlfOELXyh5zSOPPEJLS0v/8bGPfczx95///OccccQRnHbaaZx11lmcdNJJ/PjHPw676LFiV8p3MLuqdFmd2tB+8+WHdD5OYc8ITy3KmrEdk8OwdHgRnvQZ8UZgtPW6mAMYTBL38KruEiV71o3CaGj+HJ5SHXwD3Yz2vYUDpD0amkWHJ/YcnkcffZRHH3207DVdXV20txd/+u6UKVM444wzOPbYY1m6dCkAX/ziF/nd737H1772NdatW1f0c4MGDaKx0bgFzc3NPn9BPBSbwtk9IE9j7cAPuWIHOhehAd1Qt/suY5TsGeEx/7fV7cOTTiMuDo/BrhvbKcw/CFKPA0iTHsUcnt6CVUl1+H1ikq1uM7pr6S1zbXIIbwonfW0FwtQjfmKP8Lhh9uzZtLe3s2LFCn7wgx+wzz779P9t5syZbN68ud/ZAXjiiSfo6+tjxowZJe955ZVX0tnZ2X+0traWvDaJFJvCCW7Umr6GajuARg8zDx/MPjz7lL0qSdRQfkormLqRHj1sLd52vBuUw7PJOqdHj2IOT2Fiqv9fsqXgdXpsh62HqR9B1430aLEPJr9r4OAxCxGexDs8jz76KJ/4xCeYM2cOl19+ObNmzeKRRx6htlYXvaWlhfXr1zs+s3v3bjZt2kRLS0vJ+15//fUMHTq0/xg/fnzJa5NIsQhPcCtx0tdQ99TDRHhaqlo9s9E6p6dDG412b/oojPIFZbTSp0exDj64UWv6HJ7iDmAQevSRRoc4vGioXTeqs8ZRYteN9RQ+gCY7Dk/sU1qV+MUvftH/+qWXXuLFF1/kjTfeYPbs2fzhD3/wfd/u7m66u6uZ6oiXPSMaEHynlr6GOjDCM8jKbBqKft6Yd2yjNQid05T8KT7bgLdROKmQ3w6+uMOT37YSrh6b0AOldNSPSvldMjiAQj1GRVyeoEl8hGcgq1at4p133uHgg/W2e21tbYwePdpxTV1dHfvssw9tbW1xFDESKk1p5WlkUot5anyxsDRQhR470JvNQ1r0qBT9q878pq+DLzelNYjuKvVInwNYaYovT/VjnHXegfmfLNRiMNXsGmPfcQiFU+xJplLdSE/Mvzipc3jGjx/Pvvvu25+MvGjRIkaMGMG0adP6rznllFOora1lyZIlcRUzdCp1asOqunu6RiZj0KHK3eilthr7YZk6iledHunq1GwjXir6lyctwDjDziR++4GIQbWVdHTwUKp+mMFSMPUjHXrYWjjrhnOw5F+PDkz6dzraS7h1I35id3iampo4+uijOfroowE44IADOProo5kwYQJNTU3ccMMNzJgxg4kTJ3LKKafwm9/8hr///e8sWLAAgBUrVvDII49w6623ctxxx/Ge97yHefPmce+995ZcoZUFKkV48mTEbedvHYWrS7QWDZbRqu7pLenSw+7gnbU/6LqxD3E+BNALlTq1PHXwQzFJqaZ+1FlH/gZLdt0o1lbqqh4sKUxOUzrqR3HbEVRbiZ/YHZ5jjz2WF154gRdeeAGAm266iRdeeIFvfetb7N69m6OOOooHH3yQ1157jdtuu42lS5dy4oknOvJvLrzwQlasWMHvf/97fve73/H000/zz//8zzH9ovDZG5NOHE6EJ11GvFw+U33VozRIW1SjUgc/iCDC9HXE+RBAL0TnACYfu25sxkzUFib45812FI/+aT3qArEd6awf4QwO4if2pOWFCxdSU1N6pHj66adXvMfmzZu58MILgyxWorE7+G0MTMTNpxEvF+2qDWRKKwsRHrOZGmg9duGHbnTNG4LWo6P85TFTQ/lOLa8dfDHnT7/Kl+0o11ZqAp0OT3/9GEQ3zeg2Vc12jHESe4RH8E7x/B3IqxEvl89UG2iEJx16FB+l2Z1aviJe+6K30OyjML8L8prvVm4ED33U0yttpX+wJBEejWkrtVDFs+fiRxyeFFI8olGP/d/ZSFdAOSvpaKTF9QhylJYuPcqNWoNxeNIT8bIN+DsM3Pc36CTdEdh5MEmmXN2oo5sapK0Y25GvwVIdZol+8foRhB7xIg5PCike0QgjLJ38Rgrl9cib0apHr1qD4qPWvpyF6YtPZ0HhqHUo1aRfbyp4Pdz3XaIi/IhGeuoGlNdD5WywNAbtEPSiBwgGrcfuQPSIF3F4Uki5JF39Kp9TWsX1CHKVVjqMFuinoW1w/EXr0ZezMH3xVTgQXJh+N+aRCslvL+FHNNJTN6C8HipnDqCtRRsDc3S0HrslwiPEQbkkXeijjt0BGS17d+FkU06PYEZp6TFadgcfrtFKnx57RnjsCGA+60fx/C6tRXWDg/RoMRjjlhXLWcnr4KBUNLRXHB4hDmxPvFREo4ZqjdYOzJNUkm24hmJcMjFa5aZwdKfWE0inlj49SkV4unNaP8LP70r+7sL2kxZ3MnCtYZBTOOlxAEu3FaftEIdHiJTiYXqn0aqj2thMOvJ47Ea6Be2mGeyIRr6MVqUpnB6J8FhoI74rp/Wj2OAgmCmc9OwuXCmiEUw0ND3OcCU9ghkcxIs4PCmj9L4iJixtr0bJQ0Mt3cHbo7SgjVaydxeuFOHpzlkiZqUIT1eOOrVmzCCo2D4rdkL7EKpZb1a4u3Cy9ahUN4KZwkmfM1zKlnZJhEeIGntfESi+rwh09W9GmIeGGs28c3p2F5YIj5PyOSuwK5Ck9nToYWuxBT2NY3BO/0K+9Ihm+jfZWkDlFY3dgbSVeBGHJ2XYjXQ9eiWOwUR4bIcnDw210rxzr2W0mqv6li707sJQzXPXo8Ct0apu8zB7/VeytajB5GmU2ll4V0FUwz/p0KNSREP1x7tEDzCDg+psh63FYJK+AKTSYKk7ED3iRRyelFGpQ4Mutlqv8mC03EZ4qt8d1N6ZYlTVdwoTt2Hp6oxWOrTYF+PatDn+YrZw2BWIEU+HHpUiGtDdbzvyrYfT4anOdmzHxNOSbUsrDR6DsR3xIg5PyqjkhefNaLmNaNQBe1X1TelwACvp0RXoqLWZQuchadharGfgLst2mXvYbi3ez1NbKW07uvrjmMHokY62UqqD7w6sg7fbS3LrRx2lNiwFu37sCmzwGB/i8KSMSqMS2JUrh6dSRMOeh4fs61F6a3gI1uHZgplQTW6nFl1EIx3OsBc9gokOJ7etQGVb2pWj6PBotDOwm4G7LMNAh0ciPEJklB7BD7bOOwMepSW3kUI5o2XHc3bmxgEsvTU8DFyGXb0RT36n5iWiUZ0eya8b4E6PvLQVcLOCT7eVOmDvqr4p+RGvwg1L+/b4q7YdO2VKS4ia0hENu4PfFdAoLfmNFMoZLdsBDCrilfxRfKEWao+/6vqx08onCC5Mn1w9SjvDQdcNu63sQ5JNavR6JLduNGKWY5SeDt/V3/lnPeJV2o7WYhyeXYA4PEKEVI7wBN3BJ7eRFu6yXM7hycsovrQzDLYeOwIzWsnXIzpn2F7RWId+anoyiX5wkNy6Ya/e24V5EprBRIfzEi2vnCphbIfk8AiRUbpTM1NaeRmlFe4rsmOPv+ZvSqt0hwYDHZ69qGZzOUhT/SgdDQ2qbvRiNttLbv1wo4cMDiCPEa/StsMs9dguER4hSkrvsgzFprSCaaSDSOremm46+DyNWm0j3rrHX0xYenvBlnN5CdPvqUfQ0T9Ieqc2BPMbZUqrXN2A4CM8yW8rlac7e9hmPTJEHB4hEgp3WW7b469BG/Eu6Dd/yTRcpRsp5NGIVzZa0NOftpz9iFd0Ce2Q9E4t2miorcVeJHWzPa+2I+v5kG7ait2vDAbqIyhTGIjDkyIKd1nu3eOvQXfwkHQjXj7CI2F6Q+EORPlwAMtHQ8NoK8muH9EODgo32xM9kl43wFtCO6Q3j0ccnhRR2oBDOKPWZDfUaI1W8jfbq2y0uoG+XEzx2bss9zHwmXMQrsOTTAfQXVsJanAA6dYjrIhXMtsKuHN4eqD/0SNpndYShydFRJtoB+LwFLKFpG+25yYsDeQi4mVr8Q7FoqFBR/8g6Z1aedsRdP4fpEWPSrYj2FVaI0jiZFA9ZsPSSrYjuPoRD+LwpAivjTTrozS3U1p5MOL1lNsa3tQNCMpoJbtueHWGq3/0SDocwGgGB5Du+rGn7ajOlm4GK+E3iQ9jLr9hqdN2BOMAxoc4PCki+imt5HbwEIcRT64e9r4i3ZhdYQxhODy2FvuiM2aShdsObXvBu/l1APM7HV5612kIznb0AZus18nTw82GpQMjPJLDI4SOTGk5Ke8AhhnxSp4ehXXDrdEKxuGpQ+8wnCzcOsOKoCNeyasbEEd0OLmDg70w20OWnsKBvDiAbusGyJSWECFuO3i7Ula/udx66zy67FVxUH6X5RqC34gRTPpr8vTwYrSC6dR6MbGkMeUujIXo9bDbSvK0gDgiPHZbSZ4eth3dDnTu8Ve7buwGegOcwkmuHm7rBojDI0SI24q5reDd6ox48hvpFijYSs8mjLA0GD1ayl4VB/EYreTXj+j0sHfGGkP6pvjCiA7beqStrRSPaFQf8UprW5EcHiEGCvcVqTSl1Q0BbS5XaMSThTstIBwjnjw94glLZ6tTq04PO8JTT9Km+IZjXDy30+HVR4fT2sGHNTjIlu2QHB4hVMrvsgzhGPFCo5WsUas7o9VLYVg6D6O0SivWIF8Rnuj0SO4Unz042IjZR8VJ8ehwcLYjWcQzOJDocBIQhycllN9lGcKpmMkdtYrRcuI2vwuCylmBpHZqtZj/oWj1SGbEq3xbgVLR4eCmw9M4WHLuWZXfwYEkLQsxUL5Dg3AqZi9mtUWyjLjb6T2QsHTeprRGoadjdmNcdidhO8TJqh+VHR4ZLBnCmsJJZlsBifAICcTLKA2yP4r300ir31yucJVWeketeeng2zHbvTnJpx7F60Y9JlsnSAewh6RP8ZVvK/lwhgdhFspHGw2NB3F4UkL5iAaEn2yXrJGJlwhP4eZywSw9ridJO6YOwmx3JxEe74ODrE95upuygOBX4iRbj0rPFYMw2kqyBkvlNywFifAIsRC/EU/WyMRLWFoRlBEvnOJLjh6287cLvYn9noS1W2oa6waE82wxSOqUp7voH4Q3jZMmPYpHNKqPDtuDpQaSNMUXX78SD+LwpIR4wtKQzlG8s0ODbOvhd7oz2I0YkzNqlcGBEy8dPGRbjyHoTUvB3Qq+4KLDyVzFJw6PkEjcPSgTgh+1Js9oDQX2tl67mdKCbBtx9xGNoI1WMqf44nd4kuMMQ5yDg+TpYdvRTpzOjGHP6HCWFz34jYaKwyOEirtRGtg7beQhorGFYrssQzmHJ4th+vI5GlAqL2Fvqt1cLplTfJX1yNfmcl4jPMF1asnTw2sHD/lwAL0ODiRpWQiNGkwTiS+ikbxG6rZDg2wnYvqNaIB5Hpl/0q9H8NHQ5Ezx7YtOaodSG5Y6o3+Q7Rwvr3UDJDqskaRlISLcG60wc1bS1EjFaDlx1o9u9KJhyGv9CMuIJ2+Kr3DD0p6iVzijf5DtwZIf25HviFfxwVL1jx6JB3F4UkDhviLFd1ku3UiDG6WNIinVJV6HJ7lTfPE6gMnQox7zLPvietRihg9B5/Akb6NOaStOqpnSCs6WplEPZzQU0hnlib0HO/HEE3nwwQdpbW1FKcXcuXP3uOaaa65h7dq17Nixg8cff5yDDz7Y8fcRI0Zw991309HRwebNm/nJT35CU1P1wfqk4D4nIQyj9Q7Qh/bnR1W4NhrcT2mFEaa3v3Vs2auiJN68BFuPcWWviooxaKPWi665e7LnvjPBhumTVT/81I3gIhq2FqNJSjwgXgfQ/tZktBXwnv8X3KNH4iF2h6epqYlly5bxhS98oejfL7vsMr70pS/xuc99jhkzZrB9+3YWLFhAY2Nj/zU///nPOeKIIzjttNM466yzOOmkk/jxj38c1U8Inf2s89slr7DXLJl1B8E10t2Ykcn4qu8WBO712NH/TnBGvNU6J0MLMCXxY8SrN1q2Hskw4rYW69ArbPaktMMTjAFPVv0o1KM4YdYN+8l/dSRlGqeyHmEOHpNVN/bC7AgUjwMYPfVxF+DRRx/l0UcfLfn3r3zlK1x77bU8+OCDAHziE5+gvb2dD33oQ/ziF79gypQpnHHGGRx77LEsXboUgC9+8Yv87ne/42tf+xrr1pWu2mlhgnV+q+QVe3bwwVbKVvSIdTzwfCB3rAZbj3gcQNs07Is2BrvKXBs+zcAw67WX+pFVB9B9W+nCfvCErUU9QfyPJksPe3AQj+3oQ7sWE9B6lO5Wo8KPHsG1Ffv3J6tubEOveC1O8fqxL+l0eGKP8JTjgAMOYOzYsTzxxBP973V2drJkyRJmzpwJwMyZM9m8eXO/swPwxBNP0NfXx4wZM0ree9CgQTQ3NzuOpFI5omFP3+1ptLI4ao3XiG8puG/8UQ1bi82U2lcETP0IwwFMZt3w0laCzUtIlh6VHcDStiMYi5icTr6moBSVbceebSW4aOjwgu+Jj8ptBcq1l+T2mKVJtMPT0qKTu9rb2x3vt7e39/+tpaWF9eudz0TevXs3mzZt6r+mGFdeeSWdnZ39R2tra8lr48b9qNU00mArZXKMeB0mO6KyEQ+jg4ck6VE52gXhOoDJ0QL8tZXgHj0CWdAjHNsR/+BgDDpdfTflprTCdAC3Ftwt/vpRuW7UYxL8w3AAoyfRDk+YXH/99QwdOrT/GD8+/gpYimoiPNVvLgdJMuLj0L+nG7MIeE9Kd/BZi3hVNlpQzgEMLol7MEl4RpCfiAYEqUdyIhrgxXaE1aElr62sxZ7MLEaY0+GQJAfQvTMM4ekRLYl2eNra9LLGMWOcCW9jxozp/1tbWxujR492/L2uro599tmn/5pidHd3s3XrVseRVPyM0gp/TXCh2PiNlm3AWymVlArFjHhWR62V60YNJhEzjLB0F2Ypdvx6+EnwhzAiPPFr0QSMsF7Hm/8HSbId8U7hJEcP94OD3Zi1WeLwhMaqVatYt24dc+bM6X+vubmZGTNmsGjRIgAWLVrEiBEjmDZtWv81p5xyCrW1tSxZsiTyMgfNcIzDUnrSbU+jFezywTQ1UhAjXkgUo7Tk6OHeiDsdnuCn+MYQ95oQW4stOPOUnJSO8GQtOuzNdoQV8UpOBDD+wUH0xL5Kq6mpybGvzgEHHMDRRx/Npk2beOutt7j55pu56qqr+Nvf/saqVav49re/zdq1a/n1r38NwIoVK3jkkUe49dZb+dznPkdDQwPz5s3j3nvvzcQKLbtSbqDUc6OglBHfhp5kyFJegt9RWlYTMd138BDe0tJW4Gji1qMOE1fxO6UVzL5V3ejchxYq1dQw8Ts4KHSOhgAdVZUiTW0FwrcdybGl8U//Rk/sDs+xxx7Lk08+2f/vm266CYCf/exnfPKTn+SGG26gqamJH//4xwwfPpynn36a008/na6urv7PXHjhhcybN4/f//739PX1cf/99/OlL30p6p8SCn6NFuiKGazDM9z6rh2lLw2ZZIzS0mS0CrUwk4BZ1GMs2unpwewctSfFR63B6aHQeU0T0XrE5/B4GxwYPbrQGjYQhMOTnCk+d3pElcOTNtthSPOUVuwOz8KFC6mpKf+gvauvvpqrr7665N83b97MhRdeGHTREoG7VThhj1o70eO+IeiG+req7+iXykvSIY/z8F6SUiFoPZIxirfrxlr0DjDFKd5Wgq8ftsMTH8kaLA1Da19684Sw8RvhyaLtcJffFXa/Ej2JzuER3HbwYY9aISkN1dsy7D1HafbmctWRjFHrMMz/rZekVMjmyhO/0T/I5ije7wo+CFKPbegBEyRfj0ZMl5jt6LDdr3TiXODiJIrBUrSIw5Nw/O6zAtkcmVQ7SoMgnxHUCIys+m5+sbXYiPf8Lungw3QAkxXx8uMAZs121OIlvwvCz/8bi15BGQ9BDA7SmMMjDk/C8Talle1OrR7znOHSetSjsw+g1OZy1TfUHswuQPFFNbx1aGEmHsZfNyCJ0dBkRLyqmQ7PysqkFrRlKJ/fZWthHjsCQUeH29ATrg3E+TDm5AwOokUcnoQz0TqvLntVlNMW8Rmt/dAVdiflNh0sPkqDoPWwu5H9yl4VJvtbZz9TFsGO4G0t7L1s48GbHmFGQ209JpS9KmyqqR9ZbSvl87uKO8OF/6pej1600wNx1o/kTP9Gizg8CaYW01BXl70yilHam9Z5/7JXhckk67ym7FV2I+2lcLMsCLpTs/WYWPaqMJlknVeXvSoKZ3hjwf3jM+KTrPPqsldF0cHbNTS+ulGYcOyuvYRZP+LXY5J1XlX2quJ2NNjoMCRJj9Vlr4picBAt4vAkmLHo8XIPlZ4zHIUnnu5GCkHrYZdiUiB384P9zavLXlW+g28iKCNgl2JSIHfzg/3Nq8teFcWUlt1W9iOIrfv8MMk6r0VP0JQmigjg6gGlih77m1eXvap43YC821LJ4REiwG4Ob1Pu2S8QjSe+2jpPCuRufrC/eXXZqyobrXyN0sqP4ME5CeifePVoBvYdUJLiRJGXsA6zk008eTyTrPPqslcVf+wI5LWtRDVYsvWYFMjd/GB/8+qyV8mUlhAhk6zz6opXRhnhGQEMDeSOXplknVeXvap4Bw8S4SnE3lwOsjFqtb91I+WW2UI0q5L6iHvKc5J1Xl32quKPHYG8RjRKD5bCGTzGo0cdZuJ5dZnrKg0Ognn0SLSIw5NgJlnn1RWvjGIlznbMQyLjNeJ+RvAQtNGK14gPRk95gn8HMEsRQPtbV5e5RhPVypN468ck67y67FWFDo9zY4Ng9XgL7QTuTVwrkyZZ59Vlr6oc4clCxGs8esVZN2aDjeKUHxxA+qa1xOFJMJOs8+qyVzVi/OywjbhdkjQY8ajm4VsIYrGqV+zU8a3AprJXFo/w2J+FbDiAk6zz6opXRrW3SLzTFva3uhschF03CrvW6OtHDV5Xu0bVViYFcjev2N+6hsKHzRSjuANYGB0Wh0cIjEnWeXXZqwpHaWFn08fXUOswC+JXl70yqnn4TQV3jH7l2iTrvLrilVHnNE0K5G5esb91dcUro4rw2CVJsgMY1RQOxFk/xqCHJLsxm2sUJ+ocnuHEkR4wyTqvrnhlVA5xdIjDk2BsU1l+lGZXuV3opdiGLBnx/dBh2F2U2zgMTPe9bY+/hDeKj16PSdZ5dcUro161Np44ZvYnDShFacqvSmpAx0yrJw0Rr6imcApLEl9beZuBFnIgUU2Hx5seMMk6r654ZVT5kNEhDk9CcR+GtUcInXv8JTyjNSmwO7rF/sY3qRSGtfXYM3U1S6NW+xtXV7zS/rVh69GGDnbXE8fmlO7aCpjW4NQj2EePQJx1o3APnjfLXVimbmQpp2mSdV5d8Uq7bkRhS+PXo/yeRBCd7YgOcXgSSgt6pNlLpa3h4zBakwK7o1vsb1xd8Ur715Y2WlmIeE0aUILSVHaIg9FDYbrXSYHc0Qv2N64ue1XhuhJne+nDxHyC6dTskuxP1M9MmmSd16EjoqUR2+Gk9GApn3pUtqWSwyMEwiTr3EqlPXgqe+HBby6X5A4+H6NW9xGNynqkfdQ6BPMI1/LTv3aHVujeGIJ/nMJudPbI6EDu6JZJ1nl1xStLO8PBj+Dt0ojtcJYmyXpE6QBGgzg8CeUg6/x6xSsrN1IIOjF1FM5k6fCx9agmDJulKb4DB5SgNNkfxR9gnSvvwVNaCwi6k+/F7I8ebadm67G64pXZd4bBix5ROoDx6FGP2YOn/OAAorUd0SAOT0I52Dr/veKVpb3w4DeX6wQ2W6+jbai2Hn+reGVUUzgQZ0TDfmp8ZYc4+6N493WjvMOTFQfQu+0o3VaCiw7bWgxDr06KDvd6xOEATgrsjm6YhHZ6dlBpD54GzHYbUdiOaBCHJ6F4b6R7VkoIM6pxQLmLAicIoxV8I7XjTeMJam2PG2wt3gE6Kl4d5SjN1uOgslcFTRAdPITRVmw9Dix7VdAcYp2rcQCDjw7vxDwlPLr60YBxv93rEcVgKZ66UdhWyi/+KPylUTiA0SAOT0JJ7qjVjikcXPaqIBmG2Z81iCm+4LR4B20ca4nScLmvG4OsA6IxWrbLcUjZq4LG/rZqnOHCd4OrH/b/0OTA7uiGoKLD9hLu4PWIrn4cgE5T30al7Swg2pwV+39nX/S6umhw31ZsLXZQLItUprSEQAnKiAcf1XjNOkdnxO3xYBvFdtcZSJRhaYhDD+9GC8rtSxR83RhPlDleQUx3QphtJboOvhGTo5G86HD0Do/7tgLl9Ai+buzArL+NTo/kDqSjQRyeBDIC4/O/UfHquEatSWyk4CYvIbjN5SBOPdx3aNvQK5OcBG/EN6NThyHKCGDyIzzR1Y0D0Ua9Ax1/LE/piEbhu2nWw5/tiGqwlAbbEdVAOhrE4UkgdqVspdgelwNxZ7SCa6hJjmhAuYa6vchV1ZNkIx51hwZR67EXehduCM7hCT6iMYaoHiHgvkMDtxGeNEeH3etRi9lpOYocHogz4lVtNFRyeITASLbRspvK/kSVqOtPjz07tcLdV9JsxL1HNKI0WtHqYWdObaLSQ1TBrREPrm5sxSTqRtOpue/QoJJDHPwoPskdvLsk3WCjw9G2lXrMmrDkRUOjQRyeBBJUBw9hGK13gC3oqhPNagv3etSjx/wQ/Sg+GiPeBIy1XifTaEWrR1DRv8J306xHkLYjvKT2fYgqUdf7FE4X+unuTrIQHZ6Idth2YnaIKk0c0eHwEYcngXibd47DiEebjOndaEH0eQnjMSHx8LBdzA1ot7M8USfpQrI7+KgjGhCXA1htvhuE0VZ2EmWibgMmolFtkm7wjx6BONtK+SXpUCk6LDk8QmAEacTDTbYLPxRbuMmee4dnF2bLRSfBG/HNmCcfh5+oG0ZEYwhBPu0p2jC9v8FBlFN80S5NDyPCE85gKXw9JmGWpLeVv5RKdrTwL8Hp8QbalRqKzvMKl+TXjfARhyeBHGqdk1sxozNadge/nlLdVCHltYD0j+LDcHggyNiUrcVookjUTf6UVnTR0EHozDpwo0cNWY94BbUk3Sb4+tGF2XE5Oj2CjP5J0rJQFaPQW1H1AStdfWK4dS6+527ajdZh1vlVV1cPs86VjVZaE3WnWOcVrq4u36HtIozN5QrH09HVj9fKXmWT7VVrk9EGfQt6gFCeQhc3juhw+HrYbSWIugHpt6Xe9HA3OAju0SPRkKay5oLDrfMb6A6pPIMwG7wVX6OS9giPrccrrq4eYZ03l7wi7Z3aEdY5KD3CMeLR1I8RmATuIPQIR4voEnXttvKyq6ttLboptflF2iNe3vQYbp23lLwi7bbDX/3YUvSvhduYpinKIw5PwvDXwfdRKsIT7ihtLGHP4vrTo/QC5XCN+KFlr6qWGkxEI9kOYDR62Fqswc0O3FBJj3Dayk7gLev1lHIXVk3QznD4dSO4zLFi+NOjsu0IJzocbt0YitmB2120vHz9CCc6HD7i8CQMfx18B6Xy7sMxWp2YhY2Hl7uwarwZLXsEHXVEwy7dEWWvqpb90SHkbtzmJdh6RO0A2mPIqYHedSDe6ga4dXiCzzx6yTqHq0fQ0dBw2srr6NyVIZjHeoaDNz0q245w6kc0dcMeHLTi5oHDEN/gMVzE4UkYQRstO5sleCO+3DofGfidbRoxy7CD0sNu7MNKXuGHlWg3ZChhGnG7g19Jscf5FSMuPWwjHl7dAK8h+r0xD1ItbsS3WOcGzG5OwRCtHt46+NId2hbrPNxneYrTi4kxhKfHeHRr7MFtkm7ltrLFOg/3Xapi2Hb0IMJ8/py3tgJuHMAt1nm4j/LEhTg8CSNoh2fLgCuDI3yHZzJ6Welm3CwrhfiMVi8mjTi8kZq3ugFu9LD/Emz9sOvGwcDgQO9ciL8OvgfnNnKG7ZgwfTh6hFc3GjBZIN5yNKKuGxBFVMMeHPyNUhtUDCQuB/AddIp5LSYOEzxBR0ML/zLcT4FiQhyeBLEPZs8Zd6twvFXKYGfMw3d40tPBQ5R6eB+llTbi4ejRjjbktYQ55Rl0zkrhX8NxeMKrG4egnZ5O9LRFZeLs0JLYVvJhO9y1lVpMzDdq2xEu4vAkCNu/X02pMehA3DfSOoKea01aI4VkjFpFD024egxDT1tAcEmpEJYeK9CTkPti1pUFi/+6EUeHJrbDSdJsxzCMaxDH7EF4iMOTIMJopF3odSKFVwfDq2gjPhITlwoW/6O0bBtxd3rshXnMYZxTnuFMW9iDg7cot3NKIZVzEgr/GqweuzCZJOHoYUe7wsjRKKxJwWB38Iei41LB430KJ65oKITdVgrTw70NDrZTbkJQIjxCVdgdmrtlgxBvmH4XZq1QOJ18ukZpttGaQhhGfAI6QteD1xVavZRbtJ3WaYswchIgzETMcPUIo610oje8gKD1eAudLt9AWFsXhDGltcU6D/dRnvKEWzfswcE6KtV+G2/R0OE+yhQX4vAkiKOsc5ARDUhn4nIjJgnT+ygtDofnTXQX0UAYG+7ZHfxrmMTa8sQ5hQNpdXjSmqjrX4/S9UMRpu0IbxpnHLoT7sXtCq0aTLcdh+2w/9fGoqc9g8V/tMvd4EAiPIIv3mWdn3f9ibiNeHid2pFo1+Ed3CZhgpcITz1h7BAanhG368Yy15+Iu27Ybvs4wthh2L8e2XMA98JsW/ei60/F3amFN41zjHVegd4sojLuclbCqxvb0HvrQ5h6uK8bcduO8BCHJyFMQlecLtI0ag3PiE+zzu6dv8GYJdCl9diJ1hjC1OOoslf5wdZjqetPxN2hbQNWWa+D1aMG4/AErUf4beUI9BKC4DjKumMbZjvQyiTFdhwd+J2nW2f3daMwZ6W0i2RrMQQ9YAqWJOohU1pCSNgd2ku43TcC9KNGATaUvSo8o/VX63wkZlO3YPAe7bJDwT1USmMNTw/bpBwb+J1to+Vej8pJmBD2KC0cPQ5Ej8l34iXfLW4H8HV03speBL0jt/fBAXitH8M93dsNdt04LvA7e9fDXd0o3KE4LbajFhPhCVoPifCEwNVXX41SynG8+qoxc42NjcybN48NGzawdetW7rvvPkaPHh1jif3hz2jZv7P8s5HDq5ir0c7WIIIemXjXY4x1Xk+px2zYbLHOwevxF+t8HEHuejQCOMB6/ddyFzoo1KM04RotW4/jA72r7fy9iNsdp8G0lfayV4WnhwKes16Ho4f7EXw9plOLq368gB6cjEY/NCU4vA8O3LWVwicWhmc7gq0bk9ERqe3oHdrd4a5f2WKdxeEJmJdeeomWlpb+44QTTuj/20033cTZZ5/NRz/6UWbNmsW4ceP41a9+FWNp/eG9g6/HRDXKG3F7DBfOs5qftc7BNdR6zCSIez3cNVIIU4+X0HGH4ehdhoPBjnbZMQJ3uOvgN1rnRsLY2N6uG8GO4v0NDtx1arYewaeOQnL0sOtGL5UiPOHp0YXJKglOj1HoFY19aJfKHe7aCoSph+3wHEqQD3qx68YLmBV3lbHbSnk97HmFcNpKOKTC4ent7aW9vb3/2LhRV7uhQ4fyqU99in/5l3/hj3/8I88//zyf/OQnee9738uMGTPK3nPQoEE0Nzc7jjjxbrTs6azKRsuumCO9FsoVwRvxw9DZOFswqXyVcddIQSdCQxh69GJiMME5gGF28NvRGwyAqVHBsRRtZicFenfv+Uzg1YiH01aCH8U3YtJcvUc03qFSNNTWI/i6AWHoYdeN1yi3GcNAkmA7NmKs3fRyF3rCe7QL3NoOu240E/Q+TeGRCofnkEMOobW1lddff527776bCRP0g+6nT5/OoEGDeOKJJ/qvXblyJWvWrGHmzJll73nllVfS2dnZf7S2ul8LFDRj0VWsFy+Z9PaopLLRCq+RQhgRHttouZ++AS+jtHCNePAOYHVGK04jvhXzkJQ49ajD/LryethahNvBTyWox5NORa9m3IDeGMEd7ttKNLYjuLoR5uAA0usAhjE46MDkm4ZTP4In8Q7PkiVLuPjiizn99NP5/Oc/zwEHHMCf/vQnhgwZQktLC11dXXR0OAP97e3ttLSU3/33+uuvZ+jQof3H+PHjy14fJnalXIEZbVcmaY30MIJ6JnvYRitcIx6e0fKX3xW3AxisHhPRU5HdeNmvyv5luzGTEsWxtRhBGCtx3kZv/1aPSSWtjuraSlLqxrEE1RWFrUeaHMAaorMdaXF4gm/TAfPoo4/2v16+fDlLlixhzZo1nHfeeezcubPMJ8vT3d1Nd7e7XRrCJuxKGe6odQN6+fEBaMP1h6rvmO4O3jZa70I3L3fbBJaiGbONYXqN+EUEZcQLVzO6b72FUzjlMxk2WVfUonMTKqvnlb8AH0Q7gIuqvlvY0b9wO7RX0ZOqzejcFfdr7krhT4+kdPDBDg4OQg9Bd+FF2Trc5oaC1mMsYdnS4El8hGcgHR0dvPbaaxx88MG0tbXR2NjIsGHOJK8xY8bQ1tYWUwm9Y0++PVf2qoF4j2jsS9BPTLcJblqrAT+rTiA5EZ6/o9e2DCaI/WdsLd6k0uYDhRRO4SQlAhiMw2PfJawOvg+TEZeGKeCw9Qh3sLQb08qr12Nf/KxmhOREvJ5Ha7IfQTxk1q4bL+Jl2DUK7RZUjoZC2LY0eFLn8DQ1NXHQQQexbt06li5dSnd3N3PmzOn/++TJk5k4cSKLFlU/eoqCWozD8ydPn/S+sqCOsJYQLrHO7636TtPQ2Q0b8LKMEpIT4QFYbJ1PKHuVG+w7POPpUyPRNasPN25SuEZrGXrl2ijMfsD+sfX4s6dPuV/BB2GP4m27dGLVd2rGbAbhrX4kJcIDQephW59XMEum3ZGUwdJ2TBZncHr4qxuVo6GQvimtxDs83/3udznppJOYOHEiM2fO5IEHHmD37t3cc889dHZ2ctttt3HjjTcye/Zspk2bxu23384zzzzDkiVLKt88ARyBXsS8FbPXpjvcN9IejAEIp5NfaJ1PotpdZO0O7WnPn0yK0QJ40jrPrvpOttnz5wxvwM1ONeE6gN0Ykzu7qjs1YuIA3uqH+w4ewo5qLEJrMgG9haJ/3o1ubavw8vgV8DM4GERQGXoDedI6z676Tv7aivuEdoiig3/SOs+u+k7+9PDWVsIfPAZL4h2e/fbbj3vuuYeVK1fyf//3f2zcuJF3v/vdbNigpf7qV7/KQw89xP33389TTz1FW1sbH/7wh2MutXvsDn4RXjZRA7CTsr0Z8XAa6gvoaZyhmCwLf/hzeGoxTS4JEZ4nrfMsqplErMNE//x18O4iGmlxAI9FOz1tuH1ivI0/Ix6OHjsxEdHZVd0pisHBTnTcAcLS42n0hMtBaCfQP/708BYNjc52zK7qLsMx2xVEMThIS4Qn8UnLH/vYx8r+vauri0svvZRLL700ohIFi3+jZe9O6m4x6gb008fDaah9wFPAXHRD/UvZq8vhT49x6Krcje4Oy2M30r3R02f+U99L8Tw6ZrcPOo/H/SMuCzkKPW2xBfNYUnfYHcfbrq5OixG3R6ze24o3PcKN8IDW40S0Hj/1fRd/I3jwUz+a0Hq43xfLLdvQ2YvvRutxl6+77I3Jd/Omx37WuQ03Q87wO/in0Pb0MLTz4S9t/j1oN+413A57bGw93D2VTaa0BE9U7/CscXV1+Eb8j9b5ZN93OBTdcHbiNQnT1uJtKu1JBNrE2g8QDUePXozZne37LnaH9gxedkkFvXgb3NYN2yCG90CWZ4EdaAN+mO+72G3FewfvbXBgt5Xw9Ki+rTQA9taq3mzHEMwe4+70CL9+PGmdZ/u+w/FoTd7Cba238dZW7LoxjLA229uC2SN6tu+7+HeG/dmO8pvAJAdxeGJkAtoU92KC3O7YBz3mArejNDvuEV7FtI34ifgNHNod2hK8PEAVvHZooHdDgSDWQpTiSes82/cd/Hfw3oxW+FpUn8dTg0nC9D448KaHPbYNT4/FaJd7P/RUjnemoaMaG/C6mNtuK5twuxdx+Ho8aZ1n+76D/+ifN9uxBRMRTrIe1Q8OktJWgkUcnhixDfjz6PGve2wDvg63u5HYFTO87RWXo83vEPw+8dd/tMvWw73DY+sxzvN3ucV2AGfht5lFNd1pOzzN6P+9cHjSOvuLakzFJPd7myBswJhjd3qEXzcK83j86eFvtRoks638GT3sOxC/DxKNanAAUejxpHX2VzcaMUvSoxochKdFsIjDEyOnWuewQ/RgVnGEVzEVpqG+39cd7M0Fwh6VQBQN9a/oRO4RmMkH90xGd9Nd+MmI8ma0tmMeShqeHr+3zqfhJwI42zp7T+7fD23mdmImJMoTjRG39fiAr0/Pts5hT4VDFHpsw2zl4F2PQeicFQi/g4co9HgKHeM+FD8r+d6NdnrWoR847A1vDrE9WGoirFV8wSIOT4ycbp0fLXtVMbw7PNEY8Yes8wc9f/Jw9BTfTnRz94b3UavtAIYX8doN/M567V2PM6zzU5h8I3fUYJJSk2TEn0UnYA7Hzx4jdlt53PMn/Uc0xhLWRp0AD1rn9+E1G6QROMV67V+PJNUNgN9a57M9f/K96MhkG16T+yGZDmAHxgp618O2HU+UvaoY+2JSJd5y9Ymd6GEdpCPKIw5PTExFd7Y7iCbCE43RehidXjsNk+3vDruRLsTL88RskqqHbcT9OzyPeP5kC3rM24vblRYQhR596PoBXvUYjAnue9fDewdv57sNwmyyHzwvoDuVJoz74o4T0fk7a/Gz/i+JU1pg2socTKfrDrutPIqbJQsDSboeUdqOwlQJ98OsNE1ricMTE/aI9Y94HcGDqZjuvHAwEY0xhLkXwQZMcqq3kYmth/dGCsk1Wo+iQ9OH4yU5dS905g/40cN2/lrxMvkTjR52VMObEZ+F1uQtvDww1Mb7CL4Xsxg4iVGNwg7eO0mMaIBOvf47On71Pk+f9N/B741ZUJ00Pey6cRI6KuqOcejtLPqAxzx/p/e6AWZaSxweoST+p7NAz+0C/M31Jzagu95azNZS4eC9U2vCTHJ412MMevZ4N7Da9aeiMVodmF2o3Xdqs9FRjdXACs/feYh1XuXpU9Ho8Tg6fncg2gl0h/8ODeBg67za06eS7ABGrYetRbiDJfDjAO6Hjpbvxs/0nj0I2QR0uv5UNHXjDbR7X4/pLSpjX/ksbp6ENRBbj9WePiURHqEs1XXwdRiHx/2CVEVUnvhvrPMp6HU/lTkZPa5bhd4oyxv2vi6r8DIZFn4St43dqc11/YnqRvC2I/GKp09FY7R2YDILvOvhr4O39fAWG4pGjz+i152Nx2ybV56J6Brfi58Ofh/MxhTubcdGzFrQcPdbsdvKWbh9RI1dNxZjckncc4R19tdWwl+K7X1aq7q2Up0e4vAIRZmDzg/4O163yAf9POBGdOfhLfRod/Lesmu88ho6LjEI+JCrTwTToXlrpLYWIwhzKTYYB/Ak3KZIx6mHv0XBXvi1df64q6sPRK9Y68Gsa3JPDcYh9qfHxLJXVUs35n/ZnR523ViEWVnnHrturMY8MKIyCtOphavH0+hY9CjMGtbyxNFW7J3Pwm8rD1jnD+LGStWj10BCVvWoHnF4YuA86/zbsleVwq6UK/G6/649yVHdIwvdcLd1vrjilXXAudbr6vTw1ki3YbZFP8DX97rlTfS0Vi3wjxWvPho96bAT+IOv7/Onh/3IgHC1ALgP/eum4ua5a3bdeAodC/HGRHQ8tQuvD0WITo87rfOFuJkwsvV4qOxVpfBXNyAqPXqBe6zXF1W8eghmA4yHy11YEn96rEFb3iGE/dDMZ9F2vgn4SMWr56B3gG4Hlvr6Pn/R0OjaSvWIwxMxe2EClPf6uoO/ESuYihm+w3Mn2iScQqUx4Sx0bsBG/CyjhHTo8TPrXNmIX2CdH8btPriFDMb8Gn8OTws6lTM8OjBRHvd6/MLXdxUODrzt3hNd3ViA7qLGUGn/qjGY1Wr/5+u7qnd4wtfjDuv8ISrt7HI2uq6+hnkYgzf8TeH0YJaLRKeH+7byS7wOhUFvZdGM/nXe5h2iqxvVIw5PxHwAXa1Wof1379gdvLcN5cFUTH+b2XvhLcwExCfKXnm+db4fPb7zjn8jbm/KFX5DvQ89hTAF/dSf0thGy58zPBkdM9uE14cOdlifgihGarYR/zh6J+TiTEbHgHqAX/n6HrtD8762K7pRay/wc+t1+U7tI+j/3cV4TSu1qV6P8NvKUnT59sLEwotTXVsZhEngTrIed6Hdl9nApJJXNQLnWK/96WHb0dfwaolXW+ehhLmNQzCIwxMxdgfvb4QGcKR1TnIHDyaqcTGltm+rx4To/Y3g98WkUXpfzxSdA7gN02VfXPKqGWiTthWzZaE3/I1YbaIz4o+js0JGAmeWvOr8gqu9rziBavSwtRiH7nrDxXYAP4jOKitOdR08BKFHNLajclRjBGZFkv/BQT3a1Xe/X5VNdHq8jZncLj0lfjp6OustzMYg3vDvDHdh8niSHuURhydCmjDm3V8j3Ru9ywL4eeCA3UgnEcV//APopZ4HUmpfjVPRLksb5qEU3ni3dX4VL0mYNtEa8Z9Z53+g1L4adof2G8wDCr1h6/FXX5+OTo8+9MgV4NKSV33MOvvv4O1Herzg+ZOb0Q+KhHLj6qB4Ef1/1gh8pugVE9DPi+pDT1l4ZwJ6XVEvyY5ogM4B7EX/4uJ5XuegYzQv4ifWDdXUDYgyHxKM7fgc+lfvSaEz7H3zRTCRZ+9bWULUg2n/iMMTIeejXZaV+G1mx6FHJW/h9inphbSivfEGzMMHwmMn8BPr9RVFr7jYOt+HnzlnME/Q8TemiS7CA3qU9iJ6QvOSPf7agOng/UW7wOjh/ZGSYIxWNHrMR09WzaHYw2anoydvd2HWuXljX/QUIqSjftxknb9CsUdN/IN1fgo/8Qgwjyp+gWoGB+PRmWLhsg7TCi4reoUd6/DvDNt6+Gsr0daNX6Kt9zhMTTAMp9q8UEiXHv4RhydCvmCdb/V9h+o6eIXp1A4td2Fg3IheejsbE33QtAAftl7HpYe9beOBlBo3Bc13rPOXGdhtnItOSm3F7/47TcAx1mt/RsvW47CyVwXFW8D/Wq8v3+Ovdlu5Dy9bwhUy0zq/islO8oa9J1Q0etyDXtE3loF5b3XosT3AT33fv7oObSNGxWhsh91WPsLAuMERaIvSi4kTeqc6PaKtG91oWwrwdQamCFyMHki/CDzv6/77ozcr6cFvZmm0elSHkgPV3NyslFKqubk5lPsfD0qB2glqH9/3eVDp23zJdzl+YZXjXyPT9idWmX/teP/frXL8yfd96xVst+59qO/ybbLKcVQkWtQpeMMq8+cdf3vaKse/+773bOu+b/ou33FWGdZFVjcOt8q8W8Hk/vf3QbcTBWqG73tfb937Vt/l+4ZVhjsi0+PLVplfU1Db//6HrHKsB9Xo+97PW/f+qO/yLbTK8Q+R6fGwVeYfON7/gVWO+3zfd5R1X6VghK977AVqt3WTUZFoMUTBJqvMH+p/vwbUa1Y5PuP73h+z7rvEd/nOssrw18jqhvPw0H/HU8CkHWE7PD+zKsTtvu/RoGCz0rc51nc5rrLK8bPItJ2sdIemFExVgKoH9bZVjgt83/c91j03KqjxXb6nrHJ8PDI9vmCV+w0FgxSgjrbK0A2qxfd9r7bue4/vsu2NMeIjI9PDduJ/2v/e160yPFfVff9s3fdi3/f4oFWO5yPToknBBqvcF/S//7hVjut833e4gl7rvuN8l2+eVY7/ikyPk6wy71QwXgFqKKitVjlm+77vh637vlRV+WxH45TI9LjWKvdflG3z3m+VYTO6/fq774+s+97ou2yTrHLsQtv3aPQwhzg84Qnm+RiFGbEe5/s+pyt9i7Wqmg5+rlWOpZHq+wur7L9XgDrXKkMbqAbf9/yedc+7qirbfKss10emxV7W/6FScKUC1I+tMtxT1X1ftO55UVXl+xvVdiZejxlWuXcrOF7VglplleGTvu85zrqnUnZH6ec4EBOVrYtMj29Y5X5TQZOaYpWhF9T+vu/5CeueL1ZVts9ZZXk4Mi1Q8JRV9nsVoL5oleGlqu75c+ue/11V2X5lleVLkWkxSkGnVfZPKkD91irDjb7vWatgnXXP9/suWw2oTqssUyKtH/oQhyc8wTwf37EqwuKq7nOr0reZX1VZ4jHiE5WZfvqY+qtVhmuquudq635zqypbPEb841bZt6ux7K92WWV4r+/7HWrdr0vp0bz/sj1A1EYcBT+zyv8X9TFqlQK1AT1t4O9+X7Tu93RV5arBRBOiM+KDFbxulf96dYf1/Q9Udc/fWvf796rK9l6rLG9FWjeOUXZ0qp5T1GqrDJ/3fb9GZZyGGVWV7RqrLD+JVI9/scq+Xh3BcKXQUdlDfN9vlnW/jUqnCfgv2yJLj/Mi1UMf4vCEJ5inYySoDsuIn+n7PnUK3lGgFJxSVXlq0OFPBeqYSDX+NwVKNbJObWGo2gJqhO97HWtpsVXpDsJ/uezcqnci1QIFTypQ6hjuVwrU76u611WWHg9XXS57yvPnkWoxWsEWBUpdw2eVAnVFVfezowJfrrps9pTnRZHqcZZV/i71MocqBWq673sNU9oRVgqmVFWuIehIkwI1LlI9/p8CpUbwsuqiQb0NarDve33Q0mJN1eWypzxfjFSLeqWn4pQ6g3lKgfrfqu43z9LjtqrLZk95fi9SPfQhDk94gnk6zuZSNZ2/qD+xVxX3OUOBUtrpqau6TI/om6kvRKrxIAUrFCh1MT9V36zqXjdZetxbdbkaMNON/kdJfo4jFPQoUOrnfEy9p6p7vWTp8cmqy3WKpcWqSLVAwaUKlBrGZrWYg1ST7/tMUCZnbL+qy/Vflh7/E7keOrdpBovUvTRUcZ9PWlpUl69iH89bepwbqRbDFLQrUOoKrlOfq+pe91h6fK/qco2ytNgNalikeuioTA271aPMqcJuNShos/Q4vepyfdzSY1GkWuhDHJ7wBHN/T0ao0db86Piqck2eVgTUSMGM4qsbGXg/TmOWqrXC04P5Z5/3GaVgm6VH9Y0U4hrFoz7ItxQo1cg2pR0gP/eZa2nRqaqdzoL4RvGN1KnpVj0fyQsK3wMEe8T6RCDlmmtpsTziunE4E9Vwa1XOPtzi8z61yh5kwOWBlCuuUfwHOdf6HUrV8UGf9zlYmeTtdwVSLjvn7X0R63EGP1ag1BDWK/+O/WctLVoVVTnV+phkadFFNasJ/R3i8IQnmKfjAGapWmskD1f4uMfJ1md3KmgJpEwnE/1c/D6g2kFdz+XW7+lSeqWV13vZy42fDaxs9ij+tgj1OAVUL7VqDo9Zv2elgn193MtebnxtYGWzR/HnR6jHf4F6m3FqZP+I827lPTl/PwW7rM/PCqRco+nPflb7RqRFHahnQf2WM5X5ej/ROztXbIOCYOyaPYr/S4R1YyKobaC+wo3W79mi9JYGXu/1M+vzvw2sbHaO1bUR6vExUDsYrI5hqfV7lii9ws/LfQYpPa2nlI6uBlO2tZYeJ0WoB4jDE6ZgPo7PK/oN19c8fK5RmQ7N7yhvz2MvUDusAh0Zkb63Y+a7a7jP+k2dCk7wcJ/JykR3zgqsbKdaZVuLznEKW4u9QP3d+s7r2VeZBOwXlc5ncXuviwt03Cew8t1glS2q/WfeBarH+s6ZzFL0DxBuV4X70VQ+/tf63B8CLd8LVtkujEiPf7G+bzOoIVxj/abdytsKvKHKJD/7GWgVP1owDuDoiPR41Pq+J6hXJj+rXcGRHu5zvDLRnemBle0frLJFtXXBvuj9mBSoLzBJ6WRjpeBPyptTe4X1uVal+5lgynenVbbvRKSHfYjDE55gPg89faGP/1LuMuLnW9evV0FFd+zjQasw/xaBtrZDsRt7I7m9lZ5yUEqv3vqwi/vspczS62A7tEGYJZXHRqCH7VCsQU8haUfubeu3vargMBf3OUrBDuszwXVooEdnCp3IXRuyFnXoLRIUqHv73z9PGafnPqU770r3sgcVPara1TcDj2ut8lW3bYC740BQ263v+xQoHeWy7cBuBV9X7iJfD1ifWaX0pnXBlXGJVb6LI9DjH63v2omdYzdCwXPWb3tHuVvEMVLpZf5Kaac4uPLti9m7ar8I9LjL+q5l2Ft6HKfMhoRLlF4RW+k+s5Vx/i4OtHznWeV7OQItCg9xeMITrIrD9qrtKZmjS1zXoHRExzZy7wu8LJ8hmtD0OEyY8/uOvw1W8LsCPW5TpaMbY5XZSG6tgjGBl/M+qyD/GbIeZ2AM5BmOvx2kTIh5h4KvqNIjrxOV2TvjYVXNvkzFjjrMDtRhh6a/a33PRgZGDM5R0G39xlWq/B4hXy649quBl3GGVcYtVLM6qPIxGONM7Llq7/vW71MKHleFO1M7jyZl9pnZpYKMZtiHvUv6gyHXjUMtzRWoyx1/G6ZgcYEe31Ol89cOUbDMum6FCmpqr/Cwd0m/NGQ9PmF9Ty8DB2bvUmbDyi1KT3+WWtxyljIb2N4eeBmHYaK1h4asR+EhDk94glV5nKeMR64ULFB6990TFMxRep+FVwv+HrwBB73CoMv6krAeq9CIMeAvQpGVNw0KrlNmVc1OpR2ff1A6v+d0pY2ZHbbdrOC9oZT1o1Y53ya8/YkKDfiPil4zRsEjBf/3a5XOWTpLaSfnXKVXmdjRj2UqyKmswuNWwp/WskfvilKrft6t4O8FejyndITjZKVzdD6tTEK/7TQHX84azGaIYU5r2aP3DegE0D2v+YwyU7q7FfxKwT8r3SbmKL09wSrr791Kt6Nw6rFCd2xhJbYPB7XC+p6nKLZ7794Kfljwf9+pdCTsPKVtxweUfiSFvefOOuUv76fyYW+G+NcQ68YM6N+vq/j+ZQcoMyhUSu/kfo3SNvREpXfu/nXB359S/hcGlD/szRCjnNYShyc8wQI4xik9CrPDisWOTQrODLUc9nO15odw71pQd2MM+AFlrz9BwaIyWigFLygdBQlHiwZ0UrVC768R9P1H4jTgpXeYrlG6E7OjPaWOO5U2+uHoUfjsN//7JZU+3ovZDuBbZa8dovSW93ZHX+zoUnqzwXC0ALOy8amQ7n8lxomYXfbayQp+U6FutKqwBgb2Ya9svCqEew/C5O2sptKzqs5U2jaU02OhCjoloPAYganLx4dw/4mYKPkDlMszrFM6R7S9gh43qyBWZZU67P2J2q3/yzDroX2IwxOeYAEeExV8U+lpiTcULFc6XP3PKozQ68DD3nNlB6jxAd63DpO81gNqjuvPnqB05/ZnpRMun1f6sRQfUEHsP1TpsFdr/YVgk5fHoLfCV+i8HXcPG6xXelT2E6Vzl1Yq/Qyd76ugltRWOuzVWv6f4VT8OAmzg/EDrrXeV+lpvvuUfrjmy0onal6uqnk+lNtjHCYiOjvge1+B6Y0ucf25w5XOC3xc6bbyotJ25B9UmI6wfdirtTagn28V1H0Ho3c9V+iVWUe7/uz7ld6g8FkFf1PwV6VXZZ2igp7yLXb8zCrzbwO+70HQv7v0i9g5f5WOwUpPa92h4BWlZwyWKB0trm7zSTdHHag3rTJ/MeTvsg9xeMITLFOH/QTk2wO63xBQ91v37Ab1kQT8RrfHKEzy8scCuudkTGTnbevfcf9Ot8fZVrm3g5oQ0D0/hEnKfYxqHh8R/XGLVe4lBJPMXYt57IyCKjfjjPaoA/WKVe6gnkO3L6g/YOpcdA/lrP44GJO7cnJA95yGecjyq0S9u3V1h50j2k44EeKBhzg84QmWqcNOyFTozqiaex2Ozs5X6NHw3AT8Pq+HPXWxkepXXXwEVAcmNH9gAn6f18OeuniS6jr5BnTHqKzjIaLfnKzaY0zB/2e1Uzmj0Q6frcdlCfh9Xo+5Vtl7qeY5cPqYgYlkdII6MQG/z+thb8q4Bp2DVM29PoPJ2VlOdFsABHXUYxziX0bwfeLwhCdY5g57lLkVf4arCZ2HYYf83wb17gT8Lj9HA3rTN4U2NO6mn5zH/pgnKSu0szAmAb/Nz3EgJur1M/w5PbMwU3oKvUvvnkmo6TgutH7DbvSqGa+frwP1WcwquG2gLkjA7/J72BvvrQd1hI/PDwf1/zArF1eCmpqA3+XnGILZeflp3E4/OY8p6BV6yjp+TdSPrQjuOBYd5VeEn8AsDk94gmXuaAC1AJOk+mXcdUjjQH0DvV+Lso4HSd9oZOAxCRNKXoPeR8jN596FXt1kN/Ju9B4uae3c7WMuJlz/BO4iVfWgPoDTeLcT9TOYwjm+X/CbbgTV7OIzw9COzt8LPvscOioa9++p5hiCGSB0oB/P4iYn6wB0bpgdMVPoVWpB5gPFcRyFcWZfwX0S83vQ+zzZjt929AaUUWyEGubx6YL/3/vQG1eG8T1u++8a60XuaW5uprOzk6FDh7J169a4ixM5ewH3AHOtf68B/hd42nq9ExgCTALeBZwMnADUWdf/Hbgc+FVkJQ6XQ4CHgMnWvxcD9wF/AdahG80I4GDg3cBpwGEFn38C+ArwcjTFDZ1zgDvRdaAHeBB4GHgJ2AjUA2OBQ9H14v3AaOuz3cBtwDeAzZGWOhxqgBuAr1n/3gj8AvgDuh10otvTRGAqMAuYAwy2rn8H+DbwA2B3ZKUOjxHAA+jfCbASbUsWAW+i//+bgQOBY9FazCj4/IvAV9H6ZYHpwG+A8da//4DW569Au/XeSLSNeQ/wPrQ2Ng8A/wKsjqCsUfBpYD4wCNiG7mOC/r/20n/H7gUm4chzhKfw+CyoNsquaXQcC9ErNsLauybOYwiomzFTdZWOneil/mmdzqt0TAb1O5daKHQ9+h7R7EAbx3EmOpnUrR7L0dHTvRNQ9qCPOlBfRz8Ow40Wveio8lzSH8UodowE9VPMg3grHVvRC0fC2hMt7mMa+inq7xDOFJ1EeDyS9whPIXsBZwNnoqM544BGYAc62rMSeAp4nOyMQsrRApwPzEaP2EdZ728F3gCWA0+i9eiIvniRcxRwHnp0ehCwDzrqsxF4HViC1uNPQG88RYyMOnTE4kPAccB+6ChYF9AK/A34MzritzyeIkZKM/BhdITvGHTbqUPbjtXAq8BC4DF0pDTr7A9cgI5+HQbsC/Sh7cQb6KjPQnT92BFTGaPkILSNCBq3/bc4PBbi8AiCIAhC+nDbf9dGWCZBEARBEIRYyJTDc8kll7Bq1Sp27tzJ4sWLOe644+IukiAIgiAICSAzDs95553HjTfeyDXXXMO0adNYtmwZCxYsYNSoUZU/LAiCIAhC5ok9gzuIY/HixeqWW24x2dg1Nertt99Wl19+eaBZ3nLIIYcccsghR3IOt/13JiI8DQ0NTJ8+nSeeeKL/PaUUTzzxBDNnziz6mUGDBtHc3Ow4BEEQBEHIJplweEaOHEl9fT3t7e2O99vb22lpaSn6mSuvvJLOzs7+o7W1NYqiCoIgCIIQA5lwePxw/fXXM3To0P5j/PjxlT8kCIIgCEIqqY+7AEGwYcMGent7GTNmjOP9MWPG0NbWVvQz3d3ddHd3R1E8QRAEQRBiJhMRnp6eHpYuXcqcOXP636upqWHOnDksWrQoxpIJgiAIgpAEMhHhAbjxxhu54447eO6553j22Wf5yle+QlNTE7fffnvcRRMEQRAEIWYy4/D83//9H6NGjeJb3/oWLS0tvPDCC5x++umsX78+7qIJgiAIghAz8iwtC3mWliAIgiCkD3mWliAIgiAIgoU4PIIgCIIgZJ7M5PAEhey4LAiCIAjpwW2/LQ6PhS2Y7LgsCIIgCOmjubm5bA6PJC0XMG7cuMATlpubm2ltbWX8+PGSDB0ionN0iNbRIDpHg+gcDWHr3NzczNq1a8teIxGeAiqJVQ1bt26VxhQBonN0iNbRIDpHg+gcDWHp7OaekrQsCIIgCELmEYdHEARBEITMIw5PyHR1dfEf//EfdHV1xV2UTCM6R4doHQ2iczSIztGQBJ0laVkQBEEQhMwjER5BEARBEDKPODyCIAiCIGQecXgEQRAEQcg84vAIgiAIgpB5xOEJmUsuuYRVq1axc+dOFi9ezHHHHRd3kVLNiSeeyIMPPkhraytKKebOnbvHNddccw1r165lx44dPP744xx88MExlDTdXHHFFTz77LN0dnbS3t7OAw88wOTJkx3XNDY2Mm/ePDZs2MDWrVu57777GD16dEwlTief+9znWLZsGR0dHXR0dPDMM89w+umn9/9dNA6Hyy+/HKUUN910U/97onX1XH311SilHMerr77a//ckaKzkCOc477zz1K5du9TFF1+sDjvsMPU///M/atOmTWrUqFGxly2tx+mnn66+/e1vqw996ENKKaXmzp3r+Ptll12mNm/erD74wQ+qI488Uv36179Wr7/+umpsbIy97Gk6HnnkEXXRRRepww8/XB111FHqoYceUqtXr1Z77713/zU/+MEP1Jo1a9TJJ5+spk2bpp555hn19NNPx172NB1nnXWWOuOMM9TBBx+sDjnkEHXttdeqrq4udfjhh4vGIR3HHnuseuONN9QLL7ygbrrppv73Revqj6uvvlotX75cjRkzpv/Yd999k6Rx/CJl9Vi8eLG65ZZb+v9dU1Oj3n77bXX55ZfHXrYsHMUcnrVr16p//dd/7f/30KFD1c6dO9X5558fe3nTfIwcOVIppdSJJ57Yr2tXV5c699xz+6859NBDlVJKzZgxI/bypvnYuHGj+qd/+ifROISjqalJrVy5Us2ZM0f98Y9/7Hd4ROtgjquvvlr99a9/Lfq3JGgsU1oh0dDQwPTp03niiSf631NK8cQTTzBz5swYS5ZdDjjgAMaOHevQvLOzkyVLlojmVTJs2DAANm3aBMD06dMZNGiQQ+uVK1eyZs0a0dontbW1nH/++TQ1NbFo0SLROATmz5/Pww8/zO9//3vH+6J1cBxyyCG0trby+uuvc/fddzNhwgQgGRrLw0NDYuTIkdTX19Pe3u54v729nSlTpsRUqmzT0tICUFRz+2+Cd2pqarj55pt5+umnefnllwGtdVdXFx0dHY5rRWvvTJ06lUWLFjF48GC2bdvGOeecw6uvvsoxxxwjGgfI+eefz7Rp04rmUUp9DoYlS5Zw8cUXs3LlSsaOHcvVV1/Nn/70J6ZOnZoIjcXhEQShLPPnz2fq1KmccMIJcRclk6xcuZJjjjmGYcOG8ZGPfIQ77riDWbNmxV2sTLHffvvx/e9/n9NOO00eIREijz76aP/r5cuXs2TJEtasWcN5553Hzp07YyyZRqa0QmLDhg309vYyZswYx/tjxoyhra0tplJlG1tX0Tw4brnlFs466yxOPvlkWltb+99va2ujsbGxf6rLRrT2Tk9PD6+//jrPP/88//Zv/8ayZcv48pe/LBoHyPTp0xkzZgzPP/88PT099PT0MHv2bL70pS/R09NDe3u7aB0CHR0dvPbaaxx88MGJqM/i8IRET08PS5cuZc6cOf3v1dTUMGfOHBYtWhRjybLLqlWrWLdunUPz5uZmZsyYIZr74JZbbuGcc87hlFNOYfXq1Y6/LV26lO7ubofWkydPZuLEiaJ1ldTW1tLY2CgaB8jvf/97pk6dyjHHHNN//OUvf+HnP/85xxxzDM8995xoHQJNTU0cdNBBrFu3LjH1OfbM7qwe5513ntq5c6f6xCc+oaZMmaJ+9KMfqU2bNqnRo0fHXra0Hk1NTeroo49WRx99tFJKqa985Svq6KOPVhMmTFCgl6Vv2rRJnX322Wrq1KnqgQcekGXpPo758+erzZs3q5NOOsmxxHTw4MH91/zgBz9Qq1evVrNnz1bTpk1Tf/7zn9Wf//zn2MuepuO6665TJ554opo4caKaOnWquu6669Tu3bvVqaeeKhqHfBSu0hKtgzm++93vqpNOOklNnDhRzZw5Uz322GNq/fr1auTIkUnROH6Rsnx84QtfUKtXr1a7du1SixcvVscff3zsZUrzMWvWLFWM22+/vf+aa665Rq1bt07t3LlTPf744+qQQw6JvdxpO0px0UUX9V/T2Nio5s2bpzZu3Ki2bdum7r//fjVmzJjYy56m4yc/+YlatWqV2rVrl2pvb1ePP/54v7MjGod7DHR4ROvqj3vuuUe1traqXbt2qbfeekvdc8896sADD0yMxjXWC0EQBEEQhMwiOTyCIAiCIGQecXgEQRAEQcg84vAIgiAIgpB5xOERBEEQBCHziMMjCIIgCELmEYdHEARBEITMIw6PIAiCIAiZRxweQRAEQRAyjzg8giAIgiBkHnF4BEHIPDfeeCP3339/3MUQBCFGxOERBCHzHH/88Tz33HNxF0MQhBiRZ2kJgpBZGhoa2L59Ow0NDf3vLV68mJkzZ8ZYKkEQ4qA+7gIIgiCERW9vL+9973t59tlnOfroo2lvb2fXrl1xF0sQhBgQh0cQhMyilGLcuHFs2LCBF198Me7iCIIQI5LDIwhCpnnXu97FsmXL4i6GIAgxIw6PIAiZ5phjjhGHRxAEcXgEQcg2Rx55JC+88ELcxRAEIWbE4REEIdPU1tZy6KGHMnbsWIYOHRp3cQRBiAlxeARByDRXXXUVF198MWvXruWqq66KuziCIMSE7MMjCIIgCELmkQiPIAiCIAiZRxweQRAEQRAyjzg8giAIgiBkHnF4BEEQBEHIPOLwCIIgCIKQecThEQRBEAQh84jDIwiCIAhC5hGHRxAEQRCEzCMOjyAIgiAImUccHkEQBEEQMo84PIIgCIIgZJ7/D/62DrgOEGYRAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -280,7 +280,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "id": "24a29b41", "metadata": {}, "outputs": [ @@ -293,7 +293,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGwCAYAAACtlb+kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACEUElEQVR4nO2deZxdVZXvv5VUKmNVEghJZQASkDkMAqGRDiYiQcQWDPoAQQWablp8vLToaxponxFb5UkzpEFom/cQaJ+iqNAoCgYCibRhMEFiEmQQCIRKpcxcSSqpSiX7/bHPqX1O1R3OPK7v53M+5+bec0/t+8vea6+99tr7NAAKQRAEQRCEAjMo7QIIgiAIgiDEjTg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwtOYdgGyxKRJk9i+fXvaxRAEQRAEwQfNzc2sW7eu5jXi8FhMmjSJtra2tIshCIIgCEIAJk+eXNPpEYfHwo7sTJ48WaI8giAIgpATmpubaWtrq9t3i8PTj+3bt4vDIwiCIAgFQ5KWBUEQBEEoPOLwCIIgCIJQeMThEQRBEASh8EgOjyAIgiDkgBEjRjBu3DgaGhrSLkpiKKXYuHEjXV1doe8lDo8gCIIgZJiGhgYuv/xyZs+enXZRUmPx4sXcd999KKUC30McHkEQBEHIMJdffjmzZs3ixz/+Ma+++iq9vb1pFykxGhsbOfLII7ngggsA+N73vhf8XlEVShAEQRCEaBk5ciSzZ8/mxz/+Mb/85S/TLk4qvPnmmwBceOGF/OhHPwo8vSVJy4IgCIKQUfbff38AXn311ZRLki727x83blzge4jDIwiCIAgZxU5QLtM0ViXs3x8mYVscHkEQBEEQCo84PIIgCIIgFB5xeARBEARBKDzi8JSGwch/txPRQhAEoUyI1S8Fk4FNwPfTLkhG+BTQDVycdkEywl3Ae8DUlMuRBYYCLwNPAuXZzbY604HNwD+mXZCMcBWwAfjLtAuSEQ4BjkYPqLOPODyl4BPAaHQH/750i5IJbkVvQfUDpFMD+ALaKf5u2gXJAO8HjgfORLebsnMVMBb438D4lMuSBe4GxgH/lWopRqR0uBmErhvDgYkVy7l27Vquuuoq13sf+MAH2LlzJwcddFCg3x4GcXhKgdPJ+evUSpFNPpx2AVJmiuP1HCqZtXJxjOP11amVIjsc4Hh9eWqlyCbvT+WvjgB2pnS4rcMwx+v9K5b1+eefZ8aMGa73FixYwIIFC3j33Xd9//awiMNTCk5wvD4prUJkhGHoaIbNcWkVJCMc63g9CJnWmu54fXhqpcgOTgew7HpM7vfvw1IpRXYY7njdSKVprf4Oz2c/+1kOOuggbrrpJgA+9rGP8eqrr/L6669zxRVXxFxeebRESXB26v0bbdnoP988pdqFJWF6v39PAV5JoyAZwdnBT0TXlb0plSVtmnB36mVvK8f0+/eBqZSiCxiZyl/Wf9swvN+nTcAu1zvPP/883/72txk5ciT79u3jW9/6Fl/5ylfYsWMHgwcP5rbbbuNDH/oQnZ2dvPTSSzz88MNs2bIltvKLw1N4hgH7Of5ddqPV30iV3QE8pN+/y14/DnW8Hgy0Am0plSVtDgSGOP4tdcNNenoEe5JU1Azt9+8h9Hd4li1bxt69eznxxBM588wz2bRpU9/DP0855RRWr17NunXrAPjVr37FRz7yEX70ox/FVmJxeApP/7nV0ejxwc4UypIF9uv377IbcdHDTSU9yurw9NcinYhGdpC24qa/+9A04Iru7m5WrFjB+eefz5VXXsnHP/5xlFIATJo0ibY207bee+89Jk+OdwAqOTyFx3Z4OoBO63WZoxq2Hq9Z5zJrAcaI23qU2YgPBsZYr209ytzJ928rzUBLSmXJAnZbsR/iWea6ASY1YLd1HujwgJ7WmjdvHk899RRPP/103/uVnollO0NxIQ5P4bEb6Sb0XitQ7k7e1uMP1nkS5V6a3l+PMjs8YxyvV1rnMuth14216L14QPQAaSs2doTHnsYaUvGql19+md7eXv7hH/7B9X5bW5srojNlyhTa29tjKKdBHJ7CY4/SNmFC82VuqLYer6CTUYdQ7v1FxIgbbC22AWus16KHdnbswVKZoxr928pEyp0VYv92O6OocoTnkksu4e677+b11193vf/iiy8yffp0Jk2axKhRozjnnHP49a9/HV9xKff/VkmwO/jNgJ39LhEe+DOwHq3FFPSUXxnpb8SlQ5MO3qa/HschDiDoKa0edAc/ER0BKxsNmMi4HeExDk9DQwMHHHAAV1xxBUcccQRz584dcIe9e/fy5S9/mWeeeYZBgwZx8803s3nz5gHXRYk4PIXHOaW13npdeVfMcuCMeLWjHZ7W9IqTKkMwORmrrfMY6/09aRQoZZwdvN1WxqVUlizg1MPuzA6ocm0ZsPXYiB4wTUHXjzI6PLbroNCP6XG+Bx/84Ad5+umnefXVVzn//PPp7OzsfwMAfvGLX/CLX/wi1pI6EYen8Dg7+I3W6/6rDcqE04hvsl6PTaksaWP/7n3AO9bZ3i7+z2kVKkWc0VB7pCltxe3wiB6mfkyhvHrYrkOvdTjfgyVLljB4cPaeryU5PIXH6fDYU1plbaTg1qPsnZr9u7eijdbWfu+XDWc0tOx1AwZ28M73yojoYbCdmb24N+bMnpPjRByewjPGOm9BGimY3y56uA248yx6iBYgejgZiYlyiR7uCI9CR4dBHB4hZUZZ5+1IIx2EefxdJxLxsvN37Pn1steP0da5E6PFKKqtPik+th7bMG2lrNO/Y6zzHnSSbtlthzPCA5WmtbKIODyFx3Z4diJGy/ms351IB2/XjR3Wuex62E8o2oF2emxjXtb24tRD6oZG2orGdh3syI7dViTCI6SKs1NzNtIybrZna7EXvTuorUfZOzT7MSNlN+JOPRQyincOlqRuaKStaCTCI2QSZ0O1Dfhg9DbxZUOMlhuJ8LgRPdw420vZtZC64aZ/hEccHiETOBvqbswmUWWMaojRciMOoBvRwzAYGGa9dkaHRzjeLxNSN9zIlJaQSaShGvprUfYpi2p5CWV0hkHyNJyMdLzeic5pskfxZawfYkfd2K6DTGkJmWEQYsSdVIvwjKXcOU1ixDWih8G2G3sxO+mWeYAg0WE3diRHprSEzOBclWQ3VDFaAyM8gzFLtMuEjFrdiB6G/h08lFsPqRtuZEpLyBx2I92Hzt+Bck9b9I92dWMMWBkNV7VR6/4Vri0DooehfwcP5e7kqzk8w3APLMuCt6TltWvXctVVV7ne+8AHPsDOnTs56KCDYi1hJcThKTSVRmkS4XEb8a3WeTTlo78R32adyxjtAtHDSf/BAZS7rfS3HTswnX0a9WNESodN/2XplSM8zz//PDNmzHC9t2DBAhYsWMC7774b8LcHRxyeQlNplGbvqlvmZelOI27rIZ1aubVw7sItelQeHGy3zmI7NGnVjxHo/5c0DruNeJvS6u/wfPazn+Wggw7ipptuAuDhhx9m8+bN/OQnPwkuhw/E4Sk0lSI8YsQrO4Cih9FiKOV7nEL/Xbih3HWj1mBJ9NCUWY9qDo/bpXj++ec56qijGDlyJMOHD+db3/oWX/nKV9ixQ/dJd9xxB5/73OcSKTFkPaVaCIl08G4qjdJk1OoO09u0ABuTLU6qOPPd7L2qpG7IYMkmSxGvLtzbBiT9t2HgsvTKDw9dtmwZe/fu5cQTT+TMM89k06ZNfO973+v7fPHixcyaNSvOArsQh6fQiNFyIw6gm/71Y5/1ehTldXikbmikrbjJmi3tqn9JrPRflm47Pg3WoQDo7u5mxYoVnH/++Vx55ZV8/OMfRymVbFEdyJRWocnSqCQLSKfmplanVrb6IR28G2krbkQPN/2ntPY5PhuYxzNv3jyeeuopnn766SQKVxVxeAqNvQX8Lsd7ZW6kdp6Gc3RUZj3EiBtECzeihxtxiA1Ot8Hp6FROXH755Zfp7e3lH/7hH+IuWF1Sd3g+//nPs2LFCrZt28a2bdtYunQpZ599tuua+fPn09bWRldXF8888wxHH3206/OmpibuuOMONmzYwI4dO3j00UeZPHlykj8jowy3zuLwaMQBdCN6GGppMYzyJXHbtqPS4KBs0T+QtuLEuSt9fYfnkksu4e677+b111+Pu2B1Sd3hee+997juuus4+eSTOfnkk3n66ad59NFH+5yaa6+9li996UtcffXVzJgxg/Xr1/Pkk08yatSovnssWLCAuXPnctFFFzFz5kxGjRrFY489xqBBqf+8lLEb6W7He2VtpFBbj7IZ8cGYFD6pH5U7tO2O12WrH5Xaiq1H2eoGyODRid2v9s/FMSu1GhoaGD9+PNdffz1HHHEE8+fPr3inJ554gp/85Cecc845rF27lpNPPjmuQvehsnZs2rRJ/fVf/7UC1Lp169S1117b91lTU5PasmWLuvLKKxWgWlpaVHd3t7rgggv6rpk4caLq7e1VZ511lue/2dzcrJRSqrm5OfXfH90xX4FScJfjvWnWe9szUL6kj99av/08x3uft977aQbKl+QxyvrdSsEwx/s/s977uwyUMcnjfOt3/6bf+zus96dloIxJHt+1fvdXHO+dZr33egbKl/TxlvXbT3G89zXrve/E+rcPPvhg9R//8R/q4IMPzoAOKBiq4CQFJ/R7/0jr/dFq1qxZau/evWr16tXqlFNOieTv1tLBa/+dqRDIoEGDuPDCCxk5ciTPPfcc06ZNY+LEiSxcuLDvmp6eHpYsWcJpp50GwEknnURTU5Prmvb2dlatWtV3TSWamppobm52HcWj1ihtFBkI8CWMRLwMwxyvux2vyzqKr1Q3oLwRQIlouJGIl8Ge0trX730zpbVkyRIGDx7MMcccw4svvphg2WqTiR5v+vTpbN++ne7ubr773e8yd+5c/vjHP9La2gpAR0eH6/qOjo6+z1pbW+nu7mbr1q1Vr6nE9ddfT2dnZ9/R1tYW7Y/KBLbRqtTBgxhxKK8Rd9YN5XhfOng3Za0fMjhwI7bDUG9KK7sPEM2Ew/Paa69xwgkncOqpp/Jv//ZvPPDAAxx11FF9n/dft9/Q0FB3LX+9a2666SZaWlr6jmImOVfKS+jBjOjL1lDFiBvqRTRED43oYbC1GE75tnAT22HovyTdRhweT+zZs4c333yT5cuXc8MNN7BixQr+/u//nvXr1wMMiNSMHz++L+qzfv16hg4dypgxY6peU4menh62b9/uOopHpQgPyCheRmnSwfdH9HBTqa1IErc4PFB/SisTbkVFMlmyhoYGhg4dyttvv017eztz5szp+2zIkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a8pLpQgPlHfuWVZpGWQKx001PaStGPZi9qEpkx5DHa+THyzZMxWNjVmJqlWb0qr8eImosH9/mJ2aU1fwm9/8Jo8//jhr166lubmZiy66iNmzZ/ftxbNgwQJuuOEG3njjDd544w1uuOEGurq6+OEPfwhAZ2cn9957L7feeiubNm1i8+bN3HLLLaxcuZKnnnoqzZ+WAWTU6qbWqLUF55boxada3ZAO3k1Z20qt+jGScukx3PE6+QjPpk2bADjyyCN58803Y/1b3khnSuvII48EYOPG4I+8Sd3hmTBhAt///veZOHEi27Zt4w9/+ANnn312n7Ny8803M3z4cO6++27Gjh3LCy+8wFlnndX3tFWAa665ht7eXh566CGGDx/OokWLuOyyy9i3r/9/SNmQUbyhATNSq5bEPQp32L7ISAfvRlZpuallO1opV/2w68ZeoNfxfjJ1Y+fOnSxevJgLLrgAgFdffZXe3t4634qTscAEtOPbXeH9EUQ5cGxsbOTII4/kggsuYPHixXR1BX+OWOoOz9/8zd/UvebGG2/kxhtvrPp5d3c38+bNY968eVEWrQBIp2ZwhqWdenSjE7mb0HqUxeGp5wxLB68pY1sBsR1O6qUGjEB3pfE5Iffddx8AF154YWx/wzvNwH7oXbg3ON4fCYxD15nq+bNBWbx4cZ8OQUnd4RHiRDo1gzMsXUmPcWgjXsTtCSohHZob0cON6GGotvijfxL3lthKoJTie9/7Hj/60Y8YN24cDQ0N9b8UG58DbgB+Afwvx/sfBO4BVgJXRvbXlFJs3LgxVGTHRhyeQiN5GgZbi17MXLON0+EpC9KhuRE93EjEy1CtbuxB6zMcrUd8Do9NV1cX7777bux/pzY9aE06gXcc779tvd/S7/3skMlVWkJUiNEyVNMCyh3xqrUqKc1RZNLIKi03ktNkqDalBeW2pfkbHIjDU2hk1GqopgWUs1OrVzdAJ3GXBWkrbiQ6bKjWwUM560c1BzD7WojDU2gkh8fgJcKT3YYaPdWM1m50qB7KqYdENGAIZmlx/jq16Kk1WCpj/ajXVkaS1d2WxeEpNDJKM3gxWmXSw8uotUxGXKZ/Dc4Hy0rES6a0+uM1iTt7iMNTaEZYZzHiEuHpjziAbmRKy+B0eLr7fVZGPWoNDso8eOxvS/c43hOHR0iUJsdrMeISlu5PLQewzEa82qi1mfIkccvgwI0MDtzkN6dJHJ7C4iUsLR28JtuNNB7EiLupN6U1CJ2bUAZkcOBGprTc5HcBiDg8hcW50V5Pv8/K3Ej7h+gh6400HsThcVNNj12YHXTLoofUDTf5jWjEQ34dQHF4Ckul50bZlLGDr6VHthtpPEin5kb0MEjOihupG27y6wCKw1NY7A6+UkTDrpRNuJ8xVWS86JHNRhoPMm3hRvQwyODAjdQNN/m1peLwFBY7ablSpdzheJ3Nihk9+W2k8WDr0X+6E0SP/pRND2krbqRuuMlv/RCHp7DUqpT7cK8+KQP5baTxUMshLtu0xRDHa9HDW1spUxK3tBU3tepHtvUQh6ew1KqUkPWKGT219LAjXmVx/sCb0SqLHs5pXdHDdPCVIhq7MA/fLYse0lbceNEjm4+lEYensHh1eMrSUGuFpcumBYgRdyIOj5t6tqNsAwRpK27ya0vF4Sks4vC48RKWHgY0JlOc1BEjbrC12AOoCp+XVY96tiObo/jokbbixostzaYe4vAUllpeOMgozYnzGTBlM+KV6kdZ64a0FY0MltxIW3GTXwdQHJ7CIqM0N7X06MUsOc1mQ40eL6M0qRuasupRzQHMdqcWPV7aShPu5PciIw6PkDlqNVLIesWMHhm1usmv0YoeaStuRA83XqPDZdCjAePY5S/iJQ5PYZEO3o0kYroRh8cgbcWNtBU3tfTYS9afEB4tzodS5y86LA5PYREj7kbC9G7yu7Q0eqRuuBHb4Ub0MOR7RaM4PIVFGqkbr2H6snTytfZasbUoy+Zy0lbcSE6TG3GIDU6HR5alC5lBjLgb0cMw2Dqgsh5d6N24oRx6yBSOm1rOMJSrrUD9wVKZ6ocfO9oQf3F8Ig5PYZGltm7E4THUC0tDueqHRP/cSFtxIxEvg1dnGLIYHRaHp7CIEXcjRtzgxeEpU/2QuuFG9HAjehjqabGbLD96RByewiKN1I1MWxhsLfZhjFN/ylQ/JEfDjdgON6KHoZ4WkOXBkjg8hUUaqRvp1Az1on9QLj28tpWhlGNzOZkOdyO2w+DH4cmeHuLwFBZxeNzIZmqGfBut6PEa/YNy6CHT4W7EdhjqOX+QZT3E4Sks4vC4kcRDgzg8burpUbZHj4jtcDPMOst0eN6jw+LwFBavYekydPAgRtyJF4enjEbcy6i1DO1F2orBOYUpeuR9sCQOT2HxarRkczlNdhtp9PgJS0sHrylj/ZC2Iisa+5PvwZI4PIWlXuhxJ2ZzuTI1VEnEzHtYOnrE4XHjZ+PB7G0uFy31dhaGctWNfA+WxOEpLPn2xKNlENBovZZRq3Tw/RE93PhJ4i56dNjWohczQOxPmepGvgdL4vAUFjHihnpP+IXyaAFSN/ojeripp8cuzP5N2RvFR0u+O/joyXdbEYensOS7YkaLzMO7kbrhxkvSclmioSD1w4lEyt3ku26Iw1NY8l0xo8Xp8Oypco2txTDM9FdRyfdeGtGT791jo0fqh0HsqJt86yEOT2HxYrTKMjKxtdhd45oybS7nJUxfpm0L8m3Eo0emcQziDLvJdzRUHJ7C4sdoFb2henH+yrS5nHTwbkQPN6KHwU+0qwl3vmARybcDKA5PYZFRmsGLFlAePaRDcyN6uJG8FYOfaCgUX498txVxeAqLn91js1cxo0UcHjdSN9yIHoZBwGDrdT73WokWLx38XqDLel30+pHv/K7UHZ7rrruOF198kc7OTjo6OnjkkUc4/PDDXdfcd999KKVcx3PPPee6pqmpiTvuuIMNGzawY8cOHn30USZPnpzkT8kYYsQNXrSA8unhdZRW9M3l/Iziy1I3IK+j+GjxOlgqW/3IZ91I3eGZNWsWd911F6eeeipz5syhsbGRhQsXMmLECNd1jz/+OK2trX3HOeec4/p8wYIFzJ07l4suuoiZM2cyatQoHnvsMQYNSv0npoQ4PAa/Dk/RR61+6gYUf3M5eZaWwenwiO2QwVJ/8t2vpL7+9qMf/ajr35dffjkbNmzgpJNO4tlnn+17v7u7m46Ojor3aGlp4YorruCzn/0sixYtAuAzn/kMa9eu5cwzz2ThwoUDvtPU1MTQoWa5cnNz9v5zwiGrtAxitNx40cPeXG4wupPfUePavJNvIx4tToen2hYOUD49ZLCk8bNKaxQ6OqxiLZEfMhf+GD16NACbN292vT979mw6Ojp47bXXuOeeezjggAP6PjvppJNoampyOTbt7e2sWrWK0047reLfuf766+ns7Ow72traYvg1aeF3Hl6MlkYcQDeih0HaihvRw43oYXBGh7PlAGbO4bntttt49tlnWb16dd97jz/+OJdccglnnHEGX/7yl5kxYwZPP/00TU1a/NbWVrq7u9m6davrXh0dHbS2tlb8OzfddBMtLS19R7HyffyGpbNVKaNHjJYb0cONODwGL5FhEGe4P2WpH1702I3e5gOy1rekPqXl5Dvf+Q7HHXccM2fOdL3/0EMP9b1evXo1y5Yt45133uFjH/sYjzzySNX7NTQ0oFTlcFpPTw89PfUqcV6ReXg3YrTciB5uxOExyBSOG2krbvzoMRatR3usJfJDZiI8d9xxB+eeey4f+tCH6k4vrV+/nnfeeYfDDjus799Dhw5lzJgxruvGjx9fNe+n2Mg8vBsxWm5EDzd+8hKKvrmc1A03Mv3rJt/1IxMOz5133sn555/PGWecwZo1a+pev99++3HggQfS3q49x+XLl9PT08OcOXP6rmltbWX69OksXbo0rmJnGLtS7qF2wlg2K2X0yKjVTb6NVvT4zUsosh5SN9yIHm7yrUfqU1p33XUXF198Meeddx7bt29nwoQJAGzbto3du3czcuRIvva1r/Gzn/2M9vZ2pk6dyre+9S02btzYN53V2dnJvffey6233sqmTZvYvHkzt9xyCytXruSpp55K8+elRL4rZfSIHm7EAXTjRY+96JVrw9F6bIq7UCkhbcWNtBU3+d6XKHWH5wtf+AIAS5Yscb1/2WWX8cADD7B3716OPfZYPve5zzFmzBja29t55plnuPDCC9mxwyyVveaaa+jt7eWhhx5i+PDhLFq0iMsuu4x9+/Yl+nuyQZAwbLaWD0aLhKXdSGKqGz+d2nCKrYc4PG5EDzf51iN1h6ehofYurrt37+bss8+ue5/u7m7mzZvHvHnzoipajvH7KAWAEcDOeIqTOvlupNEjerjxo8d4iq2HDA7cSFtxk++IVyZyeISo8Vopu9Cheih2QxWj5Ub0MAxxvBY9gnVoRX70iLQVN/nWQxyeQuK1UkI5Rmpep3Cy2UijJ99GK1q8buEA5WgrfusGFPvRI9JW3ORbD3F4CokfhyebFTNa8t1Io0f0MPhxeMqkR73pcOfmcmXQQ5xhTb5thzg8hUQcHjf5nneOHtHDYGuxDzO9W40y6SG2QyNtxU2+HUBxeAqJTGm58dtIh+LO7Sga+TZa0SIdvBvRw02+IxrRk289xOEpJGK03ATJSxA9pG70R/RwIw6xoQx1A/Ie8RKHp5AEMeLZqpjR4lUPe3M5KLbhEiNuEIfHjejhxm9bGYJZJFFE8m07xOEpJGK03Igebvzu01QGLSSioZHBkhu/079Q3PoxCLN1nzg8QmaQDt6N6OEm36O0aJG64Ub0cONVj33ofc2guHrkf88qcXgKiRgtNzJqdSObyxm87tEEUjf6I7bDTdHrR/73rBKHp5CI0XIj0xZuZHM5g9fpPZC20h/Rw03R9XA6PHvqXJtNLcThKSTSwbsRo2XwMw+/m+I/ekTqhhuxHW6kfhhsLfZQ/0HTthYjyZKbkZ2SCBEiYXo3YrQMfubhofh6SN1wI3q4ET0MQbSALEWHxeEpJNJI3YgeBj/z8FAePSSioZGcFTdiOwx+BtLdmGmv7OghDk8hkUbqRvQw+JmHh/LoIXVDI3q4EYfY4EcLyGL9EIenkIjRciN6GPzMw0PxR/FB6sYQ3I5jkZC24kYiXgZxeIRMIkbLTZBRmhgtTdHrR5C6AaIHFL9uQLB8yKLq4dd2ZC/iJQ5PIZEwrBsx4ob8G61o8aPHXoq/uZzYDjdiOwxBB0vZGTyKw1NIgoZhi7q5nBgtg0R43IgebqStuJEIjyH/bUUcnkKS/+WD0SKbyxnyb7SiRSJebmRLC0Oj47U4PEWwHeLwFBI/HfwuZHM5J9lrpNGSf6MVLaKHG4kOG/xu4VB0Zzj/bUUcnkKS/4oZLeLwGPI/Dx8tooeboNHhIuohe1a5yX+/Ig5PIcl/xYwWWaVlkLrhRvRw40ePbG4uFx1Oh6fXw/VlcYa9zBxAFiNe4vAUEjHihkZMNZdRmr8cDSi+HtJW3EhOk8FvBy91w032HEBxeAqJGC1D0LB0U7/vFgWpG27E4XEjehhECzf510McnkKS/4oZHUETD6HYekjd0IgD6Cb/o/jokLbiJv96iMNTSMRoGfzOwxd9c7n8G61oET3ciB6GoM5wIzAs+uKkTv7rhjg8hST/FTM6/M7DQzn0EGdYI3q4kbwVQ1CHB0QPyGLdEIenkOS/YkaHXy2g2NMWUjfciB5uRA+DXy32ATut10V0iPM//SsOTyERo2UI4vAUeRQfJqJR5M3lpK1o8t+pRUcY2yF6ZFELcXgKSf4rZnSI0XITtG6AOIBQ7LrRAAyxXoseMh3en/xP/4rDU0hklGYQh8eNXyPejUn2LrIe0laMswN57tSiQ2yHm6AOz0iy4mpkoxRCxOTfE48OMVpuRA83EuEx+N3CAcqhh+T/afIfHRaHp5DIbroG6eDdSE6TGxkcGJwOz56qV7mRtuJG9DD0OK7Nhh7i8BQOmYd3I6M0N2LE3cgybIOtRS96xZEXyqCHDA40+bel4vAUjjDz8NmolNEiRsuNODxugkZ4hmAiqUVB6oYb0cNN/vUQh6dwyDy8m/w30mgRPdzI5nKG/I/go0Xaipv8Dx7F4SkcQRweMVpuxGi5kfph2EdxHz2S/w4tWsR2uMm/HuLwFA67Uu7F/zx8dpYPRkf+G2m0iB5uRA+DaOFGBgdu8l8/ita7CaEqJWinp0jkv5FGi4zi3YgeBmkrbkQPN35X/0LW9Ejd4bnuuut48cUX6ezspKOjg0ceeYTDDz98wHXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkaGCLI76G6Ku7mcjNLchDHiLRGXJQuIHoYwWkh0WNNpncV2aMThcTFr1izuuusuTj31VObMmUNjYyMLFy5kxIgRfddce+21fOlLX+Lqq69mxowZrF+/nieffJJRo8wIa8GCBcydO5eLLrqImTNnMmrUKB577DEGDUr9JyZMkEoJYsSdbLPORdMCwhlx0UNT1PoRpm6A6AHSVvpj6zE64rIER2XpGDdunFJKqdNPP73vvXXr1qlrr722799NTU1qy5Yt6sorr1SAamlpUd3d3eqCCy7ou2bixImqt7dXnXXWWZ7+bnNzs1JKqebm5tQ1CHecoEApWOvze29b3zslA78hyuNa63d9z8d3DrO+sy0D5Y/6eMr6bRf6+M4XrO/8JAPlj/IYZP0upWCsj+89an3nbzPwG6I8zrZ+1+98fq/L+t7BGfgNUR63Wb/rmz6+M9P6zmsZKH/Ux2rrt83y8Z2vW9+5M9ayee2/Mxf+GD16NACbN28GYNq0aUycOJGFCxf2XdPT08OSJUs47bTTADjppJNoampyXdPe3s6qVav6rulPU1MTzc3NrqMYBI3w2KPW0RGWJQuEHcFnromEJIweRa0bIHqA2I7+SFtxk/9oaOas+W233cazzz7L6tWrAWhtbQWgo6PDdV1HR0ffZ62trXR3d7N169aq1/Tn+uuvp7Ozs+9oa2uL+JekhRgtN0ES7bY5XhfFEbbJv9GKDnF43ARpK1D8+pHvKZzoyL8DmCmH5zvf+Q7HHXccn/70pwd8ppRy/buhoWHAe/2pdc1NN91ES0tL31GcBGdxeNwE0aMbk/QtRrz4dQO8PzsKpIPvT9HrR5C2Mgx3/SoC+bcdmXF47rjjDs4991w+9KEPuaIt69evBxgQqRk/fnxf1Gf9+vUMHTqUMWPGVL2mPz09PWzfvt11FIOgRquoIxMx4m7yb7SiQ+qGG7EdbsImcYseWasbmXB47rzzTs4//3zOOOMM1qxZ4/rs7bffpr29nTlz5vS9N2TIEGbNmsXSpUsBWL58OT09Pa5rWltbmT59et815UGMuBvRw02QaYtsGa3okLrhRvRwE0SPfciKVyfZqhuNaRfgrrvu4uKLL+a8885j+/btTJgwAYBt27axe/duQC85v+GGG3jjjTd44403uOGGG+jq6uKHP/whAJ2dndx7773ceuutbNq0ic2bN3PLLbewcuVKnnrqqdR+WzqI0XIjergJY7RGoE1Gb41r84TUDTeih5swejRTXD387PGWrenf1B2eL3zhCwAsWbLE9f5ll13GAw88AMDNN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mAf5XXPNNfT29vLQQw8xfPhwFi1axGWXXca+fV4fr1AUwhqtbFTM6JAwvZsowvSboitOqgRN0pW64UZshxupH4ZsOcOpOzwNDQ2errvxxhu58cYbq37e3d3NvHnzmDdvXlRFyykySnMjergJosde9O7To9CdWlEcHung3UhbcSN6GIY4XgdxeIYAw4FdkZUoCJnI4RGixB61+ll1AsVspCCdWn/EiBtECzeihxvRwxB0C4ed6AETZEEPcXgKR5B5VihmIwUxWv2RML1B6oYbqRtuZLBkCOrwQJbqhzg8hcOO8IjDoxE93EgnbwirRRN6v5WiIHXDjUTLDXbd2GcdfsiOHuLwFA4xWm4k4mVwjtJEj+DO8A6M0Rc9ilk3ILjtyE5EIzqC1g3IUsRLHJ7CEbRiFrGRgqzEcRImLJ0doxUdQQcHCrPXShHrh9QNjTiAhigcnvT1EIencIRtpEMd9ygCYfUokhF3/r+KES/KqDU6pIN3I3oYgjrDkKXBozg8hSNoxXQ+WqNIRlym+AzOnITaz6EbSHaMVnSEMeJFrh9Bo8NFshsgES8nEuERMknQirmPYnZqMkozSAfvphhGPDrCdvCD0Xs1FQWxHYZi2A5xeApHMSpmdEjSskE6eDeih5ugeuzCrGQSPWTg2J/sRLzE4SkcYsTdBE1azk4jjQ6pG25kcOCmGJ1adMh0uKEYtkMcnsIRNKIBWaqY0RE2LN0IjIyuOKkSRQdfpA4tjBEvYt6KOIAG2cLBjSQtC5kkaEQDpKE66cI8FbwonVoxRmnRIXq4icIBLIoeUWzhMAqd11QEitFWxOEpHMWomNEhRtxQjFFadEhEw43oYYhiCweA5gjKkgWK0a+Iw1M4pFMzDMKMsPLdUKOhGEYrOkQPN6KHIcwWDnswTwUvih7FmA4Xh6dwSOKhwTlKk1FrdHWjKGZDOng3YjsMYTp4KN7gsRhtpSiWS+hDwtKGMGFpKJ4eUdQNKM5eK9JW3IgehjAdPBRPjzCLYbLj/InDUziK4YlHgzPx0O8Tj6F4eoSpGz3Abuu16FHMVVqS72YQh8dNFIthhgNDoilOQMThKRzi8BjCGq2idWoSpncjEQ03YjsMYdtK0ab4onCGIe36IQ5P4RAjbpBRmhvRw4108G7EdhikrbgJUzf2YZ7VKA6PEClixA1RjdKKoocYcTdRtJUR6M0pi4DYDkNU0WHRQ5ONiJc4PIVDRmkG6eDdiAPoJootHKAYegwmmi0cijKFI23FTTEcQF8Oz5QpU+IqhxAZMkozhFlZAMXToxijtOgIo8deYIf1ugh6hNlZGLLSoUWHDJbcFMMB9OXwvPrqq3z9619nxIgRcZVHCE0Uz9IqSpg+zMoCkA6+P9KpuSmSHrKFgxsZHLgphgPoy+GZM2cOZ511Fm+88QaXXXZZTEUSwjHMOgfp5Lc7XhehoUqH5qYYo7ToED0MzghPb9WrqlMkLUDqRn9K6PA899xznHrqqVx33XV8/etf56WXXmLWrFlxlU3wjXOPgyAVsxfYab0uQkOVKS03xTBa0SF6GGwtdte8qjq2Fk2YQVeekcGSm2Is0w+UtPz973+fww8/nF/84hf88pe/5OGHH+bQQw+NumyCb8LOw0MxjbhooZFRqxtxeAxhtdiBXn4MaXdq0SB1w00x9Ai8SquhoYGFCxdyzz33cO6557Jq1SpuueUWRo0qyrbz+eKTwGdDz8NDVipmGIYA/wgcKREeAA4CbgaGF8RoheVM4J8AcQA1VwMfCa2FwkQ1xoQtUmq0AN8AJkndAOAY4NvA4IJsWuorM/Xv/u7vmDFjBjNmzOCoo45i7969/OEPf+Cuu+7i5Zdf5pJLLuGVV15h7ty5LF++PK4yC/04A/gp0E4T3wf0CpJ9tb5Sg/w31JuBLwKTGco8IHgj3Wqdh6LD9EHD/ekxCPgtMAV4hKE8BwR3eLZa5zFhi5UaBwFPWq//haFWzSivHp8G7gReYii/BoJrAVqPMeRZjweATwAbGcoCoMx1Yxjwe/QA8t8ZyltAcD22WOcxocsVBl8Ozz/90z/x/PPP88ADD/D888+zbNkyenpMZ3Lfffdx/fXXc//993PsscdGXlihMt+2zt2hR/BgKubYEPdIjwPQzg5AU2g9tqOdx8FoPdpDlS0N/hva2YEoRq35rhsA8x2vw49a869H9LZjKnnV42i0swMwJrQedt0YjR52BB2ApseVmKzQ/UM7PFutc7p1w5fDc9BBB9W95t577+Wf//mfAxdI8McI4P3W62iM1lbrnE+jdarjdU/oKS3QeuyPHpnkz+E53fE6fP3Yap3HBC1O6nzQ8XpvyfWYChxove4J7fxB3vVwtpXwemxxvB4DbA54n/RwLkdSkekxJnB5oiDynZb//Oc/c8YZZ0R9W6EKJ6LjDzswjbQhlNHKRsUMygzr3Imzg49Cj3w6gCdb561E4fDkW4sxwPus11uAnpLrEW3dgKLosYUo9OjFbEw5JkSp0sPWYxtRDpZyFOHxym9+85s4bitU4BTrvBAYYVXKRrrZE/iO+TZatsPzA6KK8ORXjyHACdbrHxPlqHWkdffgtSwNbAP+J+AN1xYO5ZzSstvKz9BTFqBtR5BdeDT51sOuHw8RZcRrFHnUYzw6320fOj+0KIMleZZWzrEb6e+AtVYjbZKIhquRNpZUj+nodOvNwNNEYbS2YXIR8qfHSdZ5GfBmJCsa81s3wLSVpcB6y3YMK2lbGYpuLxBVBw951sNuK68BfyAKB3CrdR4TvFARIA5PzjncOr8CrLUa6dCSNtKxwDjr9VJgm6VHS0n1OMI6rwLeJgqjpTCr+PKnx5HWeSXwlsvhybcRD4pTjzZLj5ElbSvvQ093bEGvarQdnuEl1eMo67wSWEOUEZ7BQHPwgoVEHJ6cY2/3+CdgndWhlbWR2vkZbegF5JssPUaXXI8/4TZajSVNarf1eBNYY9WNQfQSfAVNfuvGcGCS9fpPmAjPyEiSlvOnh21H3wR2AZ2WHvuVNOLl7FfeJgqHZzdmW48xwQsWEnF4coy9dgjgLaDdqpQjStpInR08wCZLj3BGa6t1zp8eTiO+Adht6TE+EgdwTIh7pIPTiL8baTS0BT1yzQ+HWOct1rHe0qO5pHXD6QwDbLH0GFdSPZy24x1MdHh4zm2pODw5xm6k76F952iM1lbrnO8OHmCr1Uj3L6nR6m/Euyw9JpXQIR4BTLRev4mZ/h1GNw2B77rV8XpM4LukgdP5A9hg6VHWaGh/27Et0sFBfvX4E+4Vr5Nzroc4PDmmv9HaFElYOv8dvK1Hp9VIx+S8kQalvxG3IzzROID50sOOaGxGuymbHQn+wfcU34vZMj9fevR3hrdZeowqoTMMA9tKV990eL4jGkEYDBxsvbb12NM3eMz3Pk3i8OSY/kbL7uBHRdKhDQdXYmf2GRjRsEet5TPi/SMaYMLS4YxWPvXo36H1Oqa0xlX8hle2Wucxoe6SNP312BHplFa+6gYMHDzusvQYW0I9DkJvOrEbWAc4H0p9QM71EIcnx9i7pK6xzjscS0uDP8LVfpwC5LGhgtFjt6VHGSM8U63zVswv2FPiCM9U6/x23zsmwhPO4cmnHtOs81vWeWckKxq3Wucx5KlrGYSJaNj1Y3df/l/5psPtuvE2el2mc+AbzuFZh07ASO8xG7FsPCgkg/2MpDbrvMcxat0fs8+nPxTmcQpjgfVhipgYgzARjfes8+6+UVr5wtK2M7zW8V5vJHkJW61zPvV4t++dqCI8+XR4+tePLseU1lCCrsVxPk6hBXeOU3aZgI5o7MWOaJhoaBlXaQ20HSbCMyGUHn8b4rvRkLobfvrpp/Pzn/+ctrY2lFKcd955rs/vu+8+lFKu47nnnnNd09TUxB133MGGDRvYsWMHjz76KJMnT07yZ6SC/Qvf63unvEZ8Atp73wt0WO919xmt8kU0bGfYGK1B7LPGNweUMMdroBEvb1uBgfWju99gKRh7gJ3W6/zoYdeNdZjY9p5IV2nlRwuoZDvs7Sz2cIAV88krqTs8I0eOZMWKFVx99dVVr3n88cdpbW3tO8455xzX5wsWLGDu3LlcdNFFzJw5k1GjRvHYY48xaFDqPy9W+kd4nGH64EYL8thQbeevHWO0ehxh6eA1of/jFPJBrVFaawmNeDU9wreVrdZ5TKi7JMkoTGnFAazUwRuHJ9wUzlbrnB8tIM7BQfqkPqX1xBNP8MQTT9S8pru7m46OjoqftbS0cMUVV/DZz36WRYsWAfCZz3yGtWvXcuaZZ7Jw4cKK32tqamLoUDM32dyc3u6PQRiBaUbRR3i2Wuf8NNSBzp+ZwhlGD2OBTYHuvM3xegx6R5vsU81oAUwUh4cyd/C2Flsw8Zhoc5qmkEc9nA7PXkuP6KKhDZCT6EitwUHeHZ5chEBmz55NR0cHr732Gvfccw8HHHBA32cnnXQSTU1NLsemvb2dVatWcdppp1W95/XXX09nZ2ff0dbWVvXaLGJHNHZgFsZKhMft8Nh6hOvU9mEcwP0C3yVpas/Dh3nop1038qPFYAbmd0Xn8Gy2zvnRo1IHTyRTWpDH+mHr8Z7jvb2OR20E37bArhvpPk7BLwP1KE6EJ/MOz+OPP84ll1zCGWecwZe//GVmzJjB008/TVOTNuCtra10d3ezdetW1/c6OjpobW2tet+bbrqJlpaWviNvOT8D83cgOqNlN9T8OTyV9AjvANqxofwZ8f4RjSa6OaDC9d7JnxYT0V1ODya/K7pRa/4cHjsa6m4rUemRv/pRzwEMrkc30GW9DmeBkqRaDk8RHJ7Up7Tq8dBDD/W9Xr16NcuWLeOdd97hYx/7GI888kjV7zU0NKBU9RBiT08PPT1hwpXpUjmiEVXFtI1W/hpp9BEe0J3aoeTRiJtOzXRoI9C7LO0KdGe7gx9l3TP7bcjWog3npEJ520p8HTzk0QGsrIfbAXyToGxCJyDsh3NThKwyEjPMrTSlFW6wlD6Zj/D0Z/369bzzzjscdthhff8eOnQoY8aMcV03fvz4qnk/RaBWBx/dqDU/RrxexKtMndpotOGCymFpCNMdbcOkheejU6sc0TDRv3C/In8dfC09htId8pfkq61AfdsRLs6dL1tq141tOLc1MVo0k4MoSQ1y5/Dst99+HHjggbS3twOwfPlyenp6mDNnTt81ra2tTJ8+naVLl6ZVzNip10iDzztDHsPSlR1A06mF0yNfnZr9FOwtOKM4WoshlsMTXA9F3vI07Pydda53TfQvmraSjw4NTP2oNliKpq3kQ48GTP0wegzGfhhs2WxpvboBeoelvJK6szZy5Eje97739f172rRpHH/88WzevJnNmzfzta99jZ/97Ge0t7czdepUvvWtb7Fx48a+6azOzk7uvfdebr31VjZt2sTmzZu55ZZbWLlyJU899VRaPyt26kV4ymbEKzuAplML10jzpYdtwNtd72otGi2jFb5+jCMvethG3O3wRDU4yFcHD9Xqh9Ej3ANl8tXBj0NvNrGPgfld+lW5HMBadcM5WNpMPknd4Tn55JNZvHhx379vv/12AO6//36uuuoqjj32WD73uc8xZswY2tvbeeaZZ7jwwgvZscME3K655hp6e3t56KGHGD58OIsWLeKyyy5j3770trCOm3gjPPlqpM4pnGo5TWWM8FTq4AeHjvBA3vSo5QA2WY9hGYyZqPOH3cEPI0xmVJLUcwCHhbp7vmyHXTc2AL197w51vCpnhCc+25EuqTs8S5YsoaGhoernZ599dt17dHd3M2/ePObNmxdl0TJNMhGefDRSW4vN6AfeGcoZ8ao1ShscWYQH8qJHvQ4edJh+C0HYgd5heAhaj/dqX54yjdCXeFrNASyT7ajVVgAa6S3V4LHW4KAhEtuRLrnL4RG00bIX3Mcb4RmLPZedZSpHuxqxq3fZIl6VO3httAZJhMdCt5Vo9MhPJz8B3Sr2ABtdn5QzOlyrrTSymwbKUzeg9uCgwTE4yCvi8OSQVozR+rPrE2O0RhHmP9c5Qzsm8F2SolbCMsioVeM2WhLh0Z3avkhGrfnp5O26sZ7++/5GleBfnLYS7eAg+3UDkrAd6SIOTw6xIxrr6G+0osqm34vZXTj7DbVWwjLIqFVj61GuDn4YZl+RSqPWfSWL8FSuGxDdqjW7bjSSh1hA7WholNO/2a8bUFsPJVNaQhpU3nQQTFSjXCOTWpswwl4a2RvRKq18GK3Ky7CjrBv50cPWogvnI1ggHocn+22l8gge+q/SCr5Sazdmd+H81I/4Ihr5saNQWw8lER4hDSpP4YDtie8p2cikVgJ3NIl2ttFqJg9PTLdHafEZrfwY8XoRjd6SRbzq6RHNXit516Ocg4Nm9P7pUNl2RDM4SBdxeHLIwI2ybHTF3FPSTq1yhCcKLbaid+qArBuuFvRG9lB5pcXeSDq0/BjxehGN3pJ1avX06BE9iHYKx7kAJNvdra3FNkyMTuO2HeLwCIlSeQQP/Y1WWTbbqz2FoxvpcMLEZpy7C2dbD7tubKX/jjBRjtLy5wxXi2hEEw0tgh66fnSXrH7Ush3RRkMHhb5T3NSrG9EMDtJFHJ4cUs+I7y7RlFYjMN56XXmU1t33Thn0qGzAIdopnHxoARLR6E9lPcxQYFeJ6sf+mFR+91MX3YODcAPHPcB2x1/MLtUH0lEODtJFHJ4cUs+Il2mUZu8r0oveLdVgprTsPbnLoEe96F80ozRbi+HWkV3qjVqjiYbmo25AvZyVctkOW4s/o90Sg3sKpxEzTRyMfETLqw+W3LYj+2vvqiMOTw6pF+HZFWmeRj4a6cB9RcwybHt1TnOov2Rv0xbuuetx49VojRrwuR+2Y08V5kWPaqPWHut3hNMjH3VjMNWiocbh2VUiPeoNHPfR3Ze5VwbbUW+wZOeGhtMiXcThyRnV9xWB/hGeMhiteiN4Z4QnXEO140cH1LwqbbyGpcMbrXzpUa+tlKFuVI+G2oODXrqsLr4MevixHeFsqa1Htm1pvcFBdLYjPcThyRl2pdyFzqY3mI32dkVSMfNhtOpFNKC7bwa9DA5gPT3sKZzhhH1oSL70qDf9G01b2Z8sP4ql3i7L0Q8O8lo3THTYth3RRHiybUu9Tv+Gs6PpIg5Pzqg/KoHd1iM0y+Dw1ItoRGe08qGH1yRdKL4ewzBps/US/MNp4XwUS3YTdetNhTvbSjSDg+zWDfAW4RHbAdEODtJFHJ6cUX0EP6zv1a5IR63jgOpPs0+b6kbLTqbdVSqjVa9T29eXtRJVmD67etgP2B0YDQXbiO+OZNS6F5Pzll096nVo0sHbmC0tyhTx8rr6dxg6kTuPiMOTM6pHNEwHH828sz1KayTLCxGrGy3bAdwdcVg620arukMctQOYfT2qG3Cw68euSKKhkIdOrboeUbeV7GsBXiI8u0sT8RpFtV2Wwa4f3VZbgfxGecThyRn1IzxRGa0ezNOHsttQvRjxaBMPs6tF9a3hIb5OLbt6VHeGwdajKzKHJ/udWvKDg6Gh7xQn1fUoX3TYtqOdwM4Bn+r6sbcvHprfPB5xeHJG9QiPbbSiaqSQp4YqU1rureF3Dfi0fKP46m2lAePwaKXCG/Ds14/kosO7MN1mdvVIzgHMflupPTiI2pamhzg8OaN+Bx9VI4WsG/FGTMmSG7WOJKub7VV+pphNXFOe2awbUP+ZcwA7rQjPYML+r+anUxuoR9RtBbKux36YWuDFASz6Ki0v07/R1o90EIcnZ3iZ0oqmQ4OsG63q+4pA9I20k6xvtpes0cq2MwxeBgew0xELK2+nFscIPtt6VN9lGSq1lWimw0cT5ol+cVLbdkTtAKaHODw5o/6UVpReeLaNVvV9RSD6iAZkvZOvXjcgvim+bDp/4CW/qxfYWwoHcDB6gABJ5P9B1vVIdnCwFV3XIKvtxa8eksMjxE7tXZYHdmjhN5cTo+Um2w5gsnrYWuxHVs2Il8EBUAoH0I6G7sH8zxlM/l9ZosNeIxrR1A1F1rctkCktIXNU32UZKlVKKPaoNflGWgwjHk2nZhvwQWT1eWtepnCAUuQ02VrUjobK4EAzMD1AbAdI0rKQKF4b6R6IeHO5bDbS5FcWiANocG62l736MZxa0dA4IzzFqBvRRYezVzfAfwdflunwgXo0YmpClA5gOojDkyOqJyxD/1FrGZ4BI1NabkQPg91WdmJ2kzLE0VaK1cFDORzAWns0laWtgJcNSyFaBzAdxOHJEV4bKZRj1FrbAYxz1Vo29Ug+LJ1dPbw6fxD14CCbm+0lHx3OdgcvbcXQgt5sA2rlu0F0jx5JD3F4coTXDh6iMuJ/ts7jQ90lLpJdlQTQYZ2zp8cYzC8eqMcQTFOP0gG09ZhQ86o08OPwRLfZnl3T8qZHHBGv7NYNSCOHJ7t62FpsodKGpXHUjfQQhydH+DFa0Rhxu5EOJ4tV3O8UTvjN5Ww9WmtelQa2FpvA8Tx0m8ph6TIY8eQ6eNApwZDl+pHcYCm7WjTgffAY3RROXttK5cFB9noDb4jDkyOSn9LahcmAyFZDrb3LMjj1cD4bJhojni0twKvR2gf0SAcfS1uBonRq0UZ4sjdYOgBtP/ZhSukmjuhw3m2Hu25IDo8QO8lPaUFWoxq1d1kGp9FSRB3xyq7Rqj29V74Ovt50J5RDDz8LHqIZxWd3is+uGx3otYYDKWd0ONloaDqIw5MjxIgbnFoM3FcE4h+1toS6U9T4cYYlhycuPbIZ8RqCyTpLdhSfzU6+dt0Apy3tcrxb1Jym5GcO0kMcnpxQe5dl+wqIvmJm04jX3oMHyjbFl84UTjbrBqQdDc1W3bD/d7qBzRWviDunKVt61G4rgzHPu9qNIioH0K4bI8iauyARHiFz2Aa8i0q7LEPZRvF+RmlQ/E4tiNEaQdjN5bKpBaRlxLOpR/22Ui4H0JszDNHq0UXWp/iSjYamgzg8OaF+RKNcK0/8RniKPm0RJMIDUa7iy84U3yhMaZIN02d7CsdvWym6Hsk6PJDPiJdEeIQUkFGaGz9haSi7Hm6j1UNUm8tlc4rPdoY7MZ23mzi2cIB8dmhQrVMrpx62He1Br+MSB1DjtqPhHz2SDuLw5IT0HJ48RzSgLBEvP0YL4jDi2enUZHDgRvRw42fxB8SRxJ0dPfZD7w0O/qKhkM8ojzg8OcHvlFbRc3hq6+HeDh2KbcT3B5qs1+srXuFelg7FdgDT7+CzNcWXfr5bduoG+B8cFHlKy9ZiIybq68ZdN5yPHhGHR4gNifC48RuWLnKY3tZiA9ogDcTWY+CotYgOYP2clbg6+GxO8fm1HdFF/7LXVgZjSuNl+heK7QDWTuCGWg5gHhOXxeHJCekswwbTSIein9iUPvV3WR5otIo8D++3Q4Ni77UStIMfjDs2GIzsOoD1Izxx7cOTHS3Go/+fq29YGmeEJ3t6+I3+Qb4Tl8XhyQnphaW7ga3W62w01Pq7LIvRchOnA5i9UbxfPZyJzeV2iOOa0srOFJ+txXrs2G9/4sx3y2NbidOWJo84PDkh6Kg1mrBjtoy4312WoRzz8OkYrWzVDfCvh/PRI0WbAh6GTkyFanoMdbyOOjrsnOLLhh5hIhrljIYOzP/L8wNEU3d4Tj/9dH7+85/T1taGUorzzjtvwDXz58+nra2Nrq4unnnmGY4++mjX501NTdxxxx1s2LCBHTt28OijjzJ58uSkfkLsDMPsslw/L8FttMJvLgdZM+LeE7jjmMKxtXD+r6RLumFp+39hUs2rkiSIEY9ej4k1r0qK+huWOp8QFeWztGyypUe6gwP7r2ZDC/CzR1McDmDypO7wjBw5khUrVnD11VdX/Pzaa6/lS1/6EldffTUzZsxg/fr1PPnkk4waZeResGABc+fO5aKLLmLmzJmMGjWKxx57jEGDUv95kTDFOu+gmtEahKmY+tng0W0uB6ahZsOJtPV4r+oVI6yzeRJOdEa8BzORlg097FKkk8PTZp2z4/BkQ49s1Y36Hdpe9CRx1B1a3vRIwhkeCowLfbcoCNNW8hjhaUy7AE888QRPPPFE1c+/+MUv8s1vfpNHHnkEgEsvvZSOjg4uvvhi7rnnHlpaWrjiiiv47Gc/y6JFiwD4zGc+w9q1aznzzDNZuHBhIr8jTg60zmurXuEcpelO3t5crgldMSs7Sl7JltGy9ajv8OzseyfaRroOnTY9GVgVyR3DUL9+xOkA2nVjAtqc9Ia+Yxj2x7SGtqpXDawf0euRjbZiDw781I3+0eHKTxT3Sv71iK5u9KKntSag9dgY+o5hCWI78uzwZDoEMm3aNCZOnOhyWnp6eliyZAmnnXYaACeddBJNTU2ua9rb21m1alXfNZVoamqiubnZdWSV+hGNkY7XxR+1hjHi0fwv500Pu37E4QBuQLvWg8jClKetxZ+xd2CqhK1HHPUjW3WjfodWXQsoXnTYewc/sK0ULeLViGmx9fuWOBzA5Mm0w9Paqv87Ojo6XO93dHT0fdba2kp3dzdbt26tek0lrr/+ejo7O/uOtrbq48G08ddITRpvUUet3o14XBGe7OgxFL3UFvxN8UWnh8KE6tPXo37dgHgjgNmpGxCsg+/B7OcUnR7ZmPIM4wAWzXZMQjsAPegBQmXidgCTJdMOj41S7rU4DQ0NA97rT71rbrrpJlpaWvqOLCc5e4/wdLneLboRD9LBF22UZteNLmBz1auqO4DR6JGdUbw3h6d6pxZdRKMlkruFxbvt2Ol6t6jR4TARnmgdnvQdQKcdrd5Txj14TJZMOzzr1+sVMf0jNePHj++L+qxfv56hQ4cyZsyYqtdUoqenh+3bt7uOrBKkkUIcDk/6jbQBYzr9RHjsaFcjUWwulx09/EU04gpLZ0eP+h18E2bdYhw5PDswS7HT1yNIjgYUc7A0FvNrq8fz457CyY4eYQcH4vBEzNtvv017eztz5szpe2/IkCHMmjWLpUuXArB8+XJ6enpc17S2tjJ9+vS+a/JOkIgGxDFqTX91wQFWKfZRa2VB9Q4eimXE63fwUKYpPu9TFlCGaYsg078Q12CpIfTdwmBrUTu/K+4pnOxEQ73ZjjgT/JMn9VVaI0eO5H3ve1/fv6dNm8bxxx/P5s2bWbt2LQsWLOCGG27gjTfe4I033uCGG26gq6uLH/7whwB0dnZy7733cuutt7Jp0yY2b97MLbfcwsqVK3nqqafS+lmREiQpFaKsmHvQZmI8aa8usLVYT631QANHJfbmcqPQelTeodkr2TFa2Ril5bGD78FZg6LX4yjS1qMJsz2m3whPtBsx7gOGoIcr1bNF4iZsW7Gjw7sJQ57aCsQ7/Zs8qTs8J598MosXL+779+233w7A/fffz+WXX87NN9/M8OHDufvuuxk7diwvvPACZ511Fjt2mDH7NddcQ29vLw899BDDhw9n0aJFXHbZZezbV3nz8DwxHL3UFtIMS4NuqLbDsyKSOwYhaFIqaD1GEWVewgS0Ia/8yM4kCJukW7ScprDTv0XSw/7ru/CX3wVR6tGLdnJa0VGe9ByeoBENpzLNlM3hiTunKVlSd3iWLFlCQ0PtUOeNN97IjTfeWPXz7u5u5s2bx7x586IuXurYlXI7JjNgIHEnLYNuqO8n7YZaP9oF1fSIbtS6ER0UH4reNfXd0HcMStAprWjD0tmJeAVN8C9inkbQ/C6Iw3a0ovV4OZI7BiFoRCPa6LBdN8ah7Uf1ybW4qa/HYMyjRySHR0gAbx18eUat9fOZIP4kbshKJx+0U7O1GEkURiAbScvO/C4/mw5CMaf4/HXwoocmblu6BfOYhnTbi7/93YqRwyMOT8bx18HLqFWTVMQLsq9HA7XC0hDlFF8zaZpBW4sOak0yJlE3suEMhxksie1IYrCUnsPThNl0sP70716ckag85/CIw5NxvDk85RmlBZ2Hh7hWW6RntLzldw187Aho82U7BeH16AK2Wq/Tqx/Zi4amO4L3ZzviWuEJWXMAw+hRFFvqzO+qvgSlthbRPJg6WcThyTgHW+c1Na9Kah4e0jZath7v1LwqCaNlm80pNa+KE2d+V/VnpTnD0rtcn0Q7ik9fj4Osc7r5XWC0mEiaXYI/PeIcLKVfNxoIN6UVT/04sOZVcRJFagDkL8ojDk/GmWqd19S8KolRmp2Ye1DNq+KkEWMy19S8MgmjZetxcM2r4mSqdV5T8yqnM+zeTzXaTi0veiTRwa9Hx9AaSXOAMNU6v13zqiQGS/bwJL26MQG9pLyXcNPh0djS9PWYap3X1LyqshbRPnokWcThyThTrfOamlclkYhpN9IxwOhI7uiXKejx8i50nkZ1kojwrLHOUyO5WxDsv7ym5lWVO3goqx5JTGkpTLeal04tzsGBXYL0tXiPek9/T9KWpq/HmppX1bcdEuERIqMBE08JMoUTrdHqwizITKehTrXOtbWAZDq1vBityiN4KKsetZ3hIZiFuOGw9Zha66LY2A/T7mtvmhD3Lu2g3Yx96Hyy8XWujYep1nlNzauGYqYgk4h4Ta11UazYf3lNzasq21HI79J0cXgyzER0Nn0vtZbZQjKjEki7U5tqndfUvTKJML1digm4E4OTY2q/klQmqQhPXhyeym2l/+Zy4bFLkW5bWUe9nV6SmOLbg0lczrLtGOF4Hefg0S5F1ttK5cEBiMMjxMBU67wWr2HYOEdpkPa0hf1Xa0d4Km+WBVEbra2YrSDTyWuaap3X1LyqeoQnHiM+NZK7+aUZs2ItSDR0H6bLL4IDONU6r6l7ZVKDJbskUyO7ox/sv7qmxjXVHjsCceVDjiat9ICp1nlNzauqR3jyuhePODwZZqp1XlP3ytph+mg2l3OWJMtG3DlKk4hX8hGeyaSxgbv9P7AJ9yqSgdQP00c7xTc1krv5xf6r9ad/k8h3c5Yky20lqSkcZ3rA1Eju6IfBmFVaa2peWT/CIzk8QmRMtc5r6l5Ze+NBKIYR97ZE326k++gfzC/SqHUYesrTWYrKJNXBd6D1Hkway4+nWuc1da9MKkxvlyTLHTwks6IR0rYd9l8NEv2DOG1H8vXDHpL0AO01r0xqsJQc4vBkGG97zoCpdu6xrXNzufIYcbv73jHgk+hHJemNWu1JtO3UejAkJGfEFWnqMdU6r6l7ZXUjHm0nb2txEHr5QbJMtc5r6l5Zf3O5vEeHG/A7WIp7+hey0Fbeof9GFf2pv+BBHB4hMqZa5zV1r2yxzgMfLxptJ2+XZGokd/ODM25Q2wG0tRg4sVGkUav9F9fUvbKyMwzFMuLeOjSopUf0G3XuReeTtda5NnqmWuc1Na8ajOnU3HpEv7lcenXD3oNnL/U22rN/adx2FLLg8NTenwmStR3JIA5PhplqndfUvTIpI2430nG4d/CNnynoMGw3elu36ti/tLrRKkJYemq/ElSnvjNchCk++y+uqXGNpn5biaZT68V0r1mtH85fGnd0OP3BwXv0T0XuT/XBUnw5TVMju6NX7L+4pu6V9W2p5PAIkeAMw9aOaDRZB8TviTsnUJI14lOtc/0wbFLOn10ayHtEo0ij1jV1r0zSAUxHD+978Nha7KbS41bjmeJrBsZGckevTLXOa+pemaTtsEuTh7aShB7JIA5PRpmMDobvod5W6M4qVz1vJe8jk0Otc5gwrP1OI1FtLrfGOk9Cb1mXHIf0K0F10nAAp0Z2R69EoUdRpvimWed2tCtTnepaON+NxiHejdkfPR091tS9srozXJS6AUaPoLmhznfE4REi4X3W+W3q7cFjN9KuilcWZWRi6/FG3SurG63oN5fbgNZ9EEk/CNDW4091r0zSiK+xzsnWjbHoqAbAm3WvLr4DGEXdgOJMeXrXI41o6AEknR5wmHXOlu1IBnF4Mor/RlrbaEW/+eC0WhdFThRGK/rN5cDocUitiyLHu9FKsoO3428Hk+RePHbdeI/+z4PvTwPJ5iXYeqRTN+oPDrxFeKKvH4fWvCpq/OtRvW5E9+iRbcAW63VytnQE5nG2YeqH5PAIkeI9opG00bLH0O+reVXUROHwON+NTg+7RIfVvCpKxqH3Z91HNBGN6IzWOrTL0UiSo3jvzl/1JF3nO9HVDbv1Hh7ZHb3gP8JTua1EP4q39UiurUA0ekQfHQZ43TonVz9sV3Mzxt2qTpL5bskgDk9GiWIED3EYreQbKUTv8ETXySevh1033qPec5IgWaOlSKNT8z/duYdK2S3xtZWDMAsL4se/7UgqOpx83RiF2aAzjB7xRIez3FZAcniExMhuRMNuKoeSVPUZjy7/XrwkLSedl5Ce0apfN8BLku4ootwaL3k9ohocRF83Oqy7DibJaS3/DmDStiO5umFHNDagJ5Fq402PPDuAUdsOcXiESIgqLB19I30XHVcYRlKJurY5eBe9HXptko54ZX2UVn9pKZTFiCcd/YOk9WhBDxAgughP9BGvA4Hhkd21FsE6+OIOlrznMw3DrDyVfXiEGJmITi7rxc/SwaQaqTNzJJmGGtWoxPlu9Eb8EJJK1PUe0YBa9WM3ZiO2PE/xRbGCD+IK0yerh63FeiptUtGfpHN4NmP28UomB9B7Bw/JR7zSayvenWGotd1JdA+mToY8lbU02JXyHSptB9afpCMakJYR99bBJx3xWodemp5coq53PYajp1OgqNMWY9BJ3BAugdv5brRtJVk94hgc5DniFWWEJ77ocGukd62F/yXpO6i01Ws80eH4EYcng0SVWOZ8Nx6HJ39GK55EXbtkyTiA3ketttFyply6ic+IH0wSibp23bDdztokHdGApDv4YBGNJCNeWdYjaQewE/iz9Tr+iNdwzPMIwyzRB53U0NvvyjwgDk8GyXZEA5JebisOoGF/dFQD4K26V9fWwvlJtIm6nWjTEv9+K8HqRlKrkiCttpLN6V8oQnQ4Hgcwfj3stPktmInF6qRhO+JHHJ4MYld9MVqaYDkrxRzFO5ek195kD/wYrbxOW0RZN+x3nU+nC4/dVqaQRKKuPz2KHfEaiX7oC3jRYwg6URfSyfFKrq1EEf2DfCYui8OTQY62zq94unqMda686DJeozWVuJ8hNQm9yV4vXo34aOuc5Cg+OQfwSOv8qqera3dozk/y2qkdZZ1fr3mVjbcOHvKbqGvr8Zqnq4udw3OEdf4zsLXu1c7/8WI6gLbt8NZWJMIjJMAQTNX35vDYTx6uHKSMp1K2o5t/I3Fvi247f2/gJYF7JMYBq7yPaN47+GOss7+6UX1P1bwntdv1Y7Wnq2vrsQ+TB5TH+jEe/UyxvXh1eGrrEW9biT9R11/dGGOdd1Dt6YV5tx3B2srWqlfkcS8ecXgyxvvQXXYn0ObpG96MVvTLB5OZe/YX7bK16KFakm68YemDiHvaIpge1R2eePU4ouZVYRns+AtRODwQdwTwyJpXhcV2ht+i3lPSbdJweDrRi+Yh7voRbHBQPbslz3UDoh8sSYRHCI2/Dg28Gi2I+pm8f7TOx9S8Kiz+Gqn9zOykIxobgI3o5nRUnWvD4W+UZutR34hHq4dduumR3rU/h6CzLnbiZb8q8GPEW6peEYRV1jlePfzZjkGY6d/KesQ3gk+mfvjTo77tiKduvIqesB+LyTiKHqdlitoBFIdHCEzUDk83ZnfiaBvqSut8bKR37U/UEQ0702l01SuCEr8eIzE7/WRbj1fR0wL7Y55kFD123fgjlXYKqUR9I77VOkerh+3wZKmtjMaY/8r1Y6t1HknUW2omazuiiv5ttc5jApanMj2YKE98ehyMjj3vxsvqTvDiAG61zmMClyp5xOHJGP6M1gjMepL6FXNs1SuCkE+HZ6t1HhOwPNWx9Yhv1GqP0DrwsqwUvOhhfxJt3diNmfKMTw//gwPvRjyetnIEcSb529FQfx38Tqo9sGVrhaujIf6I13DMMmx/EZ76zvCYYEWqQfx62HXjVXSuWn28244xAcuUBuLwZIxgHXwvtTaSj6dTs434kcT1SIUJmCRMbysL0urgIQkH0N+IFbwY8Tzr4W+6E9KrH2vRsbQhxJm3EvXgYB8mAjgmYJkqE3/dOALduW2wjvqUw3b4bytp2I74EIcnQziTMKMyWs5Po62Y76ITEJuIy4jbjTSqJEznJ8Mwu25EQ/zTFlFPdzo/id5oJaeHNwewAdNtp2HE49VjHHAA2knxtmVB/Q4N4tLD/h+biJ72jB5pK27yEw2NF3F4MsQhwFB0kPldT99I0+GBuBuq/4iGt0Q7e0v0eML0kzDGIlr8TVmAnym++Eat8YTpB2HWtUSVs+L8JG962HXjbbxsSAleOjSIq37sxGSSxKuH/w6+vjPsrEnRYNeNoyO/s00ctkMiPEIo7A7+VfwmYabl8MQbio1jlAZxGfEd6O4G4jLicYzS4puHt+vGMcRhZqah8zR2AWs8fcP+3+6iWs4KJJHjla+2En/9yNpgqf7gAKJOan8LXS+HEcfmlA34XaEFfqa0xgQoU1qIw5MhjrPOUUY0IIlRfDxGy75rlB2889M86TECvyu0IN15eNuIDyeOZ2rFkYTp/DS+aGhWIhppTmlB3NHh4BGe6vXDmSkZrR6KOJfqH4xeadcNvOnpG0Mwuw3JlJYQE++3zi95/kbaRjy+Dr4Bo8fvPX8rbT3iM+LHoxvrOvSOP/Vx5qzUj/A496iOhn2Y7iZ6I27XjRWev5GVDn4acTx9yNbjD56/keaUFsQ5xdeM2bfYux5p14/4bOkJ1vkVqu0h3R/nr6v8yCKQKS0hJCda5/w5PFOJepefw9DdQhdet8mH7OhxXM2rgmDXjeWev9GCToOHWno4nzgWnx7HR35n/3qkHf3bjNk7Pdr6MQjTqXnXIytt5Vii7oZOsM7vAJs8fysrekTfVk6yzsHqRvX4qTOnqSFAudJAHJ6MsD869AjwsudvHWCda4/542ukWzB73L6/1oW+cY7gvY1KwKz4qG3m4tPDNiknEPVSfdtoeXeG7Q6+Cx3Mrsw+4hzF23qcHPmd/Q8O0o5oQFx6HIGe8tyB1ydhg5ckXYgzT+M1dPJyM1Gv8vRfNyD9+pG/tmJ/Opj87LaceYdn/vz5KKVcR3t7+4Br2tra6Orq4plnnuHoo4+ucrfsYnfwb1Dr+bT9GW+d/1zzqnhDj7+zzqdEetdgRmuCde6oedVW6xy9Hn+y7j6cqEP1/vWwtahdNyDO+hFP3RgPTEE7a96ntOy2Urtu5LGt2M7w7/GazwTp2469mNo8I9I7+x8cjMBMM6alx0toTQ5EP1g1Ovzr4a1udGO2C8nLtFbmHR6AVatW0dra2ncce6yZ57z22mv50pe+xNVXX82MGTNYv349Tz75JKNGRT9PHidxdvD2GC6exdIvWue0HZ7hmHFG7YYanx4K06lFZ8SHYpIw/Rut2nUDTDwsej1WoFdEHYCJX4bHrht2jMAb3hxAW4tmzB7m0WG3lWg7+Dhth61HPLvlZEUPu63sot5wMz49dmJy3qLTYxL6f7oXP4MDb3UDzNxCPPUjenLh8PT29tLR0dF3bNxopnC++MUv8s1vfpNHHnmE1atXc+mllzJixAguvvjimvdsamqiubnZdaRJMKPlzRO31Rrn695eyZrR2o07M2Ug9s6r8egR/Sj+WPQE2QbgPc/f8h7hsevHATWvCkI3Jm00Oj385++An+ifvU9T9EZ8mXU+nCgnifyP4MFr/YivbkAcbWUEZn8m7/XDewefjO2IzpbadeOPeN28FbJhO+IhFw7PYYcdRltbG2+99RYPPvgg06ZNA2DatGlMnDiRhQsX9l3b09PDkiVLOO2002re8/rrr6ezs7PvaGtrq3l93PhfoQVeR/F2I92POP7Dl6MD6QdjGko4DkaXtQc/S/S9RzTibaTRO4DhOrS0jXhW9PBWPxRmFB99/diMWRgcTa6GczWj9w5+GGaRgTfbEW/dOJ6o4mnHo3NK1uGl5ttkpYOP3gGMc3AAcdeP6Mm8w/PCCy/wuc99jo985CP87d/+La2trSxdupT99tuP1lY919nR4f6P6ejo6PusGjfddBMtLS19x+TJk2P7DfVoRo/5wM8S7KGYUaK3KZxBxDFtsYOoQ7F2I10J7PH8Le9GK5lR2nT0eDM84aJ/aTuA8RnxuBzAPEVE34e2H7vw+kgJMHWjm1rLjsGtRfQrcd62/sJQolq5FnfdkMGBm3jbSvRk3uF54oknePjhh1m1ahWLFi3iYx/7GACXXnpp3zVKufclbmhoGPBef3p6eti+fbvrSIsTrPO7+FlGaXdPPbj3AB1IL8bpyUOnlu8Ofh16+fFgolq5lu9Rmm3ETyIKc7MfZgPGl319078eeWgrdofmbzWjf+evkah3F7axp/mi6eTz3cGvRDuh+xHVZp1JDQ5kSismurq6WLlyJYcddhjr168HGBDNGT9+/ICoT5b5gHVeVvOq/niPaEBSnVo0RvxU6xysg087wgOmU/uL0HcaitmKLI4cDYjbaL2KjgKOwmxwHxx7IuhP1ItNOHFGQ9Pu1KJtK7abEFeH1oPJiIt3CjgfesTbVvZgYvzh9ZgITEYnHLzs65tZGSxFT+4cnqamJo466ija29t5++23aW9vZ86cOX2fDxkyhFmzZrF06dIUS+mPv7TOz/r6lvdRCcTdUF+wzqdiNrsLRiPG4fkvX9/0P0obRhx73gI8Z51nhr7TDHR3vR7zpC5vZMVo7cPUj9ND381W9Le+vuU9GgpxOzwvWeWYhH5ccDhsPfxZO+91A+LWw24r4evGGMxmEM/VuG4gWRosRaeH3a/8AT+rGSE707/Rk3mH51/+5V/44Ac/yNSpUznllFP46U9/SktLCw888AAACxYs4IYbbuATn/gExxxzDPfffz9dXV388Ic/TLnk3mjAVEx/RjxYhCceh2cFuiMZTdhpnOPRTsgW/DwHB/zo0WUdEFdDXWydZxE288E2e/6cYcjOFB8YPWaHvpOthz9nOEttZRfGAZwd6k4jMFMWcQ6W4tXjt+hJ90PRe9AEx7ajr+H1f9rGfwc/Cj1gip7F1nl26DsFsx3BoqEypRURU6ZM4cEHH+S1117j4Ycfpqenh1NPPZV3330XgJtvvpkFCxZw9913s2zZMiZPnsxZZ53Fjh076tw5GxyJXv7ahZ+EZTCbU/kzWvGN4n9jvf5QqDs5R/Denhhv40+PeBvqS+j9PPYj7LNxbD38dfBDMOnpWRi1LrbOs0PdZQhmktCfEc9SRAOi0uMv0BHRtej8P+/4cwDj1WM7ZvJ6Vqg7BWsr4Kd+dKLjcxCXHr9B29OjCLvqNZjDYzvD3qKhMqUVMZ/+9KeZPHkyQ4cOZcqUKXzqU5/ij3/8o+uaG2+8kUmTJjF8+HBmz57N6tXeFzOnjd1In8fs/+GNg6yzN1MXvyf+jHWeHeouwY2WPz3ibai9mF8Q3AEcBNibK/gzWlOs8y68pMHbdWMsUT8Qw+ZFqywTCJPHcxJ6e8kN+Hm+GpjIgbddjOKNaEBUDk/w6J8/PZKzHeEGS8H1sNuLt61J4nUAt2IyboI7gC2YdW/+bKmtxTpPV8uUluCL8B38OzWvsonfiNtG63TCdJvB9GjAGPHiOIDT0cHl7fh56jOYXY29abEZs8InHj16MBO2swPfJWlneHzNq8LwHHo1zoGEWY2TlB52HCg+PRZb59mB7zAMk7Dsz+HZD5PJt9bTN+z6Ec2uY5VYbJ2DO4AfQGdTvgm017nWjW07vPUrdt0YR9jszWQQhydl7HnnuI3Weusc7VNanPwBHU1oxiwO9ceh6PJ1E2TFWhO62/Y2MrGNwERff8cPi63zBwmax+NMSPW+5Bj8Gi2FqR/x6zE78B2Cd/D+9LBrUHxahM/jGYxZ3ek/opE1Pew8nkMwds0fM9AWoB14y9c37b/Xgde9iOPXY7F1nh34DnZb8V83/A+ke9GORHwOYHSIw5MiE9Gd/F70lJY//I3i7UYa3/aKClhivQ42MrEb6e+o9XzvSthatOHVNbD1mOTr7/jhJfSM/37oVGz/JDWChyT0WGydZxPEAWwgjBEP1lb2R6dwxsNi6xysrZyASe73N4E/AhPH86dHfHVjB2aIMzvQHcLXDW8dPCShx7PoPJ4jCepWBUvuhyCDJXvwGJ8e0SEOT4p82Dq/jJ8npINeDWVvDe8tDGvPTsdbKZ+2zh8J9G1bj7hHJZCE0dqL6dQ+GugOs61zMYz4i+haPh6ztsg709EOyE78JveD3/qxFR2DgThH8Yus80cIYoZnW+el+E3ut6d+t+F1J6P46wbAU9b5nEDfnm2d4+7gIQk9tmIcQP+2YxhBk/vB7+AAkqof0SAOT4qcbZ2f8P1N24BvwJjm2theeDNx7T0D8EvrPBO/D7FowLhJv/b9d/03UtsBjPeBIr+wzuf6/ubx6M52B373FIFsOoB7MDXdvx52W1mM3+T+Rsz/cpaM+G/R2VPjMJNT3rG7wSd9fzOLHTyYtnI2ej2ed0Zg0nv965HFtgJGj4/7/uZstNOzFnjd97ezWj+iQRyelBiE6eCDOzzeDfhOzHguvoq5Bp3L04jfkcmJ6LH/dvxuogbZnMIBeMw6n4rfGW5bvacxy2C9k9VRWnAH0Nbjcd/fnIzOeOnGz+Mkk4kA/sp67U+PkZgpC/96+K8b9mBpJCauHD2/Q2eSjUbnvXlnNnrqcQ1+nidmk/W2chZ+d/wJ3lZAHB4hFk5Ej+22ESZ/x9t0lk0yUY2fW2d/RtwewT+FnweG2gQ3WhOJ46GINusxW+d/zNc3wxmtrI5af4Xu6E/AzyZzzZgcDf96OJ1h75M/yehhtxV/o/gz0Am6bxFkBO+/buxC5wpBnHoozADBn+0oZge/Al1nR6D/x71j21L/eoxBtzYI4hCLwyNUxdnB+wvRAxxhnd/w9a1kjfjZaLPsjeDTe2CeNf+m52+sR6cFNqFzQ+LDvwPYgtl/x78eU9Ajwj143WcFkqobmzDL07138h9GT3K8jt8VOKCfJw56/O+dZPT4NTp+dxRwmOdvhevgs6xHsGmccHrY2wJ4f3CLrUUrcQ6WIEhE9BC0NdyDyRLzjq3FeryuWAOJ8AgeCNfBH22d/1jzqv4kUzGXWX+pBa8rLsZgshj86zEEY8S9P4yiF7OHRDIO4Bz0tnn1ORM9KfgqfrslMHXjDfy40skZLVuP8zx/I1yHZuvhby1TMnp0YhLbvXdq0ejh78EtySUu7wKm4XWH8sPQ3XQ3ZsmEd1rRuYZ78RMr60APloYQ94Z7TgfQm2tl143/wu9CGIBjrHMW60Y0iMOTAvthHpAZzOGxd6v1VzHtKa0pNa8Ki8J0ahd6+sYcdJbFK/jdIh+0yWtEdx7edkq1sa8OtvOHV1ai4xIj8NrJp9Gh2VpMIK5nBNn8p3U+A695TeEGB8GMuK3HwTWvioL/tM4Xe7r6SGAquoN/pvalFRiMiQ77cwCT0aMLWGi99qaH3Vaexe8DMsG0lTfxsxHGXsw0Trx6PINesTUJr4PHNGyHHUeO145Ggzg8KXA+2vT8Hj+TDjYtmCwcfxEeO2gb/hnN9fh/1vkCdKpjbf6bdf5FzauqEayRgtFjWqC/64fvW+fL6l7ZCHzCev3LGtdVJ5gem9AuI8RtxN9Ep6U3ApfUvXoG2pDuxMRC/BFMD3vqLP668WP0tNaJmGd9V+eT1vlpzANwvXMoOr13J36HFsnp8R/W+bN46Z5sPZJsK5CUHj3o+gFwad2rR6OjwxBWD3/OsG1Hx2IeO5pVxOFJATvu8aNA37ajO22YLsobdiON3+H5LXpKZRTavavOKOCvrNc/rnVhVYJFuyBJPWwjfib1Ar8fRofJO0i2g4ck9XjAOtc34hdZ50fxk1VgMwrjvgVzeCbjJxMtCJsxrr53PYK1FedUuL/de5KrG4+hNZmM2ZmrMpMx67l+EuhvBYv+QRpt5ZPUGzx+Au3OriLIL4KgenRhdmqP3yEOhzg8CTMes7fqQ4HuYHfw/qI74G6k8SbbAdxvnS+redXH0ZktrxNkQzkI08HbKc7xG6230E9BHgx8puaVdof2E/w+TsImDw7Pj9Huy3HoFVuVaSCqwUE7Zp2RNzag90AaRBLTWnan9hlqPZHoGHQMqBszEeYPu0Pz/3Dl5OpGD/Cg9bq2A3iBdf4NfiezbYJFNCBJPZ5DW8dRmHhWZWzbEaytjEBPlkK2bUc4xOFJmE+hTdoLBElIBZPM579SvotOYx1GnDvI2nwfndp3BrW6jHAjVjBGPLgDGPzxjX6wO7XLql4xFJhrvQ5mtCaiA8v+kjBtkjNa29AxG6ilx0z0KH4rQTajhDAjeEhSj8fRKfSt6H1XKnOR42pveyT3J3xE40D8bgsYBLutzKXWzj+fts7B2grkI8IDJkJc3QEch5nOCqbHkWh34M+YRyt7RxweoSLhRqxg0p1/5/ubezG7TcRfMddiFkZ+vuIVozEJqcH0aMEYreW+v51sI/0JOnfiKKrtq3E2WpO1BNl8EUzdeAW/TyODpPW43zpfitn7w43dwT9MkM0XwWyw/3KgbyenRy/wA+v1/6h6VbgRPITRowM9dZFMxOt36Do8Arii4hWHovO79gI/DfQ3DkVvSNFNkMFScvmQ4B48Vs7z+iQ6K+53+Nmcw8kp1nlFoG8nFy0Phzg8CfI+9JzzPoLOOQ/FPIk8WJdoV8xkohp3WuerqDRS+zQ6PyL4nPNfoKvwm/jZRdfmXbTBHE4SEa/twL3W6+sqXvE56/wQfjMsbOzde35b86pqJFs3fo3uaMYAfzfg06GYKYvg0b9weiQbAbwTXRs/ip7qc/MBtP3YSdDk/lZ0d7SPIFudQtJ63G6dv0SlmJI9MbwIPf3on7+0zssJMzg4CO1oxMu7wM+s19dWvMK2HcGdYVuPPLSV4IjDkyB2nONXBJ1zPhHdFXQQZAs2gD9Z5yNqXhUVj6HdmdFop8fNf7fO/yfw/e0OLZjz14sZqR0ZuAx+uM36q3Po/wDNAzGL1r8X+P7hjJa9jeVh1MokiQoF3Gy9vob+qcEXosP072AeK+mP0ZjRcDA97EnBo2peFRVvY7L6/nHAp3Zb+TFBVmeBqRsr8bvYwcbWI5m28h/oHV6m0H+J+hCMi5xWW2lHD2Ea8bNlZBi+bZ0/Tf8F4CegLWEPJk7on3B6JNtWgiMOT0IMBy63Xt8d+C729nzBOnjQ7gd43dYrLArTUK/BucPL6ejuaCdmxt4/4UbwoM0/JKXHO5iETHen9ndoJ+Npgka7wkf/1qATdYdhtnKMlx+gN2aYhF6GbLA7+H9DxyT8cyravP0Js8WkP+y2Un+xeFTYDuCFmARSvdDB3rrhO4HvHa5Dg6RtRw+wwHp9Lc5lFnPREdn16OnOYESnRzL1Yzna9W9ER70Mdlv5KUHi3KDVnIaOMAaL/tlp31PI/tJ0JQequblZKaVUc3NzLPe/DJQC9SaoQYHv80ulb/M/A5djplWONYlp26jgbavc/73v/R9Z5fhu4PsOVbDduu9xgcv3dasc9ySmx3SrzHsVHKkA1QSqwyrH+YHvO8u6b3uo8j1vleNTienxJavcrysYogA1wyrDblDjAt/3m9Z97w9cttFWOZT1Ohk9Hrf+5Hf73vsnqwxLQ913mXXfiwPf41NWOZ5PTIsWBVutcn+y7/0lVjm+Fvi+4+z/VgUHBC7fPdZNvp6YHmdaZd6hYIIC1FhQXVY5Tgt834us+74UqnxrrHLMTEwPc/jov5MvXBaPuB2eZVZl+IfA9xitoFvp2xwZuBxjMEa8JTF9r7L+5AYF+6mJoHqsMhwX+J4ft+75roKGwGX7b1Y5nktMCxQ8YpX91wpQF1tlWAtqcOB73mHd875QZfs/hO1M/B6jFHRYZf+yAtQDVhkeCHXfV617fjpU+d4lbGfi95hplbtXwftVo1UvlFVPgt3zYMc9xwcu25FWObaDakhMj69bZX9bwXB1rFWGPaAmBb7n31r3XBaqbPOssjycmBYoeM4q+wMKUF+2yvBSqHs+ZN3zplBl+4VVls8nqoc+xOGJTzDfx0etirAT1P6B73OJ0rdZHbo8thH/y8T0HaxghVX+f1cLrL+/JNQ9H7Dud3uosqVjxA9RsEuBUg18Uq20yvBPge/XoKDN0uOcUGX7e9Iw4pdZZd+uDmRynzM8I/D9jrXut0tphyp42X5JGkb8h1b5l6rLaFAK1Hp0JDDY/b5s3W9RqHINRkfdFKhDE9NihIJ3rPLfqB60/v6PQ93z19b9/jFU2T5kleVPidaNk5WODivVxEzVZpXhilD67rT0ODFU2W6yynJ3onroQxye+ATzffyWQUqB+pdQ93lYgVJ6xBOuPI/qG6kvJqrxX1rlV2oJf6EUqDMC32uIgi3W/f4yVLkGo50dBeqYRPX4mgKlRvCu2s5ItZkw0yZ2VGCLgqZQ5bKnPNsS1aJBwW8VKHUKDyoF6olQ97OjAo+ELps95XlfonpMUtCpQKmbuUwpUF8Kdb/nLT0+H7psL1h6fDpRPc5XoFQDu9SfOCRkZHh/BXssPQ4JVa4xmGh58IFskOO7CpQaxwq1h8FqDWGc4U9ZP+HN0OWypzyXJ6qFPsThiU8wX8fJzFaH8Zp6iSPU+MD32V9BlwKl4PjQZfpHfSP1k8R1vk+BUsewUv2KESHuc56lxToVZjrLPp6y9PjbRLUYpuAtBUpdyXfV9aHudZelxwOhyzUMM914cKJ6nKD0lItSP+GTIaI7DQpes/QInq9iH2dbWryWqBYoO7dpLJvU8xyshgW+zyGWFnuVnfcR5rjN0uPOxPXQUZmZ/Eb9PxpD3OfvLD2WR1KuVZYef5WoFvsp2KhAqa/yNXV5qHv9zNLjf4cu12RLi15QIxOuH+LwxCeYr2MGTyhQajyrlU7CC3KfbygibKT2KH5dwhofzAGqlXUKlDqAH4a41wuWHuEbKaQ1ikd9hDNVQ194+tKA92lVxhk+I5Jy2YnLyY7iUefyvxUoNYxOBUcEvI89Yt2iIHxbHoMZxQdPoPZ/DKdRnWDV8wP4ndJJ+kHudY9V/McjKVdao/jjOES1WAnMY7k14H0aFfzJ0uOLkZTLznn7VsJ6nMfF1u9QahAfDXifo5U9PaYXU4Qv1xqrULMT1kMcnvgE83XszwQ1mrVK14PHFL5HJ2MUbLO+/4lIyjQMVDdJz8WjngT1G2aqwfRYv+fLAe7zEeu7O1WYFRbOwx7Fv5mgFgeA2gjq63zF+j1dCk4JcK/brO//V2Rls0fx/5agHmeD2sNgNYunrd+zWsFYn/dpULDS+v5XIyvbakuPuQnqcSuodzhQjWWD9XvuU/6jmVMVfW3tA5GUaxJmFJ/UoodGUL8H9UhfZFcpndPo916XWd9drwgVYTbH5VaB/ivBunEoemXWVX2R3c0q2ADhQev7P42sbD+09PhqgnqAODxxChbgOEmZUfjPlL88C7tS/0FFMX1jH8/om6r/kZC+l1p/rwvU/vwP6zf5HWkNUyb5+ZbIyjYKk4x5REJ62IZhGQ2qgZ9bv2mrglN93OdoZerVnMjKdo5VtncS0mKU9bcUqK8xXsF71m96SenpXK/3utL63halVzVGU74FVtn+T0J6zEA7FArUyZyp7Kk+Ha3xYwN+an3viUjL94pVtqS2LrjO+nsbQQ3nJus39Sp/U5ZjlUl+/lJkZTsQ4wDul5Aei6y/+RhNyqzaaldwlI/7/KUy0Z3g23r0P/7aKtsLCWlhH+LwxCdYwOMcZa/M0QZonIfvXGBdH22HBjoJUoFamIC240Ftsv7e/+x73zZcSsE/K72Sq969/q91/XoVZnltpeOJAeWL7/gYxkieCApGKlhs/bZOBed6uM8oBX+0vhNthzYMvaJQgTo2AT3+FRNhGwFKO3Lt1m9bpbyNXk9Upn1F16EB6kzMFHDcK/mGgPqD9fe+3/f+xco4PQ8qb1N1f29d363Crr7pf3zbKt/9CdSNw0Htsv7eZ0DBIGXswF6lB0z1nMAGpaPrSukprWiiO/bxslW+SxLQ4wrrb+0ANQ2U7kdetn5bh9L7cdW7zwRlVnXeH2n5WjFTwBMS0MM+xOGJT7AQx4eV3jTK9sjPV9Ub62XKGPBvRF6Ww/SNVTd686q4fnMjZkSynP77zHzV+n1KwVJVfR65SdkrE7ThjyZXxXlcbRXktzFqAXpEuN76W992fTZcwUKHHv+uqk/ZTVFm5c27ypvz7O+wV/LFHZo+1/xg9WHXZ4crE+nZqeBqVT0y+iFl9vL5TxVlJBS0E9JplfHUmPWwnb8/03/lzwXKrC56U+lN6Krd58uOa/974LJUO07HRFyCrw6qfwxH2wwF6nHXZw0K/k2ZqvO4gvdVuU+zgh9b13WpKBZ99D++YRXkpzHXjWMw9fAa12f7KbOx5F6lcxurRTiPUHoQYQ8mRkZezhetMv5dzHo4D3F44hMs5HG8MhXOzlW4XmkDNkvBpUrvl2F//lPlLfrh//i99Ufmxfh7F1h/oxPU0RWvuViZJeZKwa+U3qhwptIO4v9UZtXNXqU7vujLORG9mZkCdVRMWjgN+O+tf7uvaVLwbYcWXUqPZi9RcJqCs5Xed2iz9fkmFSzvp/5xiVWItwmzM3jtw2nA76h4zUTldgLfU3oH5Y9Z9eOTSndmdvTjJRXlVJbzuJ/4p7Xs0btCO4IDr/lLZXYtV0on7/9PBbOt40plpjiU0k5B9OUcjNkM8b/FqIe9G3sHqCkVr7lKmSndXqVt5d9YOp2p9IDKnsbqVnBhLOW0N0PsRufmxfE39kNHQBWop6nUJkcq+D+O//ttCu5UOon/NKXbzHeV2Z2+TelBRfRltTdDTHJaSxye+ASL4BiqdNRmq8LYuH5Hr4L/paIerTqPq6w/tjqm+1/p+EHn1bz2QAU/UqbjqnRsVDphOb7/l0esP3ZbDPcejN4sTaEN+EE1r5+tTASn2rFM6aTUeLQYBmqz9cfOjuH+49Ebtil0BLCx6rUNCr6gTLSn2vE9pXO84tHDXtm4g3iSdWdhFhLU3oCyRcG/KtPRVzp2K738Oh4twKxsfCqm+8/HOBG1N0g9SsEv6tSNdxX8Rax62Csbr43h3kMxUfI3qbfnz7nKJO5XOxapqFMCnMc4TF0+IUbNnYc4PPEJFuHRorQxf1DpKMYfld6Abb7STkC8f78Fs+le1CtQnM7OfM/fO8T67Y8rHbb/g9L7b1yhwu6Y6+WwV2vtQM9FR3XfRujbIbYHP8+amaX0KqznlM49+L1VVz6q4or6OQ97tVa4ZzgNPCaB+qN177fwumlbk9KRru8pHSF9VcGLSke8op+mqHTYe67Mj/i+H8bkTHnfQXicgmuUXgTxhtKR4t8oHfFpjV2LgzER0ah3bP8qxnb8jefvTVd6ELlI6bayQmlH6GKlp4vj1eMyq7zriXYPmuHoPEuFjoZ62xy1QWkbcaeC31n14yWlV/rNVnEOou3DXpTxs5j/jn2IwxOfYIU6bkRXzFeJbj7+eozBiiNaEuex1Cr3v0d0v2ZMPkw3qE9k4Dd6PVoxHfEnI7rnUZjIzhqS3RYh7PFJTMczMaJ7fgqTlPsrCLHBYPLHv1vl/i3RTHsORi/HV9ZxXQZ+o9ejEdQbVrm/FtE9DwD1G+ue20F9MAO/0+txFGalYRKPMBKHJz7BCnU0Y5Jobw95r7HoZzAp6/jfGfh9fg87IVOhl2eHudexaEdSoTu1j2Xg9/k97KmLPxM+6nURJqL4J+pN62XzeM4q/0LCrdhqAnULpq49QrwJwHEckx3/n/8Y8l6t6NwUW48vZuD3+T3sTRn3gDol5L1Ow+RJbQX1gQz8Pr+HvSnjm8S/Z5M4PPEJVrjD3ndFoR8e6ff7Degk1w7rHrvxE4rO3nG79Tu2gfqLAN8fid551X5Ew7uEN4BpHU3oJzErdKJ1kL1GpoH6OaaOPUV8yZ1xH4ejpzwVqHsI5vScgZnSU+jVeoMD3CcLh73x3l6CPc29EdQX0J26QkfPooompnHYU9fr0Q8m9vv9/dAP39xr3ecV4ltEEfcxGr3oQYFajL3lRDyHODzxCVbIYz7GAN+Dt6XqI9Fz16sc310F6uQM/J4wx1DMaLML1H/HW4c0GdT/Qi/XtfV4mGQfSRDHcSiodkzOzWyP3zsJ1PcwuR7d6HB/Xjt3+/gUJlz/a1BTPXxnCHrl1WJM3WinXjJ/Po5/w+28eclhGYN2dN5yfPcFktv4M66jBTNA2IreO8iLU3yopZ29alGh286oDPymMMeJGGd2Jaj3x/R3xOGJT7DCHv+EGVlsQzs+F6Iz7Q9BjzTmoMPNj2DC2QrUFvSc+5AM/I4ojhGgHnP8vrfQ+218FL28/lD0E5vPQ+dBPevQTqGnsiovLc7ncSQm90aht9K/Bp1XcJh1nIIe5d+JO4Kh0Bs7BhnxZvW4AJPf1I1+EO/laGf/EHTHPRu9F8n/A7XBocVu9DL80Rn4HVEcDZjtJ5T1W+8EdT66jUxDt5mPolcx/Qqzs7lCR0OuIr7tD5I+9ke3D/v3rUYPhM5Et4FD0Tb1fFA3YfatsY+X0Kv20v4dUR1/gRkw7SWe3CxxeOITrNDHbMzOoV6O19Dz90k9VyfJowEd3fmzDz0Wo53Eohhv59EC6juYqbp6Rxd6tUbwJ59n+zgKHeHxWjfaQd2MXqWWdtnjOM4F9boPPVagN/wcuB9V/o9G9OKNbR616EVvrpjsU9eTO8ajHX+Fzk+K+v5e++8G60XpaW5uprOzk5aWFrZv3552cVKlAZgFnA+cAhwEtADdwDrgT8BSYBHwUkplTJIRwCeAs4ETgVZgCLAbeAd4FVgCPAm8m04RE2UicBG6jhwDHGC9vx14C1gBLAaeAjpTKF/SnABcAJwGHAKMBfYAG4E3gRfQejwL7E2lhMkxGDgLOA84GZgCjES3lTbgdeC36LqxOqUyJkkL8Em0JicAE9Aa7QTWAK+gbcdCoCOVEibL+9D9R9R47b/F4bEQh0cQBEEQ8ofX/ntQgmUSBEEQBEFIhUI5PFdddRVvvfUWu3btYtmyZcycOTPtIgmCIAiCkAEK4/BccMEFLFiwgG9+85u8//3v59lnn+Xxxx/nwAMPTLtogiAIgiCkTGFyeJ5//nleeuklvvCFL/S998orr/Cf//mf3HDDDXW/Lzk8giAIgpA/SpXDM2TIEE466SQWLlzoen/hwoWcdtppFb/T1NREc3Oz6xAEQRAEoZgUwuEZN24cjY2NdHS4F/Z1dHTQ2tpa8TvXX389nZ2dfUdbW1sSRRUEQRAEIQUK4fDYKOWenWtoaBjwns1NN91ES0tL3zF58uQkiigIgiAIQgo0pl2AKNi4cSO9vb0Dojnjx48fEPWx6enpoaenJ4niCYIgCIKQMoWI8OzZs4fly5czZ84c1/tz5sxh6dKlKZVKEARBEISsUIgID8Btt93G97//fZYtW8Zzzz3HlVdeyUEHHcR3v/vdtIsmCIIgCELKFMbheeihh9h///356le/ysSJE1m1ahXnnHMO775bhqcbCYIgCIJQi8LswxMW2YdHEARBEPJHqfbhEQRBEARBqIU4PIIgCIIgFJ7C5PBEhey4LAiCIAj5wWu/LQ6PhS2Y7LgsCIIgCPmjubm5Zg6PJC07mDRpUuQJy83NzbS1tTF58mRJho4Z0ToZROdkEJ2TQXROhrh1bm5uZt26dTWvkQiPg3pihWH79u3SmBJCtE4G0TkZROdkEJ2TIS6dvdxTkpYFQRAEQSg84vAIgiAIglB4xOGJme7ubr72ta/R3d2ddlEKj2idDKJzMojOySA6J0MWdJakZUEQBEEQCo9EeARBEARBKDzi8AiCIAiCUHjE4REEQRAEofCIwyMIgiAIQuERhydmrrrqKt566y127drFsmXLmDlzZtpFyjWnn346P//5z2lra0MpxXnnnTfgmvnz59PW1kZXVxfPPPMMRx99dAolzTfXXXcdL774Ip2dnXR0dPDII49w+OGHD7hOtA7H5z//eVasWMG2bdvYtm0bS5cu5eyzz3ZdIxpHz3XXXYdSittvv931vmgdnvnz56OUch3t7e0DrklLZyVHPMcFF1yguru71RVXXKGOPPJIdfvtt6vt27erAw88MPWy5fU4++yz1T//8z+ruXPnKqWUOu+881yfX3vttWrbtm1q7ty56phjjlEPPvigamtrU6NGjUq97Hk6Hn/8cXXppZeqo48+Wh133HHqF7/4hVqzZo0aMWKEaB3h8Vd/9Vfqox/9qDrssMPUYYcdpr7xjW+o7u5udfTRR4vGMR0nn3yyeuutt9TLL7+sbr/99r73Retojvnz56uVK1eqCRMm9B3jxo3Lis7pC1TU4/nnn1d33323671XXnlFfetb30q9bEU4Kjk869atU9dee23fv5uamtSWLVvUlVdemXp583yMGzdOKaXU6aefLlrHfGzatEn99V//tWgcwzFy5Ej12muvqQ9/+MPqmWeecTk8onU0x/z589Xvf//7qp+nqbNMacXEkCFDOOmkk1i4cKHr/YULF3LaaaelVKpiM23aNCZOnOjSvKenhyVLlojmIRk9ejQAmzdvBkTrOBg0aBAXXnghI0eO5LnnnhONY+Cuu+7il7/8JYsWLXK9L1pHy2GHHUZbWxtvvfUWDz74INOmTQPS11keHhoT48aNo7GxkY6ODtf7HR0dtLa2plSqYmPrWknzgw8+OI0iFYbbbruNZ599ltWrVwOidZRMnz6d5557jmHDhrFjxw7mzp3LH//4Rz7wgQ8AonFUXHjhhZx44onMmDFjwGdSn6PjhRde4HOf+xyvv/46EyZM4Ctf+QpLly7lmGOOSV1ncXhiRinl+ndDQ8OA94RoEc2j5Tvf+Q7HHXdcxYR70To8r732GieccAJjxozhk5/8JA888ACzZs3q+1w0Ds+UKVP413/9V84666yajzYQrcPzxBNP9L1etWoVzz33HG+++SaXXnopzz//PJCezjKlFRMbN26kt7d3QDRn/PjxA7xbIRrWr18PIJpHyB133MG5557Lhz70Idra2vreF62jY8+ePbz55pssX76cG264gRUrVvD3f//3onGEnHTSSUyYMIHly5ezZ88e9uzZw+zZs5k3bx579uzp01O0jp6uri5WrlzJYYcdlnqdFocnJvbs2cPy5cuZM2eO6/05c+awdOnSlEpVbN5++23a29tdmg8ZMoRZs2aJ5gG48847Of/88znjjDNYs2aN6zPROj4aGhoYOnSoaBwhixYtYvr06Zxwwgl9x+9+9zt+8IMfcMIJJ/DWW2+J1jHR1NTEUUcdRXt7eybqdOpZ3UU97GXpl19+uTryyCPVbbfdprZv364OOuig1MuW12PkyJHq+OOPV8cff7xSSqkvfvGL6vjjj+9b6n/ttdeqLVu2qE984hPqmGOOUT/4wQ9kaWmA46677lJbtmxRH/zgB13LS4cNG9Z3jWgd/vjmN7+pZs6cqQ4++GA1ffp09Y1vfEP19vaqM888UzSO+ei/Sku0jub4l3/5F/XBD35QTZ06VZ1yyinq5z//udq2bVtfv5eyzukLVOTjqquuUm+//bbavXu3WrZsmWtZrxz+j1mzZqlK3HfffX3XzJ8/X61bt07t2rVLLV68WB1zzDGplztvRzUuvfRS13Widbjj//7f/9tnHzo6OtSTTz7Z5+yIxvEe/R0e0Tqaw95Xp7u7W7333nvqpz/9qTrqqKMyoXOD9UIQBEEQBKGwSA6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeMThEQRBEASh8IjDIwiCIAhC4RGHRxAEQRCEwiMOjyAIgiAIhUccHkEQCs/tt9/OI488knYxBEFIEXF4BEEoPDNmzODFF19MuxiCIKSIPEtLEITC0tjYyM6dO2lqaup774UXXuDUU09NsVSCIKRBY9oFEARBiIu9e/cyc+ZMXnzxRY4//ng6OjrYvXt32sUSBCEFxOERBKGwKKWYNGkSGzdu5A9/+EPaxREEIUUkh0cQhELz/ve/nxUrVqRdDEEQUkYcHkEQCs0JJ5wgDo8gCOLwCIJQbI499liZzhIEQRweQRCKzaBBgzjuuOOYOHEiLS0taRdHEISUEIdHEIRC85WvfIULL7yQdevW8dWvfjXt4giCkBKyD48gCIIgCIVHIjyCIAiCIBQecXgEQRAEQSg84vAIgiAIglB4xOERBEEQBKHwiMMjCIIgCELhEYdHEARBEITCIw6PIAiCIAiFRxweQRAEQRAKjzg8giAIgiAUHnF4BEEQBEEoPOLwCIIgCIJQeP4/cZ4Fv1Dm5tcAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGwCAYAAACtlb+kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACF10lEQVR4nO2deZgdVZn/P72lA53OAlk6CSFhCwHCYgLEKJBAQEHAiCigzAiOOiriNqMsIyODMjDiCPgjUUdEZHHAEUQRhAAqQSQJEiSEJUEhCdBJd8jWnbWX9Pn9car63Orcpapu7fV+nqeeurldt+6535zznve85z2nagCFIAiCIAhChqmNuwCCIAiCIAhhIw6PIAiCIAiZRxweQRAEQRAyjzg8giAIgiBkHnF4BEEQBEHIPOLwCIIgCIKQecThEQRBEAQh89THXYAkMW7cOLZu3Rp3MQRBEARB8EBzczNr164te404PBbjxo2jtbU17mIIgiAIguCD8ePHl3V6xOGxsCM748ePlyiPIAiCIKSE5uZmWltbK/bd4vAMYOvWreLwCIIgCELGkKRlQRAEQRAyjzg8giAIgiBkHnF4BEEQBEHIPJLDIwiCIAgJp76+nrFjx1Jbm684hVKKDRs2sGPHjqrvJQ6PIAiCICSY0aNHc+211zJ48OC4ixIbTz75JLfffjtKKd/3EIdHEARBEBJKTU0Nn/70p9m2bRv//d//TVdXV9xFipT6+nqmTJnCeeedB8BPf/pT//cKqlCCIAiCIATL8OHDmTJlCj/4wQ947bXX4i5OLLz++usAnH/++dx7772+p7fyNRkoCIIgCCmiubkZgPXr18dcknhZsWIFACNHjvR9D3F4BEEQBCGh1NTUALB79+6YSxIvvb29gNHDD+LwCIIgCIKQecThEQRBEAQh84jDIwiCIAhC5hGHJzc0xF2AhCFVXxAEIU+I1c8FZwPdwD/HXZCE8P+AjcBhcRckATQAS4E/AXUxlyUJTAE2Ad+MuyAJ4VPotjI75nIkhbuBVwH/K4WyQy1wBHBA3AVxjTg8ueAG6/w/yH85wBeB4cDtMZcjCRwBTANOAD4Sc1mSwKeBEcA1wNiYy5IE/gfYB/hj3AVJAI3AhWin+NuxlmTvmA4nzcBgdP0YUrScb731Fp///Ocd782cOZPt27ez//77+/rt1SC9X+44Ne4CxMzogtcz0I02z0wteP2F2EqRHMYUvP50bKVIDoVLgGfEVopkMKXg9cdwahMdewPbYzqcTk/hYy5GU4wlS5Zw3HHHOd67+eabuemmm3jzzTc9//ZqEYcn8zQABxb8e3pcBUkIRw349yGxlCI5HFnwekrJq/JDoQM4ObZSJINROLuIvOtRWDeGofXJM3sVvC7+jK/Fixc7HJ5//Md/ZMKECVx//fUAnHnmmaxYsYLXXnuNT33qU2EWFpBHS+SAKcCggn+Pj6sgCWGgw7Mf8HwcBUkIhUZ8FDpsn69n9RjqcDp9+8VVkIRwxIB/ix5OJgDR7368A2iK/FvNdxsKHZ7ii2IWL17Mf/3Xf9HU1IRSiuuuu46rrrqK7du3U1dXx4033sjJJ59MR0cHS5cu5YEHHmDTpk2hlV8cnswz0MHJu9GaMODfeXcADxzw7/HAG3EUJAGMwzlSzXtbOWjAv0UPJ/uhE/6jx9+TpIKmseB1PToa2Oe4YunSpfT19TFt2jROPfVU3nnnHW6/XedOHn/88bz88susXbsWgEceeYT3ve993HvvvaGVWByezLPvgH/nvYPfZ8C/827Ei+mRV4dH6oaTgXoMHCzkDakfTgau6mxgYHR4586dLF++nHPPPZfPfOYzfOADH0ApBcC4ceNobW3tv7a1tZXx48PtnySHJ/PYDo/9lN28Ozy2Hiutc971sI24rUeejbitxd+s82DyvfzYbisrrHOe6waY+mHrkWcHsDBWsss6Dyp2IYsXL+aLX/wiCxYsYOHChaGXrBzi8GQeu5G+aJ3HkO/A3kA98mzEmzF1QfQwdaPNOkD0AKkbNqKHwY7u7Ebv8QalHJ5ly5bR09PD17/+dcf7a9eudUR0xo8f3z+9FRbi8GSewohGN/q/PM/7i9h62EYrzxEe24DvxEQ18mzEbT02AW9br0UP01ZGUWo1Tj4Qh8dgD5R6MQ5P8cTlCy64gHnz5vH666873n/22WeZOnUq48aNo6mpiTPOOIMFCxaEVmLI91A/J9gd/AZgLTAJ3cm/FVeBYkaMlqFYB5/nMH2hHgo4FtED4HV0muzeaNvxeslPZJd6YKj1epl1znPdKIzw9FivTYSnpqaGUaNG8alPfYpDDjmEuXPn7nGH3bt386//+q/88Y9/pLa2lhtuuCHUFVogDk8OsI3WRozDk9cITw16F12Al63zEPQiz+2xlChebGd4I2YKJ897ixQ6PHbyZZ5zeAptRxt6Rd8o8unw2HajD5MPmee6URjh6RnwHpx00kn84Q9/YMWKFZx77rls3bq16F1++9vf8tvf/jbUkhYiDk/mKezUNlivB642yAvDMCOTt9CdWiPamOXR4Sns4DcNeC+P2G2l0OHJsx4D68eB5FcP+3dvAd6xXg9Fd6G9cRQoZgodnt4B78HChQupq0ves/kkhyfzFDo8m63XeTVathZb0fPOee/kxeFxUhjRED2kfhRSqEUHZr+ZEcUvzzyFU1q7B7yXXMThyTzDrfNmxGjZv9t2/EQPjXRoGtHD0IjZz1f0cNaNPnSkp/D9vFE+wpNUxOHJPPZTbLciRsvWotM65z3iZSdhdmLqRgOlnnycfYZZ50I98l43QOtht5W8RjSGW+cO65x321EY4RGHR0gEgzBLBbcjRssesdr5Onnv1GzHZht6abq9gVhe9bDrxzakbhS2FYXoUVg3QPSwXYc+zJRWLXE9Qd4t4vBkmsKR+nakkRZ28GD0EAdQk/f6UahH3rWw24rUDY20FSfFcngK308m4vBkGruR7kJXyrw3UjFaTko5gKKHaCFtxYm0FSeFER5Iy7SWODyZZmAjzfuUlhgtJ9KpOSnUw24r9ehHcOQNaStOpK04GejwpGOlljg8mUYaqZOBeuQ98bBUXkIeHeJGjLHeho6K7rD+ncf6IbbDiejhxHYdbEdHIjxC7JQapdkbZuUNGbU6kTwNw8B8N8i3HtLBOxHb4cQeHMiUlpAYBjbSLQV/y+MoXjp4J9KpGQrz3Wwjnmc9yiX4J3slTjhIW3EiU1pC4hjYSAs3zMqjwyNLS52U6tT2LXJt1hmoBeRbj1IdfB3OPXryQik98lg3wG3S8ltvvcXnP/95x3szZ85k+/bt7L///qGWsBji8GSaYkY8z3krAyM8W6zzsD0vzQUDjbi9qZp0aBrRw9iObvReTZDP9jLQdsRdN/aO6QAd4bOjfLsHnJ0RniVLlnDcccc53rv55pu56aabePPNN/3/fJ+Iw5Npihlxe5fhPK48GWjEC7XIc5h+oB7SwWvyrMfADh70bu0gtgPirRt7o/9f4jj2xuk2lJ/SWrx4scPh+cd//EcmTJjA9ddfD8CvfvUrNm3axC9/+Uv/cnhAHJ5MUyzCI0bcGHFbi1qMQcsLA3fhBqkbUHxwkEc9yg2WRI98a2G7DargvdIOz2GHHUZTUxN777031113HVdddRXbt2sdv//97/OJT3wi9BLbJDulWqgSMeJOBo7SdqHnnu29VrYV+1BGKXTwxIgX7+AloiGDJZuBttSuG01oB6Bvj0+Exw7iG6DtAAZbrwt3WLZ/vzOGsnTpUvr6+pg2bRqnnnoq77zzDrfffnv/3xcuXMisWbPCLLADcXgyjRgtJ6UcwH3QeqyLvETxYdeNLkzCoW3E81g3pK04kcGSk1JTWqAd4g6iZUflS0JjYMIylIrw7Ny5k+XLl3Puuefymc98hg984AMopYgLmdLKNDIP70TC9IZyHVoe64Z08E6krTgZqEc3erAA+dNj4KaDha/3XJa+ePFivvjFL7JgwQIWLlwYduHKIg5PprFDjzsL3suz0bJXGRSOjvKqh3RoTkQPJ6KHoQGd8waiB3iJ8AAsW7aMnp4evv71r4ddsIrE7vB87nOfY9myZXR0dNDR0cEzzzzD6aef3v/3xsZG5s2bx4YNG9i6dSv33Xcfo0ePdtxjwoQJPPTQQ2zfvp329nZuuOEG6uqSvQFSNOxlncXh0YgDaCinRR6TuKVuOLFtR7HBQd4igIMLXkv98OrwXHDBBcybN4/XX3897IJVJPYcnrfffpsrrriCv/3tb9TU1HDRRRfxm9/8hne961288sor3HTTTZx55pl89KMfpaOjg3nz5vGrX/2KE044AYDa2loefvhh2traeM973sPYsWO588476enp4Rvf+EbMvy5u7Ia6q+C9vDZSKK9HXo14oRY7MUncQ3GOZrOOODxOitWPvOZ47VXwuqvgdV7rR7FVWs6k5ZqaGkaNGsWnPvUpDjnkEObOnVv0To8//jhHH300TU1NvPXWW3z0ox9l8eLFoZXcLnWijo0bN6p/+qd/UkOHDlVdXV3q3HPP7f/boYceqpRSasaMGQpQp59+uurt7VWjR4/uv+azn/2s2rJli2poaHD9nc3NzUoppZqbm2P//cEdf1SgFHy04L1PWu/9NgHli/JosH63UjCs4P17rfcuTUAZozzOsn734gHvb7TePzQBZYzy+H/W7/5WwXvHWu+tSUD5oj5WWL/9hIL3/s1678cJKF+Ux/7W794x4P0nrfc/Eur3T5w4Ud15551q4sSJCdACBSMVTFdwUMF7NdZ70xXUqlmzZqndu3erl19+WR1//PGh6+C2/459SquQ2tpazj//fJqamli0aBHTp09n0KBBPPHEE/3XrFy5kjVr1jBz5kxAb1O9fPly1q9f33/NggULGDZsGEcccUTJ7xo0aBDNzc2OI3vIKM1QGJaWiFfxugFSPyT6p5HpcIO0FSf2Jq2FU1q2TwFQx8KFC6mrq+OII47g2WefjbZ4ZUiEwzN16lS2bt1KV1cXP/rRjzjnnHN49dVXaWlpoauri44O55K/9vZ2WlpaAGhpaaG9vX2Pv9t/K8WVV15JZ2dn/9Ha2hrwr0oCttGSDl7C0gMp1qFBfjt56eCdyHS4oVJbyZsexaa0IA0PEE2Ew7Ny5UqOOeYYZsyYwQ9/+EPuuOMODjvssFC/8/rrr2fo0KH9x/jx40P9vniQvARDMS1A9Bg4ahU9DLYWdZgVfnlBHB6DtBUnxZKWIQ0OT+xJywA9PT39GdzPP/88xx13HF/+8pf5xS9+QWNjI8OGDXNEecaMGUNbWxsAbW1tHH/88Y77jRkzpv9vpeju7qa7uzvon5IwykV4ZASvyavREiPupJgeO9BG3H5CeJybvUVNuYhX3myHtBUnxaa0wDg8iYijFCWRJautraWxsZGlS5fS3d3NnDlz+v82efJkJk6cyKJFiwBYtGgRRx55JKNGjeq/5rTTTqOjo4NXXnkl8rIni2JRjbzOO1cyWnkz4uIAOimlRx7bSx3mOWsS4Yk7OmzvTJycrVZKTWnZDlA45ayv1/GZanZqjj3Cc9111/HII4/w5ptv0tzczMc//nFmz57N+9//fjo7O7ntttu48cYb2bRpE52dndxyyy0888wzLFmyBIDHHnuMV155hbvuuovLLruMlpYWrr32WubPn5+DCE4lyoWlG9GbaeVFI+nQnEgippNyDvFw8qVHY8FrWfBQPFIOUTk8W7dq3UePHs0bb7wR6ne5I54prSlTpgCwYcMG3/eI3eEZPXo0d955J2PHjqWjo4MXX3yR97///f0rs7761a/S19fH/fffT2NjIwsWLOCSSy7p/3xfXx9nnXUWP/zhD1m0aBHbt2/njjvu4Jvf/GZcPylBFOvktxa8Hgr4rzzpQsLSTkQPJxIBNBQm+EuEJ+66sWXLFlasWMF5553Hpk2b6OrqqvyhUBmPHgSA2YEaYAwwDB35GUJQ1NfXM2XKFM477zyefPJJduzwP7Ucu8Pz6U9/uuzfu7q6uPTSS7n00ktLXvPmm29y5plnBl20lFMqLN2HfgDeEMThgfwacVml5USm+Ax2W+nGOYq3tahH6zVQq6xSakormoiXUopbb72V//zP/+Sqq64K9bvcMRK9E/smnAPofdB2YwthPEz1ySefdDxp3Q+xOzxCWJTaDh204RpCvjo16dCciAPoRPQwlNJiO9oBqkXrkReHJ94pLYB33nmHSy65hJaWlgTk8swDjgf+HfhlwftfAz4N3AZ8N7BvU0qxYcOGqiI7NuLwZJZSG+1BPufipUNzIno4ET0MpQYH4Mxpai/y9yySjLrR29vL22+/Hcl3lacerUkbsKbg/Xbr/foB7yeHRK7SEoLANlpd7JlNL0bcYGsxGDMFmAckiduJ6GEo1cFDPqc8ZQ8vJ/FHvPwiDk9mcWO0klsxg6eUHtsKXufRiKfPaIWD6GEoZzvy6ACmt4MPh/Q6gOLwZJZKYWnIVwdfSo/dmKeCJ7ehBk96jVY4VOrUpK1o8lg/KjnD9ThTCLJOegcH4vBkFhmlOZGIlxPp4A2F+86IAyhtZSClBgd2EjfkS4/0RrzE4cksMkpzIno4Se8oLXjKJfjnWQ9xeDSlOniFmRLPkx6VosPJHSyJw5NZxGg5kURMJ5WSdPciP0ncdt3oA3oG/C2P0VAZHDgRW+pEIjxC4pAO3okYcSeVHi0B+akfUjeciO1wUiqiAVI/Ckn+4EAcnsxSyguHfDfSYtuyJ7+hBk8po9WLeSp4XvSQEbwT0cOJ2FInlaa0BuHMi0sO4vBkFrvCSQevsfUQo6WRTs0gWjgp18Hn0XZI/TCUemQROLf4SKYe4vBklnIOT94aKYgeA5FpC4No4UQGB06kfhgKIzcDbaki6fVDHJ7MYj/FVjp4jTg8Tmw9uov8LW96uNFib/LzJB5pK06krRjKOTyQdD3E4cksboxWXkYlIEZ8IOUc4rxNW7jRAvLTXqStOJG2YrDrxm7rGEiy9RCHJ7NIDo+TcnrYc8956dAGFbwuVz/yoke5utGLmcrIix52/SgW0chbWwF3tjQvepTTAoweQyIoi3fE4cksbhppMitlOJQLS+fVaIEYcXBvxEWP/GkBokch5ewoJF0PcXgyi5tGWofOTcgDbsLSeXEACx0ecQDF4RmIDJaciMNjKGdHIel6iMOTWcp54jsKXiezYgaPGC2DrUUPemXFQPI2bVFp1JpXPcTh0ZSrH1I3nCTblorDk1nKVUxF/gyXODwGt6M0qRuavOpRLvpXCzRFU5zYkeiwQRweIZGkO/QYPOLwGNJttIJH2oqTcnrsxKzOyYseYjsM6Y6GisOTWaRTcyKrtAxSN5yIHk4q6ZGn9lKD2VlYHJ60R4fF4cksYsSduAnTDyYfm8tJ3XCS7pUnwSP1wyArGp2ku26Iw5NZ0l0xg8ft5nLJHJkES7l9ViB/dUPaihPJaTLIikYn6W4r4vBklnRXzOCRzeUMUjecyBSOE3GIDYWbdJZbpTVowLVZJd22QxyezJLu5LJgqcdU9XQ21GCRDt5JuvMSgifdnVqwuNUC8lE/0u0Mi8OTWcSIGyrNw0PSG2qwyJSFE+ngnYgehkpa7EavXAPRA5I+WBKHJ7OI0TK4cXiS3VCDxW2Sbt4cnnSOWoNHbIehkhYgehSSbNshDk9mEaNlKHzCb1+Ja/Kkh9voX142l5O24kSmww2VtIB81Y90txVxeDJLuitmsFTq4CFfelSqGzvI1+Zy0lacyHS4QWyHEy/R0Jrwi+MRcXgyixhxg5ewdB6MuBs98jiKl+lOjdgOg7QVJ26dYUhidFgcnswiYWmDzMM7ESPuxO3Kkzw4wyAOTyFiO5xU0mMXepsPSKIe4vBkFjFaBjFaTrzkJeShk5e2YijcS0b0kOjwQNI9WBKHJ7PIPLzBTQef3EYaPJKX4MStw9OIea5SVqm00R5I3RhIHvVI52BJHJ7MIqNWgxgtJ6KHEy+by2VdD9nCwYms0nKS7sGSODyZpBbzEExxeNLeSINHHB4nsrmcwdaiB1AlrknuCD54xHY4SbftEIcnk3jZWTgPRkvm4Z2k22gFT6WkZchPVEPqhpN056wET7rrhzg8mcSLw5OHzeXS3UiDR8L0TsQhNkjdcCK2w0m69RCHJ5MUOjy9Ja7Zgdl1OHkVM1jS3UiDx02Y3h61Zr2DB6kfhXidwkne5nLBIs6wk3RHQ8XhySR2pdxV4bq8dGqySsuJdPBORA+DFy0gP9FhiXhp0u0AisOTSdyM0iA/DVUSD51IB+9E9DC40WIX+Xn0iNgOJ+luK+LwZBI3YUdIcsUMFjFaTtzUD9HDSV708Go7kjeKD5Z0d/DBk+6IV+wOzxVXXMGzzz5LZ2cn7e3tPPDAA0yePNlxzR//+EeUUo7jhz/8oeOaCRMm8NBDD7F9+3ba29u54YYbqKuri/KnJAhxeJx46dDytLmcGHGow5hBWYkj0eGBeMl3y7oWkHbbUV/5knCZNWsW8+fP5y9/+Qv19fVcd911PPbYYxx++OHs2LGj/7of//jHfPOb3+z/d+Hfamtrefjhh2lra+M973kPY8eO5c4776Snp4dvfOMbkf6eZCAOjxMvDg/oUevm8IoTOxLRMLjZWRjyE9EQ2+FE2oqTdOsRu8NzxhlnOP598cUX88477zB9+nT+9Kc/9b+/Y8cO2tvbi97jfe97H4cffjinnnoq69evZ9myZfz7v/873/nOd/iP//gPenp69vjMoEGDaGw0q5mam5P3n+MfN2FHyM/IxE0jtTeX2wutR94dnrwktHt1eKStaEQPg61Fg3V9Je3SjKzSCpRhw4YBsGnTJsf7F154Ie+88w7Lly/nuuuuY6+99ur/28yZM1m+fDnr16/vf2/BggUMGzaMI444ouj3XHnllXR2dvYfra2tIfyauBCj5cStHsltqMGS7lFasBQ6PHsOjAx500Nsh8ZLBw+iByS5bsQe4SmkpqaGm2++maeffpqXX365//3//d//Zc2aNaxdu5ajjjqK73znOxx66KGce+65ALS0tOwR/bH/3dLSUvS7rr/+em688cb+fzc3N2fI6ZHEQyde9BhFEhtqsKTbaAWLdPBOJDrsxG10eAewN1qPjWEXKka82I7k9SuJcnjmz5/P1KlTOeGEExzv33rrrf2vX3rpJdatW8cf/vAHDjzwQN544w1f39Xd3U13d1ZDj2LEnYgeTrw6PDWUfq5S2pG64UQGS0686GE7PFkm3YOlxExp3XLLLZx11lmcfPLJFSMtS5YsAeDggw8GoK2tjTFjxjiusf/d1tYWQmmTjhhxJ6KHE69J3FneXE6mO51IW3Ei9cOJODxVc8stt3DOOedwyimnsHr16orXH3PMMQCsW7cOgEWLFnHkkUcyatSo/mtOO+00Ojo6eOWVV8IocsIRo+VERq1O3Oixk3xsLidtxYno4UT0cOJ1SitZjx6JfUpr/vz5fPzjH2fu3Lls3bq1PzLT0dHBrl27OPDAA/n4xz/O7373OzZu3MhRRx3FTTfdxMKFC1m+fDkAjz32GK+88gp33XUXl112GS0tLVx77bXMnz8/w9NW5ZBG6kT0cOJFj+Fk2wEUZ9iJtBUnUj8MhfuTudmXCLQeW0tdGDmxR3guueQShg8fzsKFC2lra+s/zj//fEDn2px66qk89thjrFixgu9973vcf//9nH322f336Ovr46yzzmL37t0sWrSIu+++mzvvvNOxb0++kDCsE9HDiSSmGqSDdyJ6OBE9DG63cNiFeWh1svSIPcJTU1M+5PX2228ze/bsivd58803OfPMMwMqVdrxultqlkclIEZrIKKHQbRwIoMDJ1I/DG4dHtB6jCBpfUvsER4hDKSROhE9nIgeBq9aDMJp+LOG1A0noofB1mI30Ffh2mTqIQ5PJpFG6sTtFE4e9Cichxc9vEc0QPQAiQ4PRNqKk2TqIQ5PJpFG6kT0MHgNS0M+9Kikhf3oEciHHvLwUI1M8RnE4RESiZ8OPlnLB4NFRq0GPw5PHvTwYsRFj6R2aMEjtsPgpa0k0wEUhyeT+AnTy+ZySW2kwWJr0YfZZ6cUedIjvaPWYBGHx4noYUh/WxGHJ5O4rZg7kM3lCklmIw2W9ButYBE9nHgdHCRvc7lgEdthSH80VByeTOIn9JisihksYrQM0sE7ET2ceG0rILYDpG4MJJl6iMOTSdJfMYNFjJbBbVIq5EuP9OYlBItbPQo3lxOHR9rKQJKphzg8mST9FTNYxGgZpG44ET2ciB6GWszevJL/l4W6IQ5PJkl/xQwWP5vLNZS7MMWkfx4+WNzu0QT50ENsh8HPnlVSNzTJdADF4ckkYrScyOZyBqkbTmSKz4nUD4PsWeUk/XVDHJ5Mkn5PPFhkczmD1A0n6TfiwSL1w1Do8PRUuNauGw2YqGHWSH90WByeTCJheoOXeXjIfqcmHbwT0cOJ6GGwtegBVIVrJTrsJJl1QxyeTJL+ihkcXubhIft6SN1wIhENJ+kfxQeHFy36gO3W66zWDz8D6WRpIQ5PJpFOzeBlHh7yo4fXDi2rm8tJW3Eiehi8aAHZd4jTXzfE4ckk6a+YweFlHh7yo4eXugHZffSIRDSciO0weHV4sl4/0l83xOHJJOmvmMFha9GLDjtXIus7T3upG4Wby2W9fkhb0YgeBi9TOJB9PfxM/zaRJDcjOSURAkTyEgx+R2mih0bqhyHrdQPEdhQitsNJ+qPD4vBkEjHiBjFaTkQPJ9JWnIgeBmkrTrzo0YVJIUiOHuLwZBLJSzB42VgOxGgNRPQwZD2iATDYOovtkLYykPTrIQ5PJpHdYw3pb6TBIno48TM4yOrmcvUFryXCI9O/A0m/7RCHJ5NIWNqQ/kYaLLLyxImfCA9kUw/ZwsGJ2A4n6ddDHJ5MIg6Pwe8oLYsdGmTBaAWLFz12Azus11nUQxweJzI4cOI1PSB5ES9xeDKJbC5nkKWlTkQPJ+IAGgodnt6SVxmS16EFi9QNJ+l3AMXhyRx1mP9WCdOL0RqI5CU4kfphkAR/J1I3nKRfD3F4MofXsPROdKgeklQxgyP9jTRYRA8n4gAa/NaNZG0uFxzSVpykX48s1tKc49XhgSSGHoMj/Y00WEQPJ6KHwa8WkKTN5YJDnGEn6W8r4vBkDq/z8JDEihkc6W+kwZL+efhgET0MXqe0krm5XHCI7XCSfj3E4ckcXo0WJLFiBoeM0pyk32gFi+hh8KoFiB6FZNkZhizYUnF4MocYLSd+jVYDzmhZVpAO3onoYfBjO5LXqQWH1A0n6ddDHJ7MIQ6PE7+jEhA9INt1A0SPQsR2OJFVa07SH/EShydzyCjNiVc98rK5XHo3DwuOGnQkD9Icpg+Oahye5HRqweG3g6/HPJMsS6R/cCAOT+YQo+VERq1O0m+0gqOh4LXoIW1lIF712F7wWvRIYt0QhydzeN1JF5JYMYNDjLiT9Ielg0O2cHAibcWJVz36ME6P6JHEuiEOT+YQo+VEpvicVOPwZO3RI9U4PFI3NKKHE3GIDcmzo+LwZA4xWk7EaDmpZnO5rOlha9GLHp27QdqKE9HDiehhSJ4W4vBkDmmkTkQPJ171yPLmclI3nEg01InUDyd+HZ69SYqrkYxSCAEiRsuJGC0nUj8MooUTiYY6EdvhJP3RYXF4Moc0UieihxPRwyBaOBE9nIhD7MSrHt0F1yZDD3F4MoeM0pyIEXci9cMgWjiRtuJE9DDUWQekWY/YHZ4rrriCZ599ls7OTtrb23nggQeYPHmy45rGxkbmzZvHhg0b2Lp1K/fddx+jR492XDNhwgQeeughtm/fTnt7OzfccAN1dXXkD3mWlhMZpTmpxogPDbgscVONFg1kb3M5qRtO/OjRaZ2zZjv8rGiEpPUtsTs8s2bNYv78+bz73e/mtNNOo6Ghgccee4y99967/5qbbrqJs88+m49+9KPMmjWLcePG8atf/ar/77W1tTz88MMMGjSI97znPVx00UVcfPHFfOtb34rjJ8WMGC0nfvTosM6ih8Y24lnTo5q2AqIHZLdugOhRiF+Hx9ZjWIBlqQ6VpGPkyJFKKaVOPPFEBaihQ4eqrq4ude655/Zfc+ihhyqllJoxY4YC1Omnn656e3vV6NGj+6/57Gc/q7Zs2aIaGhpcfW9zc7NSSqnm5ubYNaju+IoCpeAuD5+ZaH1mRwLKH/TxO+u3fcLDZz5jfeY3CSh/0Eev9dvGePjM/1mf+UICyh/kcYr1u5Z5/FyH9blDEvAbgjz+y/pd3/XwmeOtz6xKQPmDPp63fttpHj5zlfWZ/0lA+YM8Rlm/S3n83FPWZ86t8vvLH27779gjPAMZNmwYAJs2bQJg+vTpDBo0iCeeeKL/mpUrV7JmzRpmzpwJwMyZM1m+fDnr16/vv2bBggUMGzaMI444ouj3DBo0iObmZseRDaqJaOyFc7v9LFCNHsMCLkvc1OJvHj6revipGyB6FJJVLUD0KKTatpKMiFeiHJ6amhpuvvlmnn76aV5++WUAWlpa6OrqoqOjw3Fte3s7LS0t/de0t7fv8Xf7b8W48sor6ezs7D9aW1uD/jkxUU0YFrLXUP08aiPrRgtkig/E4RlINW0la3UDqrOlWasb2WgriXJ45s+fz9SpU7ngggtC/67rr7+eoUOH9h/jx48P/TujwU/F7MPkJiSjYgaH5PAYqnV4pG5osl4//NSNOqAp2OLEjkR4DOLwBMott9zCWWedxcknn+yItrS1tdHY2Ng/1WUzZswY2tra+q8ZM2bMHn+3/1aM7u5utm7d6jiygd+KKSMTQ7IaaXAUOjw9Ja/ak6zrkW4jHhx+9NiJfjQHiB4gdWMgyepXEuHw3HLLLZxzzjmccsoprF692vG3pUuX0t3dzZw5c/rfmzx5MhMnTmTRokUALFq0iCOPPJJRo0b1X3PaaafR0dHBK6+8EslvSA5ixJ2I0TL4mbKApBmt4JC24kT0cCLRYUM26kZ93AWYP38+H//4x5k7dy5bt27tj8x0dHSwa9cuOjs7ue2227jxxhvZtGkTnZ2d3HLLLTzzzDMsWbIEgMcee4xXXnmFu+66i8suu4yWlhauvfZa5s+fT3e31/+gtJONihkc1RitevRzYHYEWqL4kLrhRPRwUo0e+yJ6QPbrhpf93SBpDmDsDs8ll1wCwMKFCx3vX3zxxdxxxx0AfPWrX6Wvr4/777+fxsZGFixY0P85gL6+Ps466yx++MMfsmjRIrZv384dd9zBN7/5zeh+SGKQvAQnfvTYDuxG5yUMQxyerBpxiXg5EdvhpNqNB2vR+ZFZIBu2I3aHp6ampuI1XV1dXHrppVx66aUlr3nzzTc588wzgyxaSslGxQyOauaeR6D1WBdoieJDOjQnoocTsR1Oqlm1Brp+bAmsNPGSjbqRiBweIUjsRuolKRWSVjGDQzo1QzaMVnCIHk5ED0NhLMCLHt3ALut1lvSQpGUhkVQ715qMihkcYsQN1RqtZqByRDY9SN1wko1OLRj8buEAMlgqJFltRRyezGFHeMTh0YgehmqNVi1JeQhgMGTDiAeH6GFoLHgt0XJTN9KthTg8mUOMlqEG86gMcXj8O39dBZ8RPbJZN0D0KMS2o32YfYbcksWIV7V1IxmPLRKHJ3P4rZhZbKTVhKWzrIefrRokTG/IYt0AyXcrxK8dhWw6gNX2K5CE+iEOT+aQUZqhMCyd7v0jgkGMuJNq20qW6gaI7ShE2ooTv85wH7DNeh2/HuLwZA4ZpRmCSDyMv5EGRzVGPItRjWrbShMJ2NkjQCQ6bJBoqJNsOIDi8GQOGaUZCpfoK4+fzaIeQRjxLOmRjTB9cEj+nyEbHXxwZMN2iMOTOcRoGfwu0Yds6iFG3IlfPXrRu3GD6AFSNwaSxYhXELYj/sGBODyZo1qjNQT9SIUs4PfRASBGfCBZ1CMbo9bgkJwmg9QNJ9mwHeLwZI5qNx6E7BiubDTS4JC8BCdBjOKzokfhFg4SHRbbMZBqbEdyIl7i8GQOv1GNXsxDMuOvmMEQRCPNSocGYsQHInoYChP8/eY0NeJcGZlmJMLjJBttRRyezJGNihkMooWTbIzSgkM6NUM1Kxq3Yp4KnhU9spGzEhzZsKXi8GQO6dQMkrTsJBtGKzhED0NhZMar7VBopweyp4fUDU02psPF4ckUdZiEYxmZBJO0PBjn6DfNiBF3InoYCtuK1y0cIHu2QwaOTrLRVsThyRTVhKUhSRUzGKpppFsLXmdFj2yM0oJDprQM1WgB2dNDprScVBMtT44DKA5PpqjmUQqQPaNVTSPtI0kNNRiyMUoLDlmlZahGC5C2UojdVurQ23xkgWxs8SEOT6awK6WfJ/xCkipmMFTTSCF7nZqE6Z1IhMdQrcOTNT2qqRs7MPY3K7YjG4MlcXgyhYSlnYgRd5INoxUcoodBbIcTsR1OsjE4EIcnU0gjdSJG3EkQHXw9sHcwxYkdcXgMYjucyBSfk2zkNInDkymkg3ciRtxJNfVjOyZML3pkr24E1Vbi79SCQWypk6Dy3eJ1OTx9+3777RdWOYRAkA7eSTVJy5A9PYIatWahU5MtHJxU28FLRMNJ1mxHEIMDgOYAyuIfTw7PihUruOaaa9hrr73CKo9QFUF18Fkx4tUmLWdVDwnTV7+iMUtagHTwA5GIl5Nq9OgGdlmv460fnhye0047jfe///387W9/46KLLgqrTIJvglqVJEZLkzU9JExvCGrPqmb0gzfTjtQNJ6KHk2w4xJ4cnkWLFvHud7+bK6+8km9/+9s899xznHDCCWGVTfBMNiplcMiUlhOpH4agtnCoJe4wfTBI3XAigyUnQTmA8Ua8fGUQ3XXXXRx66KE8/PDDPPLII/zyl79k0qRJARdN8I6MSpwENaWVFT2kfhiq7dC6Cj4reiSlQwsOcQCdZEOPqlKmH3vsMX7yk59wzjnn8Morr/Cd73yHpqamoMomuKQO+BdgamCVMt1h+hbgP4EhEuEBYBbwTSArRqtaPgecVbXzB1nQYwjwbWBCYM7w8GqLFCtTgBuAehkcAPAh4F+BrCS113u5+LOf/SzHHXccxx13HIcddhh9fX289NJL/OhHP2LZsmVccMEFvPLKK3z4wx9m6dKlYZVZGMC1wBXATxjEZ4DqG6kdpu8sc20yqQWeAg4BHqORhYB/PbZY5+HVFis2xgNPWq+/SyM7Af8OzxbrPLyaIsXKucAPgZdo5CHAvxag9RhNmvW4FbgA2EEj1wN5rhuDgKXoXaZ+SiMrgDzrcQTwAPpRst+rerC02ToPr7JU1eHJ4fnGN77BkiVLuPPOO1m8eDFLly5l165d/X+/9dZbufLKK/nZz37GkUceGXhhhT0ZDlxmva4PJEy/E9gLGEEaHZ65aGcHYGxgjXREVWWKk6sKXjcwyHJ4/DqA6dfjBuvcHUiEJ916HIx2dgCaA2sre6EjidU4kvHwT5gtNUdV7fCku26AjvwB9FKPmQyq1gGMVw9PDs/+++9f8ZrbbruNb3/72xWvE4LheAqrYrVGC3TFtB2eNVXcJx4KU+i7q57S2mKdh/stTuycWPC6r+r6scU6D/dbnFgZDxxovQ6urUBa9SjeVvw6gFvRCeC1aD3a/RcsJmYVvN5dtR7pd3hsPbqrXtEISYnwBL7t4fr16znllFOCvq1QguOt81aCHrUOr+Ie8XGcde6ksFPLp9FqAg6zXm8hiE4+3Xoca503E5TDkw09thCEHoqkjOL9Emz9SLcdPQDYB+gBtlS9ZxUkpW6Ess/zU089FcZthSLYDs9diBGvA6ZZr39OEBEeW4sGtPuQLqahG/hbwJ+BnpyPWm1n+NfAdkuLhhxPadl6/AKxHcPRU3wAvySIweMW65w+LcA4fy8Ar/TXjd3W4Ydk1A15llbKsSvmfZhGOiinRnwK2i3pBB4niAjPjoLPpk8Pu278Bfi7IyydzwjPdOu8BHjbqhuNOe3g64GjrdeFtiOvOU123fg78FeCjPAMwWPmSCKwbcdzwBtW3airqm5ssc7Dq7hH9YjDk2KGAGOt10uBTVYjbc6pEZ9snV8B3kBGrYda55eAVYHOw6dPC9AOMcByoNWqG3vnNIfnAHRq8XZgIbDL0qMpp22lsG6sIgjbsaXgdfr0sKfClwOrLS0aMlA3xOFJMQdZ53fQUY0NVqc2LAMV0w92SPp1dLq1iXjlW4+/A6syNA/vh0GAveTidWCdVTf2zmlEw7Ydr2PnaWg99glkFJ9uPVYTRMSrD7PNR3r1+DuwJtBo6PAq7lE94vCkmMIODWCDVTGH59SIF+qxBdhp6TFGjHi/0aqnB51g6ge7bjQCg6sqW9RMQhu7bej1Q205j4YW1g0w0eGRGejU/DBwsGRHeIbmUI8azGrG14G3LeevMQN2VByeFFPYSAE2W41030DC9Ok34jushjo2h0ZrYETj7YL8Lv8ZBVsxz51KV/0YWDfaA+3Q0qUFOEfwAB2BOjzp1eN19HO97Sm+8TnUYxx6ONODdv7WBjL9a2sxjDh38ReHJ8UMNFqdVqcWTIRneBX3iIeBEa+dOTbik3BGNDYVhKX3rerOW6xzuvQY6PB0WG1lSM6joQMHB3mMDg+MaICZ0to3A1ENr9htZQ16TdYmS4u96K7CVdlinWuJ83lr4vCkmD2Nlu7U8pjDMwiYYL229ejqj3jlz4jbRusN66wKIjwjq7pzuvWw68a2QKa0tljn4VXcIx72jIba0+H5sx0DIxpQQ6/VXvI4WNpzcGAGS8N937UbveoV4tQjfevlhH7sDn61dd6Z41HafmjvfSew3nqvp3+Ulj+jdYB1fqP/naAiPOnUY5J1XmWd7X14mgNpK03ovZp6qrhXtEyyznb9sKdw9snhdLjdVt7C3mXGrGgcncPp8IG2o6/AdozE/CrvrEHv4h9f/p9EeFLMfta51TrbRmtEDjv48db57YL3eiw9RuUwLG07w2/1v+M0Wv7ZYp3Tqceb1nl7QV7CEN937UCvxoE06bEv5plRdnvpDmSVVjo7+IF1o9Dhqc52pNOW7mk7gooOH452p1ZUdZdqiN3hOfHEE3nwwQdpbW1FKcXcuXMdf7/99ttRSjmORx55xHHNiBEjuPvuu+no6GDz5s385Cc/oakpfTvjemEfjJ+81jp3BTJKS2cjHej8gXkezqgc6xG80Up3p2br0RuIA6hI49Jju260YxZdd+c4363U4ABgdA4dnj1tR1CDpfiJ3eFpampi2bJlfOELXyh5zSOPPEJLS0v/8bGPfczx95///OccccQRnHbaaZx11lmcdNJJ/PjHPw676LFiV8p3MLuqdFmd2tB+8+WHdD5OYc8ITy3KmrEdk8OwdHgRnvQZ8UZgtPW6mAMYTBL38KruEiV71o3CaGj+HJ5SHXwD3Yz2vYUDpD0amkWHJ/YcnkcffZRHH3207DVdXV20txd/+u6UKVM444wzOPbYY1m6dCkAX/ziF/nd737H1772NdatW1f0c4MGDaKx0bgFzc3NPn9BPBSbwtk9IE9j7cAPuWIHOhehAd1Qt/suY5TsGeEx/7fV7cOTTiMuDo/BrhvbKcw/CFKPA0iTHsUcnt6CVUl1+H1ikq1uM7pr6S1zbXIIbwonfW0FwtQjfmKP8Lhh9uzZtLe3s2LFCn7wgx+wzz779P9t5syZbN68ud/ZAXjiiSfo6+tjxowZJe955ZVX0tnZ2X+0traWvDaJFJvCCW7Umr6GajuARg8zDx/MPjz7lL0qSdRQfkormLqRHj1sLd52vBuUw7PJOqdHj2IOT2Fiqv9fsqXgdXpsh62HqR9B1430aLEPJr9r4OAxCxGexDs8jz76KJ/4xCeYM2cOl19+ObNmzeKRRx6htlYXvaWlhfXr1zs+s3v3bjZt2kRLS0vJ+15//fUMHTq0/xg/fnzJa5NIsQhPcCtx0tdQ99TDRHhaqlo9s9E6p6dDG412b/oojPIFZbTSp0exDj64UWv6HJ7iDmAQevSRRoc4vGioXTeqs8ZRYteN9RQ+gCY7Dk/sU1qV+MUvftH/+qWXXuLFF1/kjTfeYPbs2fzhD3/wfd/u7m66u6uZ6oiXPSMaEHynlr6GOjDCM8jKbBqKft6Yd2yjNQid05T8KT7bgLdROKmQ3w6+uMOT37YSrh6b0AOldNSPSvldMjiAQj1GRVyeoEl8hGcgq1at4p133uHgg/W2e21tbYwePdpxTV1dHfvssw9tbW1xFDESKk1p5WlkUot5anyxsDRQhR470JvNQ1r0qBT9q878pq+DLzelNYjuKvVInwNYaYovT/VjnHXegfmfLNRiMNXsGmPfcQiFU+xJplLdSE/Mvzipc3jGjx/Pvvvu25+MvGjRIkaMGMG0adP6rznllFOora1lyZIlcRUzdCp1asOqunu6RiZj0KHK3eilthr7YZk6iledHunq1GwjXir6lyctwDjDziR++4GIQbWVdHTwUKp+mMFSMPUjHXrYWjjrhnOw5F+PDkz6dzraS7h1I35id3iampo4+uijOfroowE44IADOProo5kwYQJNTU3ccMMNzJgxg4kTJ3LKKafwm9/8hr///e8sWLAAgBUrVvDII49w6623ctxxx/Ge97yHefPmce+995ZcoZUFKkV48mTEbedvHYWrS7QWDZbRqu7pLenSw+7gnbU/6LqxD3E+BNALlTq1PHXwQzFJqaZ+1FlH/gZLdt0o1lbqqh4sKUxOUzrqR3HbEVRbiZ/YHZ5jjz2WF154gRdeeAGAm266iRdeeIFvfetb7N69m6OOOooHH3yQ1157jdtuu42lS5dy4oknOvJvLrzwQlasWMHvf/97fve73/H000/zz//8zzH9ovDZG5NOHE6EJ11GvFw+U33VozRIW1SjUgc/iCDC9HXE+RBAL0TnACYfu25sxkzUFib45812FI/+aT3qArEd6awf4QwO4if2pOWFCxdSU1N6pHj66adXvMfmzZu58MILgyxWorE7+G0MTMTNpxEvF+2qDWRKKwsRHrOZGmg9duGHbnTNG4LWo6P85TFTQ/lOLa8dfDHnT7/Kl+0o11ZqAp0OT3/9GEQ3zeg2Vc12jHESe4RH8E7x/B3IqxEvl89UG2iEJx16FB+l2Z1aviJe+6K30OyjML8L8prvVm4ED33U0yttpX+wJBEejWkrtVDFs+fiRxyeFFI8olGP/d/ZSFdAOSvpaKTF9QhylJYuPcqNWoNxeNIT8bIN+DsM3Pc36CTdEdh5MEmmXN2oo5sapK0Y25GvwVIdZol+8foRhB7xIg5PCike0QgjLJ38Rgrl9cib0apHr1qD4qPWvpyF6YtPZ0HhqHUo1aRfbyp4Pdz3XaIi/IhGeuoGlNdD5WywNAbtEPSiBwgGrcfuQPSIF3F4Uki5JF39Kp9TWsX1CHKVVjqMFuinoW1w/EXr0ZezMH3xVTgQXJh+N+aRCslvL+FHNNJTN6C8HipnDqCtRRsDc3S0HrslwiPEQbkkXeijjt0BGS17d+FkU06PYEZp6TFadgcfrtFKnx57RnjsCGA+60fx/C6tRXWDg/RoMRjjlhXLWcnr4KBUNLRXHB4hDmxPvFREo4ZqjdYOzJNUkm24hmJcMjFa5aZwdKfWE0inlj49SkV4unNaP8LP70r+7sL2kxZ3MnCtYZBTOOlxAEu3FaftEIdHiJTiYXqn0aqj2thMOvJ47Ea6Be2mGeyIRr6MVqUpnB6J8FhoI74rp/Wj2OAgmCmc9OwuXCmiEUw0ND3OcCU9ghkcxIs4PCmj9L4iJixtr0bJQ0Mt3cHbo7SgjVaydxeuFOHpzlkiZqUIT1eOOrVmzCCo2D4rdkL7EKpZb1a4u3Cy9ahUN4KZwkmfM1zKlnZJhEeIGntfESi+rwh09W9GmIeGGs28c3p2F5YIj5PyOSuwK5Ck9nToYWuxBT2NY3BO/0K+9Ihm+jfZWkDlFY3dgbSVeBGHJ2XYjXQ9eiWOwUR4bIcnDw210rxzr2W0mqv6li707sJQzXPXo8Ct0apu8zB7/VeytajB5GmU2ll4V0FUwz/p0KNSREP1x7tEDzCDg+psh63FYJK+AKTSYKk7ED3iRRyelFGpQ4Mutlqv8mC03EZ4qt8d1N6ZYlTVdwoTt2Hp6oxWOrTYF+PatDn+YrZw2BWIEU+HHpUiGtDdbzvyrYfT4anOdmzHxNOSbUsrDR6DsR3xIg5PyqjkhefNaLmNaNQBe1X1TelwACvp0RXoqLWZQuchadharGfgLst2mXvYbi3ez1NbKW07uvrjmMHokY62UqqD7w6sg7fbS3LrRx2lNiwFu37sCmzwGB/i8KSMSqMS2JUrh6dSRMOeh4fs61F6a3gI1uHZgplQTW6nFl1EIx3OsBc9gokOJ7etQGVb2pWj6PBotDOwm4G7LMNAh0ciPEJklB7BD7bOOwMepSW3kUI5o2XHc3bmxgEsvTU8DFyGXb0RT36n5iWiUZ0eya8b4E6PvLQVcLOCT7eVOmDvqr4p+RGvwg1L+/b4q7YdO2VKS4ia0hENu4PfFdAoLfmNFMoZLdsBDCrilfxRfKEWao+/6vqx08onCC5Mn1w9SjvDQdcNu63sQ5JNavR6JLduNGKWY5SeDt/V3/lnPeJV2o7WYhyeXYA4PEKEVI7wBN3BJ7eRFu6yXM7hycsovrQzDLYeOwIzWsnXIzpn2F7RWId+anoyiX5wkNy6Ya/e24V5EprBRIfzEi2vnCphbIfk8AiRUbpTM1NaeRmlFe4rsmOPv+ZvSqt0hwYDHZ69qGZzOUhT/SgdDQ2qbvRiNttLbv1wo4cMDiCPEa/StsMs9dguER4hSkrvsgzFprSCaaSDSOremm46+DyNWm0j3rrHX0xYenvBlnN5CdPvqUfQ0T9Ieqc2BPMbZUqrXN2A4CM8yW8rlac7e9hmPTJEHB4hEgp3WW7b469BG/Eu6Dd/yTRcpRsp5NGIVzZa0NOftpz9iFd0Ce2Q9E4t2miorcVeJHWzPa+2I+v5kG7ait2vDAbqIyhTGIjDkyIKd1nu3eOvQXfwkHQjXj7CI2F6Q+EORPlwAMtHQ8NoK8muH9EODgo32xM9kl43wFtCO6Q3j0ccnhRR2oBDOKPWZDfUaI1W8jfbq2y0uoG+XEzx2bss9zHwmXMQrsOTTAfQXVsJanAA6dYjrIhXMtsKuHN4eqD/0SNpndYShydFRJtoB+LwFLKFpG+25yYsDeQi4mVr8Q7FoqFBR/8g6Z1aedsRdP4fpEWPSrYj2FVaI0jiZFA9ZsPSSrYjuPoRD+LwpAivjTTrozS3U1p5MOL1lNsa3tQNCMpoJbtueHWGq3/0SDocwGgGB5Du+rGn7ajOlm4GK+E3iQ9jLr9hqdN2BOMAxoc4PCki+imt5HbwEIcRT64e9r4i3ZhdYQxhODy2FvuiM2aShdsObXvBu/l1APM7HV5612kIznb0AZus18nTw82GpQMjPJLDI4SOTGk5Ke8AhhnxSp4ehXXDrdEKxuGpQ+8wnCzcOsOKoCNeyasbEEd0OLmDg70w20OWnsKBvDiAbusGyJSWECFuO3i7Ula/udx66zy67FVxUH6X5RqC34gRTPpr8vTwYrSC6dR6MbGkMeUujIXo9bDbSvK0gDgiPHZbSZ4eth3dDnTu8Ve7buwGegOcwkmuHm7rBojDI0SI24q5reDd6ox48hvpFijYSs8mjLA0GD1ayl4VB/EYreTXj+j0sHfGGkP6pvjCiA7beqStrRSPaFQf8UprW5EcHiEGCvcVqTSl1Q0BbS5XaMSThTstIBwjnjw94glLZ6tTq04PO8JTT9Km+IZjXDy30+HVR4fT2sGHNTjIlu2QHB4hVMrvsgzhGPFCo5WsUas7o9VLYVg6D6O0SivWIF8Rnuj0SO4Unz042IjZR8VJ8ehwcLYjWcQzOJDocBIQhycllN9lGcKpmMkdtYrRcuI2vwuCylmBpHZqtZj/oWj1SGbEq3xbgVLR4eCmw9M4WHLuWZXfwYEkLQsxUL5Dg3AqZi9mtUWyjLjb6T2QsHTeprRGoadjdmNcdidhO8TJqh+VHR4ZLBnCmsJJZlsBifAICcTLKA2yP4r300ir31yucJVWeketeeng2zHbvTnJpx7F60Y9JlsnSAewh6RP8ZVvK/lwhgdhFspHGw2NB3F4UkL5iAaEn2yXrJGJlwhP4eZywSw9ridJO6YOwmx3JxEe74ODrE95upuygOBX4iRbj0rPFYMw2kqyBkvlNywFifAIsRC/EU/WyMRLWFoRlBEvnOJLjh6287cLvYn9noS1W2oa6waE82wxSOqUp7voH4Q3jZMmPYpHNKqPDtuDpQaSNMUXX78SD+LwpIR4wtKQzlG8s0ODbOvhd7oz2I0YkzNqlcGBEy8dPGRbjyHoTUvB3Qq+4KLDyVzFJw6PkEjcPSgTgh+1Js9oDQX2tl67mdKCbBtx9xGNoI1WMqf44nd4kuMMQ5yDg+TpYdvRTpzOjGHP6HCWFz34jYaKwyOEirtRGtg7beQhorGFYrssQzmHJ4th+vI5GlAqL2Fvqt1cLplTfJX1yNfmcl4jPMF1asnTw2sHD/lwAL0ODiRpWQiNGkwTiS+ikbxG6rZDg2wnYvqNaIB5Hpl/0q9H8NHQ5Ezx7YtOaodSG5Y6o3+Q7Rwvr3UDJDqskaRlISLcG60wc1bS1EjFaDlx1o9u9KJhyGv9CMuIJ2+Kr3DD0p6iVzijf5DtwZIf25HviFfxwVL1jx6JB3F4UkDhviLFd1ku3UiDG6WNIinVJV6HJ7lTfPE6gMnQox7zLPvietRihg9B5/Akb6NOaStOqpnSCs6WplEPZzQU0hnlib0HO/HEE3nwwQdpbW1FKcXcuXP3uOaaa65h7dq17Nixg8cff5yDDz7Y8fcRI0Zw991309HRwebNm/nJT35CU1P1wfqk4D4nIQyj9Q7Qh/bnR1W4NhrcT2mFEaa3v3Vs2auiJN68BFuPcWWviooxaKPWi665e7LnvjPBhumTVT/81I3gIhq2FqNJSjwgXgfQ/tZktBXwnv8X3KNH4iF2h6epqYlly5bxhS98oejfL7vsMr70pS/xuc99jhkzZrB9+3YWLFhAY2Nj/zU///nPOeKIIzjttNM466yzOOmkk/jxj38c1U8Inf2s89slr7DXLJl1B8E10t2Ykcn4qu8WBO712NH/TnBGvNU6J0MLMCXxY8SrN1q2Hskw4rYW69ArbPaktMMTjAFPVv0o1KM4YdYN+8l/dSRlGqeyHmEOHpNVN/bC7AgUjwMYPfVxF+DRRx/l0UcfLfn3r3zlK1x77bU8+OCDAHziE5+gvb2dD33oQ/ziF79gypQpnHHGGRx77LEsXboUgC9+8Yv87ne/42tf+xrr1pWu2mlhgnV+q+QVe3bwwVbKVvSIdTzwfCB3rAZbj3gcQNs07Is2BrvKXBs+zcAw67WX+pFVB9B9W+nCfvCErUU9QfyPJksPe3AQj+3oQ7sWE9B6lO5Wo8KPHsG1Ffv3J6tubEOveC1O8fqxL+l0eGKP8JTjgAMOYOzYsTzxxBP973V2drJkyRJmzpwJwMyZM9m8eXO/swPwxBNP0NfXx4wZM0ree9CgQTQ3NzuOpFI5omFP3+1ptLI4ao3XiG8puG/8UQ1bi82U2lcETP0IwwFMZt3w0laCzUtIlh6VHcDStiMYi5icTr6moBSVbceebSW4aOjwgu+Jj8ptBcq1l+T2mKVJtMPT0qKTu9rb2x3vt7e39/+tpaWF9eudz0TevXs3mzZt6r+mGFdeeSWdnZ39R2tra8lr48b9qNU00mArZXKMeB0mO6KyEQ+jg4ck6VE52gXhOoDJ0QL8tZXgHj0CWdAjHNsR/+BgDDpdfTflprTCdAC3Ftwt/vpRuW7UYxL8w3AAoyfRDk+YXH/99QwdOrT/GD8+/gpYimoiPNVvLgdJMuLj0L+nG7MIeE9Kd/BZi3hVNlpQzgEMLol7MEl4RpCfiAYEqUdyIhrgxXaE1aElr62sxZ7MLEaY0+GQJAfQvTMM4ekRLYl2eNra9LLGMWOcCW9jxozp/1tbWxujR492/L2uro599tmn/5pidHd3s3XrVseRVPyM0gp/TXCh2PiNlm3AWymVlArFjHhWR62V60YNJhEzjLB0F2Ypdvx6+EnwhzAiPPFr0QSMsF7Hm/8HSbId8U7hJEcP94OD3Zi1WeLwhMaqVatYt24dc+bM6X+vubmZGTNmsGjRIgAWLVrEiBEjmDZtWv81p5xyCrW1tSxZsiTyMgfNcIzDUnrSbU+jFezywTQ1UhAjXkgUo7Tk6OHeiDsdnuCn+MYQ95oQW4stOPOUnJSO8GQtOuzNdoQV8UpOBDD+wUH0xL5Kq6mpybGvzgEHHMDRRx/Npk2beOutt7j55pu56qqr+Nvf/saqVav49re/zdq1a/n1r38NwIoVK3jkkUe49dZb+dznPkdDQwPz5s3j3nvvzcQKLbtSbqDUc6OglBHfhp5kyFJegt9RWlYTMd138BDe0tJW4Gji1qMOE1fxO6UVzL5V3ejchxYq1dQw8Ts4KHSOhgAdVZUiTW0FwrcdybGl8U//Rk/sDs+xxx7Lk08+2f/vm266CYCf/exnfPKTn+SGG26gqamJH//4xwwfPpynn36a008/na6urv7PXHjhhcybN4/f//739PX1cf/99/OlL30p6p8SCn6NFuiKGazDM9z6rh2lLw2ZZIzS0mS0CrUwk4BZ1GMs2unpwewctSfFR63B6aHQeU0T0XrE5/B4GxwYPbrQGjYQhMOTnCk+d3pElcOTNtthSPOUVuwOz8KFC6mpKf+gvauvvpqrr7665N83b97MhRdeGHTREoG7VThhj1o70eO+IeiG+req7+iXykvSIY/z8F6SUiFoPZIxirfrxlr0DjDFKd5Wgq8ftsMTH8kaLA1Da19684Sw8RvhyaLtcJffFXa/Ej2JzuER3HbwYY9aISkN1dsy7D1HafbmctWRjFHrMMz/rZekVMjmyhO/0T/I5ije7wo+CFKPbegBEyRfj0ZMl5jt6LDdr3TiXODiJIrBUrSIw5Nw/O6zAtkcmVQ7SoMgnxHUCIys+m5+sbXYiPf8Lungw3QAkxXx8uMAZs121OIlvwvCz/8bi15BGQ9BDA7SmMMjDk/C8Talle1OrR7znOHSetSjsw+g1OZy1TfUHswuQPFFNbx1aGEmHsZfNyCJ0dBkRLyqmQ7PysqkFrRlKJ/fZWthHjsCQUeH29ATrg3E+TDm5AwOokUcnoQz0TqvLntVlNMW8Rmt/dAVdiflNh0sPkqDoPWwu5H9yl4VJvtbZz9TFsGO4G0t7L1s48GbHmFGQ209JpS9KmyqqR9ZbSvl87uKO8OF/6pej1600wNx1o/kTP9Gizg8CaYW01BXl70yilHam9Z5/7JXhckk67ym7FV2I+2lcLMsCLpTs/WYWPaqMJlknVeXvSoKZ3hjwf3jM+KTrPPqsldF0cHbNTS+ulGYcOyuvYRZP+LXY5J1XlX2quJ2NNjoMCRJj9Vlr4picBAt4vAkmLHo8XIPlZ4zHIUnnu5GCkHrYZdiUiB384P9zavLXlW+g28iKCNgl2JSIHfzg/3Nq8teFcWUlt1W9iOIrfv8MMk6r0VP0JQmigjg6gGlih77m1eXvap43YC821LJ4REiwG4Ob1Pu2S8QjSe+2jpPCuRufrC/eXXZqyobrXyN0sqP4ME5CeifePVoBvYdUJLiRJGXsA6zk008eTyTrPPqslcVf+wI5LWtRDVYsvWYFMjd/GB/8+qyV8mUlhAhk6zz6opXRhnhGQEMDeSOXplknVeXvap4Bw8S4SnE3lwOsjFqtb91I+WW2UI0q5L6iHvKc5J1Xl32quKPHYG8RjRKD5bCGTzGo0cdZuJ5dZnrKg0Ognn0SLSIw5NgJlnn1RWvjGIlznbMQyLjNeJ+RvAQtNGK14gPRk95gn8HMEsRQPtbV5e5RhPVypN468ck67y67FWFDo9zY4Ng9XgL7QTuTVwrkyZZ59Vlr6oc4clCxGs8esVZN2aDjeKUHxxA+qa1xOFJMJOs8+qyVzVi/OywjbhdkjQY8ajm4VsIYrGqV+zU8a3AprJXFo/w2J+FbDiAk6zz6opXRrW3SLzTFva3uhschF03CrvW6OtHDV5Xu0bVViYFcjev2N+6hsKHzRSjuANYGB0Wh0cIjEnWeXXZqwpHaWFn08fXUOswC+JXl70yqnn4TQV3jH7l2iTrvLrilVHnNE0K5G5esb91dcUro4rw2CVJsgMY1RQOxFk/xqCHJLsxm2sUJ+ocnuHEkR4wyTqvrnhlVA5xdIjDk2BsU1l+lGZXuV3opdiGLBnx/dBh2F2U2zgMTPe9bY+/hDeKj16PSdZ5dcUro161Np44ZvYnDShFacqvSmpAx0yrJw0Rr6imcApLEl9beZuBFnIgUU2Hx5seMMk6r654ZVT5kNEhDk9CcR+GtUcInXv8JTyjNSmwO7rF/sY3qRSGtfXYM3U1S6NW+xtXV7zS/rVh69GGDnbXE8fmlO7aCpjW4NQj2EePQJx1o3APnjfLXVimbmQpp2mSdV5d8Uq7bkRhS+PXo/yeRBCd7YgOcXgSSgt6pNlLpa3h4zBakwK7o1vsb1xd8Ur715Y2WlmIeE0aUILSVHaIg9FDYbrXSYHc0Qv2N64ue1XhuhJne+nDxHyC6dTskuxP1M9MmmSd16EjoqUR2+Gk9GApn3pUtqWSwyMEwiTr3EqlPXgqe+HBby6X5A4+H6NW9xGNynqkfdQ6BPMI1/LTv3aHVujeGIJ/nMJudPbI6EDu6JZJ1nl1xStLO8PBj+Dt0ojtcJYmyXpE6QBGgzg8CeUg6/x6xSsrN1IIOjF1FM5k6fCx9agmDJulKb4DB5SgNNkfxR9gnSvvwVNaCwi6k+/F7I8ebadm67G64pXZd4bBix5ROoDx6FGP2YOn/OAAorUd0SAOT0I52Dr/veKVpb3w4DeX6wQ2W6+jbai2Hn+reGVUUzgQZ0TDfmp8ZYc4+6N493WjvMOTFQfQu+0o3VaCiw7bWgxDr06KDvd6xOEATgrsjm6YhHZ6dlBpD54GzHYbUdiOaBCHJ6F4b6R7VkoIM6pxQLmLAicIoxV8I7XjTeMJam2PG2wt3gE6Kl4d5SjN1uOgslcFTRAdPITRVmw9Dix7VdAcYp2rcQCDjw7vxDwlPLr60YBxv93rEcVgKZ66UdhWyi/+KPylUTiA0SAOT0JJ7qjVjikcXPaqIBmG2Z81iCm+4LR4B20ca4nScLmvG4OsA6IxWrbLcUjZq4LG/rZqnOHCd4OrH/b/0OTA7uiGoKLD9hLu4PWIrn4cgE5T30al7Swg2pwV+39nX/S6umhw31ZsLXZQLItUprSEQAnKiAcf1XjNOkdnxO3xYBvFdtcZSJRhaYhDD+9GC8rtSxR83RhPlDleQUx3QphtJboOvhGTo5G86HD0Do/7tgLl9Ai+buzArL+NTo/kDqSjQRyeBDIC4/O/UfHquEatSWyk4CYvIbjN5SBOPdx3aNvQK5OcBG/EN6NThyHKCGDyIzzR1Y0D0Ua9Ax1/LE/piEbhu2nWw5/tiGqwlAbbEdVAOhrE4UkgdqVspdgelwNxZ7SCa6hJjmhAuYa6vchV1ZNkIx51hwZR67EXehduCM7hCT6iMYaoHiHgvkMDtxGeNEeH3etRi9lpOYocHogz4lVtNFRyeITASLbRspvK/kSVqOtPjz07tcLdV9JsxL1HNKI0WtHqYWdObaLSQ1TBrREPrm5sxSTqRtOpue/QoJJDHPwoPskdvLsk3WCjw9G2lXrMmrDkRUOjQRyeBBJUBw9hGK13gC3oqhPNagv3etSjx/wQ/Sg+GiPeBIy1XifTaEWrR1DRv8J306xHkLYjvKT2fYgqUdf7FE4X+unuTrIQHZ6Idth2YnaIKk0c0eHwEYcngXibd47DiEebjOndaEH0eQnjMSHx8LBdzA1ot7M8USfpQrI7+KgjGhCXA1htvhuE0VZ2EmWibgMmolFtkm7wjx6BONtK+SXpUCk6LDk8QmAEacTDTbYLPxRbuMmee4dnF2bLRSfBG/HNmCcfh5+oG0ZEYwhBPu0p2jC9v8FBlFN80S5NDyPCE85gKXw9JmGWpLeVv5RKdrTwL8Hp8QbalRqKzvMKl+TXjfARhyeBHGqdk1sxozNadge/nlLdVCHltYD0j+LDcHggyNiUrcVookjUTf6UVnTR0EHozDpwo0cNWY94BbUk3Sb4+tGF2XE5Oj2CjP5J0rJQFaPQW1H1AStdfWK4dS6+527ajdZh1vlVV1cPs86VjVZaE3WnWOcVrq4u36HtIozN5QrH09HVj9fKXmWT7VVrk9EGfQt6gFCeQhc3juhw+HrYbSWIugHpt6Xe9HA3OAju0SPRkKay5oLDrfMb6A6pPIMwG7wVX6OS9giPrccrrq4eYZ03l7wi7Z3aEdY5KD3CMeLR1I8RmATuIPQIR4voEnXttvKyq6ttLboptflF2iNe3vQYbp23lLwi7bbDX/3YUvSvhduYpinKIw5PwvDXwfdRKsIT7ihtLGHP4vrTo/QC5XCN+KFlr6qWGkxEI9kOYDR62Fqswc0O3FBJj3Dayk7gLev1lHIXVk3QznD4dSO4zLFi+NOjsu0IJzocbt0YitmB2120vHz9CCc6HD7i8CQMfx18B6Xy7sMxWp2YhY2Hl7uwarwZLXsEHXVEwy7dEWWvqpb90SHkbtzmJdh6RO0A2mPIqYHedSDe6ga4dXiCzzx6yTqHq0fQ0dBw2srr6NyVIZjHeoaDNz0q245w6kc0dcMeHLTi5oHDEN/gMVzE4UkYQRstO5sleCO+3DofGfidbRoxy7CD0sNu7MNKXuGHlWg3ZChhGnG7g19Jscf5FSMuPWwjHl7dAK8h+r0xD1ItbsS3WOcGzG5OwRCtHt46+NId2hbrPNxneYrTi4kxhKfHeHRr7MFtkm7ltrLFOg/3Xapi2Hb0IMJ8/py3tgJuHMAt1nm4j/LEhTg8CSNoh2fLgCuDI3yHZzJ6Welm3CwrhfiMVi8mjTi8kZq3ugFu9LD/Emz9sOvGwcDgQO9ciL8OvgfnNnKG7ZgwfTh6hFc3GjBZIN5yNKKuGxBFVMMeHPyNUhtUDCQuB/AddIp5LSYOEzxBR0ML/zLcT4FiQhyeBLEPZs8Zd6twvFXKYGfMw3d40tPBQ5R6eB+llTbi4ejRjjbktYQ55Rl0zkrhX8NxeMKrG4egnZ5O9LRFZeLs0JLYVvJhO9y1lVpMzDdq2xEu4vAkCNu/X02pMehA3DfSOoKea01aI4VkjFpFD024egxDT1tAcEmpEJYeK9CTkPti1pUFi/+6EUeHJrbDSdJsxzCMaxDH7EF4iMOTIMJopF3odSKFVwfDq2gjPhITlwoW/6O0bBtxd3rshXnMYZxTnuFMW9iDg7cot3NKIZVzEgr/GqweuzCZJOHoYUe7wsjRKKxJwWB38Iei41LB430KJ65oKITdVgrTw70NDrZTbkJQIjxCVdgdmrtlgxBvmH4XZq1QOJ18ukZpttGaQhhGfAI6QteD1xVavZRbtJ3WaYswchIgzETMcPUIo610oje8gKD1eAudLt9AWFsXhDGltcU6D/dRnvKEWzfswcE6KtV+G2/R0OE+yhQX4vAkiKOsc5ARDUhn4nIjJgnT+ygtDofnTXQX0UAYG+7ZHfxrmMTa8sQ5hQNpdXjSmqjrX4/S9UMRpu0IbxpnHLoT7sXtCq0aTLcdh+2w/9fGoqc9g8V/tMvd4EAiPIIv3mWdn3f9ibiNeHid2pFo1+Ed3CZhgpcITz1h7BAanhG368Yy15+Iu27Ybvs4wthh2L8e2XMA98JsW/ei60/F3amFN41zjHVegd4sojLuclbCqxvb0HvrQ5h6uK8bcduO8BCHJyFMQlecLtI0ag3PiE+zzu6dv8GYJdCl9diJ1hjC1OOoslf5wdZjqetPxN2hbQNWWa+D1aMG4/AErUf4beUI9BKC4DjKumMbZjvQyiTFdhwd+J2nW2f3daMwZ6W0i2RrMQQ9YAqWJOohU1pCSNgd2ku43TcC9KNGATaUvSo8o/VX63wkZlO3YPAe7bJDwT1USmMNTw/bpBwb+J1to+Vej8pJmBD2KC0cPQ5Ej8l34iXfLW4H8HV03speBL0jt/fBAXitH8M93dsNdt04LvA7e9fDXd0o3KE4LbajFhPhCVoPifCEwNVXX41SynG8+qoxc42NjcybN48NGzawdetW7rvvPkaPHh1jif3hz2jZv7P8s5HDq5ir0c7WIIIemXjXY4x1Xk+px2zYbLHOwevxF+t8HEHuejQCOMB6/ddyFzoo1KM04RotW4/jA72r7fy9iNsdp8G0lfayV4WnhwKes16Ho4f7EXw9plOLq368gB6cjEY/NCU4vA8O3LWVwicWhmc7gq0bk9ERqe3oHdrd4a5f2WKdxeEJmJdeeomWlpb+44QTTuj/20033cTZZ5/NRz/6UWbNmsW4ceP41a9+FWNp/eG9g6/HRDXKG3F7DBfOs5qftc7BNdR6zCSIez3cNVIIU4+X0HGH4ehdhoPBjnbZMQJ3uOvgN1rnRsLY2N6uG8GO4v0NDtx1arYewaeOQnL0sOtGL5UiPOHp0YXJKglOj1HoFY19aJfKHe7aCoSph+3wHEqQD3qx68YLmBV3lbHbSnk97HmFcNpKOKTC4ent7aW9vb3/2LhRV7uhQ4fyqU99in/5l3/hj3/8I88//zyf/OQnee9738uMGTPK3nPQoEE0Nzc7jjjxbrTs6azKRsuumCO9FsoVwRvxw9DZOFswqXyVcddIQSdCQxh69GJiMME5gGF28NvRGwyAqVHBsRRtZicFenfv+Uzg1YiH01aCH8U3YtJcvUc03qFSNNTWI/i6AWHoYdeN1yi3GcNAkmA7NmKs3fRyF3rCe7QL3NoOu240E/Q+TeGRCofnkEMOobW1lddff527776bCRP0g+6nT5/OoEGDeOKJJ/qvXblyJWvWrGHmzJll73nllVfS2dnZf7S2ul8LFDRj0VWsFy+Z9PaopLLRCq+RQhgRHttouZ++AS+jtHCNePAOYHVGK04jvhXzkJQ49ajD/LryethahNvBTyWox5NORa9m3IDeGMEd7ttKNLYjuLoR5uAA0usAhjE46MDkm4ZTP4In8Q7PkiVLuPjiizn99NP5/Oc/zwEHHMCf/vQnhgwZQktLC11dXXR0OAP97e3ttLSU3/33+uuvZ+jQof3H+PHjy14fJnalXIEZbVcmaY30MIJ6JnvYRitcIx6e0fKX3xW3AxisHhPRU5HdeNmvyv5luzGTEsWxtRhBGCtx3kZv/1aPSSWtjuraSlLqxrEE1RWFrUeaHMAaorMdaXF4gm/TAfPoo4/2v16+fDlLlixhzZo1nHfeeezcubPMJ8vT3d1Nd7e7XRrCJuxKGe6odQN6+fEBaMP1h6rvmO4O3jZa70I3L3fbBJaiGbONYXqN+EUEZcQLVzO6b72FUzjlMxk2WVfUonMTKqvnlb8AH0Q7gIuqvlvY0b9wO7RX0ZOqzejcFfdr7krhT4+kdPDBDg4OQg9Bd+FF2Trc5oaC1mMsYdnS4El8hGcgHR0dvPbaaxx88MG0tbXR2NjIsGHOJK8xY8bQ1tYWUwm9Y0++PVf2qoF4j2jsS9BPTLcJblqrAT+rTiA5EZ6/o9e2DCaI/WdsLd6k0uYDhRRO4SQlAhiMw2PfJawOvg+TEZeGKeCw9Qh3sLQb08qr12Nf/KxmhOREvJ5Ha7IfQTxk1q4bL+Jl2DUK7RZUjoZC2LY0eFLn8DQ1NXHQQQexbt06li5dSnd3N3PmzOn/++TJk5k4cSKLFlU/eoqCWozD8ydPn/S+sqCOsJYQLrHO7636TtPQ2Q0b8LKMEpIT4QFYbJ1PKHuVG+w7POPpUyPRNasPN25SuEZrGXrl2ijMfsD+sfX4s6dPuV/BB2GP4m27dGLVd2rGbAbhrX4kJcIDQephW59XMEum3ZGUwdJ2TBZncHr4qxuVo6GQvimtxDs83/3udznppJOYOHEiM2fO5IEHHmD37t3cc889dHZ2ctttt3HjjTcye/Zspk2bxu23384zzzzDkiVLKt88ARyBXsS8FbPXpjvcN9IejAEIp5NfaJ1PotpdZO0O7WnPn0yK0QJ40jrPrvpOttnz5wxvwM1ONeE6gN0Ykzu7qjs1YuIA3uqH+w4ewo5qLEJrMgG9haJ/3o1ubavw8vgV8DM4GERQGXoDedI6z676Tv7aivuEdoiig3/SOs+u+k7+9PDWVsIfPAZL4h2e/fbbj3vuuYeVK1fyf//3f2zcuJF3v/vdbNigpf7qV7/KQw89xP33389TTz1FW1sbH/7wh2MutXvsDn4RXjZRA7CTsr0Z8XAa6gvoaZyhmCwLf/hzeGoxTS4JEZ4nrfMsqplErMNE//x18O4iGmlxAI9FOz1tuH1ivI0/Ix6OHjsxEdHZVd0pisHBTnTcAcLS42n0hMtBaCfQP/708BYNjc52zK7qLsMx2xVEMThIS4Qn8UnLH/vYx8r+vauri0svvZRLL700ohIFi3+jZe9O6m4x6gb008fDaah9wFPAXHRD/UvZq8vhT49x6Krcje4Oy2M30r3R02f+U99L8Tw6ZrcPOo/H/SMuCzkKPW2xBfNYUnfYHcfbrq5OixG3R6ze24o3PcKN8IDW40S0Hj/1fRd/I3jwUz+a0Hq43xfLLdvQ2YvvRutxl6+77I3Jd/Omx37WuQ03Q87wO/in0Pb0MLTz4S9t/j1oN+413A57bGw93D2VTaa0BE9U7/CscXV1+Eb8j9b5ZN93OBTdcHbiNQnT1uJtKu1JBNrE2g8QDUePXozZne37LnaH9gxedkkFvXgb3NYN2yCG90CWZ4EdaAN+mO+72G3FewfvbXBgt5Xw9Ki+rTQA9taq3mzHEMwe4+70CL9+PGmdZ/u+w/FoTd7Cba238dZW7LoxjLA229uC2SN6tu+7+HeG/dmO8pvAJAdxeGJkAtoU92KC3O7YBz3mArejNDvuEV7FtI34ifgNHNod2hK8PEAVvHZooHdDgSDWQpTiSes82/cd/Hfw3oxW+FpUn8dTg0nC9D448KaHPbYNT4/FaJd7P/RUjnemoaMaG/C6mNtuK5twuxdx+Ho8aZ1n+76D/+ifN9uxBRMRTrIe1Q8OktJWgkUcnhixDfjz6PGve2wDvg63u5HYFTO87RWXo83vEPw+8dd/tMvWw73DY+sxzvN3ucV2AGfht5lFNd1pOzzN6P+9cHjSOvuLakzFJPd7myBswJhjd3qEXzcK83j86eFvtRoks638GT3sOxC/DxKNanAAUejxpHX2VzcaMUvSoxochKdFsIjDEyOnWuewQ/RgVnGEVzEVpqG+39cd7M0Fwh6VQBQN9a/oRO4RmMkH90xGd9Nd+MmI8ma0tmMeShqeHr+3zqfhJwI42zp7T+7fD23mdmImJMoTjRG39fiAr0/Pts5hT4VDFHpsw2zl4F2PQeicFQi/g4co9HgKHeM+FD8r+d6NdnrWoR847A1vDrE9WGoirFV8wSIOT4ycbp0fLXtVMbw7PNEY8Yes8wc9f/Jw9BTfTnRz94b3UavtAIYX8doN/M567V2PM6zzU5h8I3fUYJJSk2TEn0UnYA7Hzx4jdlt53PMn/Uc0xhLWRp0AD1rn9+E1G6QROMV67V+PJNUNgN9a57M9f/K96MhkG16T+yGZDmAHxgp618O2HU+UvaoY+2JSJd5y9Ymd6GEdpCPKIw5PTExFd7Y7iCbCE43RehidXjsNk+3vDruRLsTL88RskqqHbcT9OzyPeP5kC3rM24vblRYQhR596PoBXvUYjAnue9fDewdv57sNwmyyHzwvoDuVJoz74o4T0fk7a/Gz/i+JU1pg2socTKfrDrutPIqbJQsDSboeUdqOwlQJ98OsNE1ricMTE/aI9Y94HcGDqZjuvHAwEY0xhLkXwQZMcqq3kYmth/dGCsk1Wo+iQ9OH4yU5dS905g/40cN2/lrxMvkTjR52VMObEZ+F1uQtvDww1Mb7CL4Xsxg4iVGNwg7eO0mMaIBOvf47On71Pk+f9N/B741ZUJ00Pey6cRI6KuqOcejtLPqAxzx/p/e6AWZaSxweoST+p7NAz+0C/M31Jzagu95azNZS4eC9U2vCTHJ412MMevZ4N7Da9aeiMVodmF2o3Xdqs9FRjdXACs/feYh1XuXpU9Ho8Tg6fncg2gl0h/8ODeBg67za06eS7ABGrYetRbiDJfDjAO6Hjpbvxs/0nj0I2QR0uv5UNHXjDbR7X4/pLSpjX/ksbp6ENRBbj9WePiURHqEs1XXwdRiHx/2CVEVUnvhvrPMp6HU/lTkZPa5bhd4oyxv2vi6r8DIZFn4St43dqc11/YnqRvC2I/GKp09FY7R2YDILvOvhr4O39fAWG4pGjz+i152Nx2ybV56J6Brfi58Ofh/MxhTubcdGzFrQcPdbsdvKWbh9RI1dNxZjckncc4R19tdWwl+K7X1aq7q2Up0e4vAIRZmDzg/4O163yAf9POBGdOfhLfRod/Lesmu88ho6LjEI+JCrTwTToXlrpLYWIwhzKTYYB/Ak3KZIx6mHv0XBXvi1df64q6sPRK9Y68Gsa3JPDcYh9qfHxLJXVUs35n/ZnR523ViEWVnnHrturMY8MKIyCtOphavH0+hY9CjMGtbyxNFW7J3Pwm8rD1jnD+LGStWj10BCVvWoHnF4YuA86/zbsleVwq6UK/G6/649yVHdIwvdcLd1vrjilXXAudbr6vTw1ki3YbZFP8DX97rlTfS0Vi3wjxWvPho96bAT+IOv7/Onh/3IgHC1ALgP/eum4ua5a3bdeAodC/HGRHQ8tQuvD0WITo87rfOFuJkwsvV4qOxVpfBXNyAqPXqBe6zXF1W8eghmA4yHy11YEn96rEFb3iGE/dDMZ9F2vgn4SMWr56B3gG4Hlvr6Pn/R0OjaSvWIwxMxe2EClPf6uoO/ESuYihm+w3Mn2iScQqUx4Sx0bsBG/CyjhHTo8TPrXNmIX2CdH8btPriFDMb8Gn8OTws6lTM8OjBRHvd6/MLXdxUODrzt3hNd3ViA7qLGUGn/qjGY1Wr/5+u7qnd4wtfjDuv8ISrt7HI2uq6+hnkYgzf8TeH0YJaLRKeH+7byS7wOhUFvZdGM/nXe5h2iqxvVIw5PxHwAXa1Wof1379gdvLcN5cFUTH+b2XvhLcwExCfKXnm+db4fPb7zjn8jbm/KFX5DvQ89hTAF/dSf0thGy58zPBkdM9uE14cOdlifgihGarYR/zh6J+TiTEbHgHqAX/n6HrtD8762K7pRay/wc+t1+U7tI+j/3cV4TSu1qV6P8NvKUnT59sLEwotTXVsZhEngTrIed6Hdl9nApJJXNQLnWK/96WHb0dfwaolXW+ehhLmNQzCIwxMxdgfvb4QGcKR1TnIHDyaqcTGltm+rx4To/Y3g98WkUXpfzxSdA7gN02VfXPKqGWiTthWzZaE3/I1YbaIz4o+js0JGAmeWvOr8gqu9rziBavSwtRiH7nrDxXYAP4jOKitOdR08BKFHNLajclRjBGZFkv/BQT3a1Xe/X5VNdHq8jZncLj0lfjp6OustzMYg3vDvDHdh8niSHuURhydCmjDm3V8j3Ru9ywL4eeCA3UgnEcV//APopZ4HUmpfjVPRLksb5qEU3ni3dX4VL0mYNtEa8Z9Z53+g1L4adof2G8wDCr1h6/FXX5+OTo8+9MgV4NKSV33MOvvv4O1Herzg+ZOb0Q+KhHLj6qB4Ef1/1gh8pugVE9DPi+pDT1l4ZwJ6XVEvyY5ogM4B7EX/4uJ5XuegYzQv4ifWDdXUDYgyHxKM7fgc+lfvSaEz7H3zRTCRZ+9bWULUg2n/iMMTIeejXZaV+G1mx6FHJW/h9inphbSivfEGzMMHwmMn8BPr9RVFr7jYOt+HnzlnME/Q8TemiS7CA3qU9iJ6QvOSPf7agOng/UW7wOjh/ZGSYIxWNHrMR09WzaHYw2anoydvd2HWuXljX/QUIqSjftxknb9CsUdN/IN1fgo/8Qgwjyp+gWoGB+PRmWLhsg7TCi4reoUd6/DvDNt6+Gsr0daNX6Kt9zhMTTAMp9q8UEiXHv4RhydCvmCdb/V9h+o6eIXp1A4td2Fg3IheejsbE33QtAAftl7HpYe9beOBlBo3Bc13rPOXGdhtnItOSm3F7/47TcAx1mt/RsvW47CyVwXFW8D/Wq8v3+Ovdlu5Dy9bwhUy0zq/islO8oa9J1Q0etyDXtE3loF5b3XosT3AT33fv7oObSNGxWhsh91WPsLAuMERaIvSi4kTeqc6PaKtG91oWwrwdQamCFyMHki/CDzv6/77ozcr6cFvZmm0elSHkgPV3NyslFKqubk5lPsfD0qB2glqH9/3eVDp23zJdzl+YZXjXyPT9idWmX/teP/frXL8yfd96xVst+59qO/ybbLKcVQkWtQpeMMq8+cdf3vaKse/+773bOu+b/ou33FWGdZFVjcOt8q8W8Hk/vf3QbcTBWqG73tfb937Vt/l+4ZVhjsi0+PLVplfU1Db//6HrHKsB9Xo+97PW/f+qO/yLbTK8Q+R6fGwVeYfON7/gVWO+3zfd5R1X6VghK977AVqt3WTUZFoMUTBJqvMH+p/vwbUa1Y5PuP73h+z7rvEd/nOssrw18jqhvPw0H/HU8CkHWE7PD+zKsTtvu/RoGCz0rc51nc5rrLK8bPItJ2sdIemFExVgKoH9bZVjgt83/c91j03KqjxXb6nrHJ8PDI9vmCV+w0FgxSgjrbK0A2qxfd9r7bue4/vsu2NMeIjI9PDduJ/2v/e160yPFfVff9s3fdi3/f4oFWO5yPToknBBqvcF/S//7hVjut833e4gl7rvuN8l2+eVY7/ikyPk6wy71QwXgFqKKitVjlm+77vh637vlRV+WxH45TI9LjWKvdflG3z3m+VYTO6/fq774+s+97ou2yTrHLsQtv3aPQwhzg84Qnm+RiFGbEe5/s+pyt9i7Wqmg5+rlWOpZHq+wur7L9XgDrXKkMbqAbf9/yedc+7qirbfKss10emxV7W/6FScKUC1I+tMtxT1X1ftO55UVXl+xvVdiZejxlWuXcrOF7VglplleGTvu85zrqnUnZH6ec4EBOVrYtMj29Y5X5TQZOaYpWhF9T+vu/5CeueL1ZVts9ZZXk4Mi1Q8JRV9nsVoL5oleGlqu75c+ue/11V2X5lleVLkWkxSkGnVfZPKkD91irDjb7vWatgnXXP9/suWw2oTqssUyKtH/oQhyc8wTwf37EqwuKq7nOr0reZX1VZ4jHiE5WZfvqY+qtVhmuquudq635zqypbPEb841bZt6ux7K92WWV4r+/7HWrdr0vp0bz/sj1A1EYcBT+zyv8X9TFqlQK1AT1t4O9+X7Tu93RV5arBRBOiM+KDFbxulf96dYf1/Q9Udc/fWvf796rK9l6rLG9FWjeOUXZ0qp5T1GqrDJ/3fb9GZZyGGVWV7RqrLD+JVI9/scq+Xh3BcKXQUdlDfN9vlnW/jUqnCfgv2yJLj/Mi1UMf4vCEJ5inYySoDsuIn+n7PnUK3lGgFJxSVXlq0OFPBeqYSDX+NwVKNbJObWGo2gJqhO97HWtpsVXpDsJ/uezcqnci1QIFTypQ6hjuVwrU76u611WWHg9XXS57yvPnkWoxWsEWBUpdw2eVAnVFVfezowJfrrps9pTnRZHqcZZV/i71MocqBWq673sNU9oRVgqmVFWuIehIkwI1LlI9/p8CpUbwsuqiQb0NarDve33Q0mJN1eWypzxfjFSLeqWn4pQ6g3lKgfrfqu43z9LjtqrLZk95fi9SPfQhDk94gnk6zuZSNZ2/qD+xVxX3OUOBUtrpqau6TI/om6kvRKrxIAUrFCh1MT9V36zqXjdZetxbdbkaMNON/kdJfo4jFPQoUOrnfEy9p6p7vWTp8cmqy3WKpcWqSLVAwaUKlBrGZrWYg1ST7/tMUCZnbL+qy/Vflh7/E7keOrdpBovUvTRUcZ9PWlpUl69iH89bepwbqRbDFLQrUOoKrlOfq+pe91h6fK/qco2ytNgNalikeuioTA271aPMqcJuNShos/Q4vepyfdzSY1GkWuhDHJ7wBHN/T0ao0db86Piqck2eVgTUSMGM4qsbGXg/TmOWqrXC04P5Z5/3GaVgm6VH9Y0U4hrFoz7ItxQo1cg2pR0gP/eZa2nRqaqdzoL4RvGN1KnpVj0fyQsK3wMEe8T6RCDlmmtpsTziunE4E9Vwa1XOPtzi8z61yh5kwOWBlCuuUfwHOdf6HUrV8UGf9zlYmeTtdwVSLjvn7X0R63EGP1ag1BDWK/+O/WctLVoVVTnV+phkadFFNasJ/R3i8IQnmKfjAGapWmskD1f4uMfJ1md3KmgJpEwnE/1c/D6g2kFdz+XW7+lSeqWV13vZy42fDaxs9ij+tgj1OAVUL7VqDo9Zv2elgn193MtebnxtYGWzR/HnR6jHf4F6m3FqZP+I827lPTl/PwW7rM/PCqRco+nPflb7RqRFHahnQf2WM5X5ej/ROztXbIOCYOyaPYr/S4R1YyKobaC+wo3W79mi9JYGXu/1M+vzvw2sbHaO1bUR6vExUDsYrI5hqfV7lii9ws/LfQYpPa2nlI6uBlO2tZYeJ0WoB4jDE6ZgPo7PK/oN19c8fK5RmQ7N7yhvz2MvUDusAh0Zkb63Y+a7a7jP+k2dCk7wcJ/JykR3zgqsbKdaZVuLznEKW4u9QP3d+s7r2VeZBOwXlc5ncXuviwt03Cew8t1glS2q/WfeBarH+s6ZzFL0DxBuV4X70VQ+/tf63B8CLd8LVtkujEiPf7G+bzOoIVxj/abdytsKvKHKJD/7GWgVP1owDuDoiPR41Pq+J6hXJj+rXcGRHu5zvDLRnemBle0frLJFtXXBvuj9mBSoLzBJ6WRjpeBPyptTe4X1uVal+5lgynenVbbvRKSHfYjDE55gPg89faGP/1LuMuLnW9evV0FFd+zjQasw/xaBtrZDsRt7I7m9lZ5yUEqv3vqwi/vspczS62A7tEGYJZXHRqCH7VCsQU8haUfubeu3vargMBf3OUrBDuszwXVooEdnCp3IXRuyFnXoLRIUqHv73z9PGafnPqU770r3sgcVPara1TcDj2ut8lW3bYC740BQ263v+xQoHeWy7cBuBV9X7iJfD1ifWaX0pnXBlXGJVb6LI9DjH63v2omdYzdCwXPWb3tHuVvEMVLpZf5Kaac4uPLti9m7ar8I9LjL+q5l2Ft6HKfMhoRLlF4RW+k+s5Vx/i4OtHznWeV7OQItCg9xeMITrIrD9qrtKZmjS1zXoHRExzZy7wu8LJ8hmtD0OEyY8/uOvw1W8LsCPW5TpaMbY5XZSG6tgjGBl/M+qyD/GbIeZ2AM5BmOvx2kTIh5h4KvqNIjrxOV2TvjYVXNvkzFjjrMDtRhh6a/a33PRgZGDM5R0G39xlWq/B4hXy649quBl3GGVcYtVLM6qPIxGONM7Llq7/vW71MKHleFO1M7jyZl9pnZpYKMZtiHvUv6gyHXjUMtzRWoyx1/G6ZgcYEe31Ol89cOUbDMum6FCmpqr/Cwd0m/NGQ9PmF9Ty8DB2bvUmbDyi1KT3+WWtxyljIb2N4eeBmHYaK1h4asR+EhDk94glV5nKeMR64ULFB6990TFMxRep+FVwv+HrwBB73CoMv6krAeq9CIMeAvQpGVNw0KrlNmVc1OpR2ff1A6v+d0pY2ZHbbdrOC9oZT1o1Y53ya8/YkKDfiPil4zRsEjBf/3a5XOWTpLaSfnXKVXmdjRj2UqyKmswuNWwp/WskfvilKrft6t4O8FejyndITjZKVzdD6tTEK/7TQHX84azGaIYU5r2aP3DegE0D2v+YwyU7q7FfxKwT8r3SbmKL09wSrr791Kt6Nw6rFCd2xhJbYPB7XC+p6nKLZ7794Kfljwf9+pdCTsPKVtxweUfiSFvefOOuUv76fyYW+G+NcQ68YM6N+vq/j+ZQcoMyhUSu/kfo3SNvREpXfu/nXB359S/hcGlD/szRCjnNYShyc8wQI4xik9CrPDisWOTQrODLUc9nO15odw71pQd2MM+AFlrz9BwaIyWigFLygdBQlHiwZ0UrVC768R9P1H4jTgpXeYrlG6E7OjPaWOO5U2+uHoUfjsN//7JZU+3ovZDuBbZa8dovSW93ZHX+zoUnqzwXC0ALOy8amQ7n8lxomYXfbayQp+U6FutKqwBgb2Ya9svCqEew/C5O2sptKzqs5U2jaU02OhCjoloPAYganLx4dw/4mYKPkDlMszrFM6R7S9gh43qyBWZZU67P2J2q3/yzDroX2IwxOeYAEeExV8U+lpiTcULFc6XP3PKozQ68DD3nNlB6jxAd63DpO81gNqjuvPnqB05/ZnpRMun1f6sRQfUEHsP1TpsFdr/YVgk5fHoLfCV+i8HXcPG6xXelT2E6Vzl1Yq/Qyd76ugltRWOuzVWv6f4VT8OAmzg/EDrrXeV+lpvvuUfrjmy0onal6uqnk+lNtjHCYiOjvge1+B6Y0ucf25w5XOC3xc6bbyotJ25B9UmI6wfdirtTagn28V1H0Ho3c9V+iVWUe7/uz7ld6g8FkFf1PwV6VXZZ2igp7yLXb8zCrzbwO+70HQv7v0i9g5f5WOwUpPa92h4BWlZwyWKB0trm7zSTdHHag3rTJ/MeTvsg9xeMITLFOH/QTk2wO63xBQ91v37Ab1kQT8RrfHKEzy8scCuudkTGTnbevfcf9Ot8fZVrm3g5oQ0D0/hEnKfYxqHh8R/XGLVe4lBJPMXYt57IyCKjfjjPaoA/WKVe6gnkO3L6g/YOpcdA/lrP44GJO7cnJA95yGecjyq0S9u3V1h50j2k44EeKBhzg84QmWqcNOyFTozqiaex2Ozs5X6NHw3AT8Pq+HPXWxkepXXXwEVAcmNH9gAn6f18OeuniS6jr5BnTHqKzjIaLfnKzaY0zB/2e1Uzmj0Q6frcdlCfh9Xo+5Vtl7qeY5cPqYgYlkdII6MQG/z+thb8q4Bp2DVM29PoPJ2VlOdFsABHXUYxziX0bwfeLwhCdY5g57lLkVf4arCZ2HYYf83wb17gT8Lj9HA3rTN4U2NO6mn5zH/pgnKSu0szAmAb/Nz3EgJur1M/w5PbMwU3oKvUvvnkmo6TgutH7DbvSqGa+frwP1WcwquG2gLkjA7/J72BvvrQd1hI/PDwf1/zArF1eCmpqA3+XnGILZeflp3E4/OY8p6BV6yjp+TdSPrQjuOBYd5VeEn8AsDk94gmXuaAC1AJOk+mXcdUjjQH0DvV+Lso4HSd9oZOAxCRNKXoPeR8jN596FXt1kN/Ju9B4uae3c7WMuJlz/BO4iVfWgPoDTeLcT9TOYwjm+X/CbbgTV7OIzw9COzt8LPvscOioa9++p5hiCGSB0oB/P4iYn6wB0bpgdMVPoVWpB5gPFcRyFcWZfwX0S83vQ+zzZjt929AaUUWyEGubx6YL/3/vQG1eG8T1u++8a60XuaW5uprOzk6FDh7J169a4ixM5ewH3AHOtf68B/hd42nq9ExgCTALeBZwMnADUWdf/Hbgc+FVkJQ6XQ4CHgMnWvxcD9wF/AdahG80I4GDg3cBpwGEFn38C+ArwcjTFDZ1zgDvRdaAHeBB4GHgJ2AjUA2OBQ9H14v3AaOuz3cBtwDeAzZGWOhxqgBuAr1n/3gj8AvgDuh10otvTRGAqMAuYAwy2rn8H+DbwA2B3ZKUOjxHAA+jfCbASbUsWAW+i//+bgQOBY9FazCj4/IvAV9H6ZYHpwG+A8da//4DW569Au/XeSLSNeQ/wPrQ2Ng8A/wKsjqCsUfBpYD4wCNiG7mOC/r/20n/H7gUm4chzhKfw+CyoNsquaXQcC9ErNsLauybOYwiomzFTdZWOneil/mmdzqt0TAb1O5daKHQ9+h7R7EAbx3EmOpnUrR7L0dHTvRNQ9qCPOlBfRz8Ow40Wveio8lzSH8UodowE9VPMg3grHVvRC0fC2hMt7mMa+inq7xDOFJ1EeDyS9whPIXsBZwNnoqM544BGYAc62rMSeAp4nOyMQsrRApwPzEaP2EdZ728F3gCWA0+i9eiIvniRcxRwHnp0ehCwDzrqsxF4HViC1uNPQG88RYyMOnTE4kPAccB+6ChYF9AK/A34MzritzyeIkZKM/BhdITvGHTbqUPbjtXAq8BC4DF0pDTr7A9cgI5+HQbsC/Sh7cQb6KjPQnT92BFTGaPkILSNCBq3/bc4PBbi8AiCIAhC+nDbf9dGWCZBEARBEIRYyJTDc8kll7Bq1Sp27tzJ4sWLOe644+IukiAIgiAICSAzDs95553HjTfeyDXXXMO0adNYtmwZCxYsYNSoUZU/LAiCIAhC5ok9gzuIY/HixeqWW24x2dg1Nertt99Wl19+eaBZ3nLIIYcccsghR3IOt/13JiI8DQ0NTJ8+nSeeeKL/PaUUTzzxBDNnziz6mUGDBtHc3Ow4BEEQBEHIJplweEaOHEl9fT3t7e2O99vb22lpaSn6mSuvvJLOzs7+o7W1NYqiCoIgCIIQA5lwePxw/fXXM3To0P5j/PjxlT8kCIIgCEIqqY+7AEGwYcMGent7GTNmjOP9MWPG0NbWVvQz3d3ddHd3R1E8QRAEQRBiJhMRnp6eHpYuXcqcOXP636upqWHOnDksWrQoxpIJgiAIgpAEMhHhAbjxxhu54447eO6553j22Wf5yle+QlNTE7fffnvcRRMEQRAEIWYy4/D83//9H6NGjeJb3/oWLS0tvPDCC5x++umsX78+7qIJgiAIghAz8iwtC3mWliAIgiCkD3mWliAIgiAIgoU4PIIgCIIgZJ7M5PAEhey4LAiCIAjpwW2/LQ6PhS2Y7LgsCIIgCOmjubm5bA6PJC0XMG7cuMATlpubm2ltbWX8+PGSDB0ionN0iNbRIDpHg+gcDWHr3NzczNq1a8teIxGeAiqJVQ1bt26VxhQBonN0iNbRIDpHg+gcDWHp7OaekrQsCIIgCELmEYdHEARBEITMIw5PyHR1dfEf//EfdHV1xV2UTCM6R4doHQ2iczSIztGQBJ0laVkQBEEQhMwjER5BEARBEDKPODyCIAiCIGQecXgEQRAEQcg84vAIgiAIgpB5xOEJmUsuuYRVq1axc+dOFi9ezHHHHRd3kVLNiSeeyIMPPkhraytKKebOnbvHNddccw1r165lx44dPP744xx88MExlDTdXHHFFTz77LN0dnbS3t7OAw88wOTJkx3XNDY2Mm/ePDZs2MDWrVu57777GD16dEwlTief+9znWLZsGR0dHXR0dPDMM89w+umn9/9dNA6Hyy+/HKUUN910U/97onX1XH311SilHMerr77a//ckaKzkCOc477zz1K5du9TFF1+sDjvsMPU///M/atOmTWrUqFGxly2tx+mnn66+/e1vqw996ENKKaXmzp3r+Ptll12mNm/erD74wQ+qI488Uv36179Wr7/+umpsbIy97Gk6HnnkEXXRRRepww8/XB111FHqoYceUqtXr1Z77713/zU/+MEP1Jo1a9TJJ5+spk2bpp555hn19NNPx172NB1nnXWWOuOMM9TBBx+sDjnkEHXttdeqrq4udfjhh4vGIR3HHnuseuONN9QLL7ygbrrppv73Revqj6uvvlotX75cjRkzpv/Yd999k6Rx/CJl9Vi8eLG65ZZb+v9dU1Oj3n77bXX55ZfHXrYsHMUcnrVr16p//dd/7f/30KFD1c6dO9X5558fe3nTfIwcOVIppdSJJ57Yr2tXV5c699xz+6859NBDlVJKzZgxI/bypvnYuHGj+qd/+ifROISjqalJrVy5Us2ZM0f98Y9/7Hd4ROtgjquvvlr99a9/Lfq3JGgsU1oh0dDQwPTp03niiSf631NK8cQTTzBz5swYS5ZdDjjgAMaOHevQvLOzkyVLlojmVTJs2DAANm3aBMD06dMZNGiQQ+uVK1eyZs0a0dontbW1nH/++TQ1NbFo0SLROATmz5/Pww8/zO9//3vH+6J1cBxyyCG0trby+uuvc/fddzNhwgQgGRrLw0NDYuTIkdTX19Pe3u54v729nSlTpsRUqmzT0tICUFRz+2+Cd2pqarj55pt5+umnefnllwGtdVdXFx0dHY5rRWvvTJ06lUWLFjF48GC2bdvGOeecw6uvvsoxxxwjGgfI+eefz7Rp04rmUUp9DoYlS5Zw8cUXs3LlSsaOHcvVV1/Nn/70J6ZOnZoIjcXhEQShLPPnz2fq1KmccMIJcRclk6xcuZJjjjmGYcOG8ZGPfIQ77riDWbNmxV2sTLHffvvx/e9/n9NOO00eIREijz76aP/r5cuXs2TJEtasWcN5553Hzp07YyyZRqa0QmLDhg309vYyZswYx/tjxoyhra0tplJlG1tX0Tw4brnlFs466yxOPvlkWltb+99va2ujsbGxf6rLRrT2Tk9PD6+//jrPP/88//Zv/8ayZcv48pe/LBoHyPTp0xkzZgzPP/88PT099PT0MHv2bL70pS/R09NDe3u7aB0CHR0dvPbaaxx88MGJqM/i8IRET08PS5cuZc6cOf3v1dTUMGfOHBYtWhRjybLLqlWrWLdunUPz5uZmZsyYIZr74JZbbuGcc87hlFNOYfXq1Y6/LV26lO7ubofWkydPZuLEiaJ1ldTW1tLY2CgaB8jvf/97pk6dyjHHHNN//OUvf+HnP/85xxxzDM8995xoHQJNTU0cdNBBrFu3LjH1OfbM7qwe5513ntq5c6f6xCc+oaZMmaJ+9KMfqU2bNqnRo0fHXra0Hk1NTeroo49WRx99tFJKqa985Svq6KOPVhMmTFCgl6Vv2rRJnX322Wrq1KnqgQcekGXpPo758+erzZs3q5NOOsmxxHTw4MH91/zgBz9Qq1evVrNnz1bTpk1Tf/7zn9Wf//zn2MuepuO6665TJ554opo4caKaOnWquu6669Tu3bvVqaeeKhqHfBSu0hKtgzm++93vqpNOOklNnDhRzZw5Uz322GNq/fr1auTIkUnROH6Rsnx84QtfUKtXr1a7du1SixcvVscff3zsZUrzMWvWLFWM22+/vf+aa665Rq1bt07t3LlTPf744+qQQw6JvdxpO0px0UUX9V/T2Nio5s2bpzZu3Ki2bdum7r//fjVmzJjYy56m4yc/+YlatWqV2rVrl2pvb1ePP/54v7MjGod7DHR4ROvqj3vuuUe1traqXbt2qbfeekvdc8896sADD0yMxjXWC0EQBEEQhMwiOTyCIAiCIGQecXgEQRAEQcg84vAIgiAIgpB5xOERBEEQBCHziMMjCIIgCELmEYdHEARBEITMIw6PIAiCIAiZRxweQRAEQRAyjzg8giAIgiBkHnF4BEHIPDfeeCP3339/3MUQBCFGxOERBCHzHH/88Tz33HNxF0MQhBiRZ2kJgpBZGhoa2L59Ow0NDf3vLV68mJkzZ8ZYKkEQ4qA+7gIIgiCERW9vL+9973t59tlnOfroo2lvb2fXrl1xF0sQhBgQh0cQhMyilGLcuHFs2LCBF198Me7iCIIQI5LDIwhCpnnXu97FsmXL4i6GIAgxIw6PIAiZ5phjjhGHRxAEcXgEQcg2Rx55JC+88ELcxRAEIWbE4REEIdPU1tZy6KGHMnbsWIYOHRp3cQRBiAlxeARByDRXXXUVF198MWvXruWqq66KuziCIMSE7MMjCIIgCELmkQiPIAiCIAiZRxweQRAEQRAyjzg8giAIgiBkHnF4BEEQBEHIPOLwCIIgCIKQecThEQRBEAQh84jDIwiCIAhC5hGHRxAEQRCEzCMOjyAIgiAImUccHkEQBEEQMo84PIIgCIIgZJ7/D/62DrgOEGYRAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -320,7 +320,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "id": "5c43792b", "metadata": {}, "outputs": [ @@ -539,13 +539,13 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "id": "b8ad4501", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACz1ElEQVR4nOzdd1wUx/sH8M/dIYpIFAUVERB7F0tEjYBiLLETe0WMDYxBk2iiKbaoMRprxBIRSzCxRFQSFEtQsYsVEX4WOiKCoCBwcHDP7w+8+3LcAXe0O/B5v17z8nZ2dnZ254DH3Z1ZAQACY4wxxhir1ITabgBjjDHGGCs9DuoYY4wxxqoADuoYY4wxxqoADuoYY4wxxqoADuoYY4wxxqoADuoYY4wxxqoADuoYY4wxxqoADuoYY4wxxqoADuoYY4wxxqoADuoYY5VChw4dsGfPHoSHhyMzMxNpaWm4ffs2Fi5cCGNjY43ri4iIABHJ09u3b3H79m3MnTtXqayDgwOICKNGjVLINzAwgJ+fH7KzszFlypQSH1t+enp6+PHHHxEREQGxWIzQ0FB8/vnnam1bq1YtrF27Fv7+/nj58iWICEuXLlVZ9qOPPsLvv/+OoKAgiMViEBGsrKw0amu/fv1w9epVpKenIzExEV5eXjA1NdWoDsZY2SJOnDhx0uU0Y8YMys7OpuDgYHJ1dSUHBwf6+OOP6dtvv6Vnz57RsWPHNK4zIiKCAgMDydbWlmxtbcnJyYkCAwOJiGjx4sUKZR0cHIiIaNSoUfK8Dz74gAIDAykzM5OGDx9eZse6a9cuyszMpK+//pocHBxo9erVlJubq9QmVcnKyopSUlLowoULtGvXLiIiWrp0qcqyP/74I0VERNCxY8fov//+IyIiKysrtdtpb29P2dnZ5OPjQx9//DFNnDiRYmJi6MGDB6Svr6/17wwnTu9p0noDOHHixKnQ1KNHD5JIJOTn56cyWKhWrRoNGzZM43ojIiLI19dXIc/IyIhSUlIoMjJSIb9gUGdqakp37tyhN2/eUJ8+fcrsWNu2bUu5ubn07bffKuTv3LmT0tPTydjYWO266tWrV2RQJxAI5J+/+uorjYO6Gzdu0MOHD0kkEsnzevbsSUREc+bM0fr3hhOn9zHx7VfGmE5bsmQJiAizZs1Cdna20nqJRAJfX18AwO7du/Hq1SsYGBgolTt//jwePnxY5L7S0tLw+PFjNGjQoNAylpaWuHz5Mho3bgxHR0dcuHChyDpNTEyQlZWFFStWKK1r1aoViAjz5s0DAIwcORJCoRBeXl4K5by8vFCzZk0MGjSoyH1pgohKvG2jRo3QvXt3HDhwALm5ufL8a9eu4f/+7//g5ORUFk1kjGmIgzrGmM4SCoVwdHTE7du3ERsbW2z5zZs3o27dupg4caJCfps2beDo6Iht27YVub1IJIKFhQUeP36scn2bNm1w+fJlGBgYwN7eHrdv3y62TUlJSfjnn3/g7OwMgUCgsM7FxQVZWVnw9vYGALRv3x4vX75EQkKCQrkHDx7I1+sCWTtk7crvwYMHOtNOxt43HNQxxnSWiYkJDA0NERERoVb54OBgXLhwQWmww+eff443b95g//79CvkCgQAikUgezHl4eKBevXpYvHixyvpXrlwJMzMzDBgwAGFhYWofh5eXFywtLdGvXz95nlAoxOTJk+Hr64vk5GQAQL169eSf88vIyEBWVhbq1aun9j7Lk6wdqtqanJysM+1k7H3DQR1jrErZvHkzOnfujF69egEAjIyMMGXKFOzbtw/p6ekKZYcMGYKcnBzk5OQgOjoas2bNwrx58+Dn56eybl9fXwiFQmzbtk3lLd7CnDp1CvHx8XBxcZHnDRw4EObm5tizZ49C2aJui5bmlml5KKw9utZOxt4XHNQxxnRWUlIS0tPTYW1trfY2J06cQEREhPxq3bRp02BoaKjy1mtgYCC6desGW1tbTJ48GREREfjtt9/w0Ucfqax73759mDlzJvr06YN///0XNWvWVKtNubm5OHDgAJycnFC7dm15u54/fw5/f395uVevXqm8ylWzZk1Ur15d5ZUxbXj16hUAqGxr3bp1daadjL1vOKhjjOksqVSK8+fPo2vXrjA3N1drGyLCtm3bMHr0aDRs2BBubm44f/68yufk3rx5g9u3b+PmzZvw9vbGgAEDIJFI4OHhofT8m8yePXvw2Wefwd7eHn5+fmoHdl5eXjAwMMD48eNRp04dDB8+HPv374dUKpWXCQ4ORv369ZUGanTo0AEAih3oUVFk7ZC1K78OHTroTDsZex9pfQguJ06cOBWW8k9pUq1aNaX1enp6NHToUIW82rVrU1paGp0/f56ISOU8cqqmNAFAS5cuJSKi8ePHy/NUzVPn7OxMOTk5dPHiRTI0NFTrWK5du0bXr18nNzc3IiJq2bKlwnrZlCaLFi1SyN++fXuZT2mSP5VkSpPr16/TgwcPSCgUyvNsbW2JiGj27Nla/95w4vSeJq03gBMnTpyKTLLJhx88eECurq5kb29P/fr1o6+//poeP36scvLhbdu2ERFRRESEwpxsslRYUGdoaEjx8fEUGhoqD1hUBXUAaMqUKZSTk0OXLl1SK7CbOXMmERFFR0fT5cuXVZaRTT781Vdfkb29Pf30008qJx/+4YcfSCKRkL29vUL+oEGDaNSoUTRt2jQiIjp06BCNGjWKRo0aRQYGBvJyJiYm8vy9e/fK55cbNWqUUp0SiYTOnTunkOfg4EDZ2dn0999/U79+/WjChAkUFRXFkw9z4qTdpPUGcOLEiVOxqWPHjuTl5UWRkZEkFospLS2Nbt++TcuWLSMTExOl8vb29kRESle9ZKmwoA4Aubq6EhHRlClTCCg8qANAkyZNIolEQpcvX6ZatWoVeQxGRkaUnp5ORESfffaZyjJ6enq0dOlS+XGGhYXR559/rlROdkXRwcFB6bgKk/9KnOyYVAkICFCoU1UeAPr444/p6tWrlJGRQUlJSbR3714yNTXV+neFE6f3NQnefWCMsSpl/fr1cHV1hYWFBT+4zxh7L+hpuwGMMVaWbG1t0bJlS7i5uWHnzp0c0DHG3ht8pY4xVqUQEdLT0+Hn5wcXFxeluekYY6yq4qCOMcYYY6wK4HnqGGOMMcaqAA7qGGOF+uGHHxASEqIwES8RKaTXr18jICAAgwcPrpA2LV26tMSvoZowYQLc3d3LuEVF0/b5UoeDg4NCG7OysvDy5UtcvnwZP/30EywtLZW2cXZ2BhHByspKIX/lypWIioqCRCJBSkoKAKBatWrYvn07nj9/jpycHNy9excAEBERoXR+ZCkgIEDj49DT08PTp08rvI8Z0yVaH4LLiRMn3UtmZmaUlpamNI0HEdHhw4fJ1taWevbsSZMmTaLQ0FDKzc2lwYMHl3u7ZFN5lGRbX19fioiIqNDzqO3zpU6STW/y7bffkq2tLfXq1YuGDRtGP/30Ez1//pzS09Np4sSJCtuYmJiQra2twpx0w4cPJyKilStXUq9evahr164EgL744gsiIpo7dy716NGD2rdvT0De9CuBgYFka2urlNq0aVOiY5k6dSq9evWK6tatq/XzyomTFpLWG8CJEycdTD///DPFxMQoTdxLRLR161aFvKZNmxIR0ZkzZwqtT09Pj0QiUanbpYtBXY0aNQpdp+3zpU4qah4+Y2Njun37NmVnZ8uDscLSkiVLiIiU5qrbtWsXpaenK5Uvaq7AkqZq1apRUlKS0mTNnDi9D4lvvzLGlFSrVg2fffYZDh48qNatzvDwcLx8+VJ+K052O2/y5MlYv349YmNjkZWVhebNmwMA+vXrh3PnzuHNmzdIT0/H5cuX4ejoqFTv4MGDcffuXYjFYoSHh+Orr75SuX83NzdcvHgRCQkJePv2LR48eICFCxdCT+9/szYFBARg6NChaNKkicJtPhljY2Ns27ZN3tZnz57hp59+gr6+vsK+iAhbt27F7Nmz8ejRI2RlZcHZ2bn4k1qO56t3794gIowfP15pX1OmTAERoVu3bhq1USYlJQWzZ89GtWrVsGDBAnl+wduvERERWLVqFQDg5cuXICL5rfKZM2eiZs2a8nOu6fkCVH8XVN2Kl0gkOHToEGbNmlWi42WsstN6ZMmJEyfdSr179yYiokGDBimtU3XlqU6dOpSTkyN/9ZXsyk9MTAwdPnyYhg4dSoMHDyZjY2OaNGkS5ebm0rFjx2jkyJE0ZMgQOnnyJEkkEnJ0dJTX6ejoSBKJhC5dukQjR46kUaNG0Y0bNygyMlLpSt2vv/5Ks2fPpgEDBlCfPn3I3d2dXr58SZ6envIybdq0ocDAQHr+/LnCbT4AVL16dbp37x6lpaXRl19+SR9//DEtX76csrOz6Z9//lE6/piYGLp37x6NHz+e+vTpQ23bti30XFbU+bp9+zYFBgYq7f/GjRt048aNIvu7qCt1shQXF0dPnjyRLzs7OxPR/95SYWNjQ7///jsREQ0YMIBsbW3J3NycbG1t6Z9//qH09HT5OZe9ASQiIoL++ecfEolESin/vjX5LgCgMWPGEBEVe2WRE6cqmLTeAE6cOOlYWrhwIRER1a9fX2kdEdFvv/1GIpGI9PT0qFWrVvTvv/8SEZGrqysB/wsSLly4oLCtgYEBJSUl0YkTJxTyBQIB3b17l65fvy7Pu3btGsXGxlL16tXlebVq1aKkpKQib78KBAISiUQ0efJkkkgkVKdOHfm6wm6/zpo1i4iIRo8erfI8fPzxxwrHn5KSolBvUamizpcsyOrUqZM8r1u3bkT0v9edFZbUCequXbumcAu1YFAH/O/WeL169RS29fLyorS0NKU6i3ql2XfffVfi70KzZs2IiGj27Nla/1nixKkiE99+ZYwpadSoEaRSKZKSklSunzt3LnJyciCRSBAWFoZevXrhhx9+wPbt2xXK/f333wrLvXr1Qr169bBv3z6IRCJ5EgqFOH36ND788EPUrFkTNWvWxIcffohjx44hKytLvv3bt2/h6+ur1B4bGxucOHECSUlJkEqlyMnJwYEDB6Cnp4eWLVsWe7yOjo54+/Ytjh49qpC/d+9eAHm3P/P777//8Pr1a/myUChUOJ78o4Ur4nwBwJ9//omEhATMnTtXvv28efPw8uVLHDp0qNhzUJyCx1RWAgMD0a1bN6Xk6ekJABp/F4C8278AYG5uXi5tZkxX8WvCGGNKDAwMIJFIIJVKVa4/dOgQ1q1bByJCWloanj17prJsfHy8wnKDBg0AKAcv+dWtWxdEBJFIhBcvXiitL5hnYWGBwMBA/N///R/c3d0RGRkJsViM7t27w8PDAwYGBsUeb7169VTuKzExERKJBPXq1SvyuJ49e4YmTZrIl5ctW4bly5fLl8v7fGVkZCA7Oxs7d+7EV199hYULF6JatWoYO3YsNmzYgOzs7MIPXk2WlpZ4/vx5qesp6M2bN7h9+3ah642NjdX+LsiIxWIAUKvvGatKOKhjjClJSkpC9erVUbNmTWRkZCitT0xMLPIPsUzBh9hlV/4+//xzXL9+XeU2CQkJqFatGqRSKRo2bKi0vmDeyJEjUatWLXz66aeIjo6W59vY2BTbPplXr17B1tZWKd/U1BTVqlVTumJZ8LiGDRuG6tWry5cLBj/lfb5ktm/fjm+//RbTp09HjRo1oKenhx07dhS73+J8+OGHMDMzw+7du0tdl6ZSUlLU/i7I1K1bFwAKvdLMWFXFQR1jTElYWBgAoFmzZggODi6zeq9cuYKUlBS0bdsW27ZtK7ScRCLBzZs38emnn2LhwoXy2261atXCsGHDFMrKAqH8t+YAYObMmUr1ZmVlqbx6c/78eYwbNw4jR47E8ePH5flTp06Vry/Kw4cPi1xfUuqeL5kXL17gyJEjcHNzg76+Pnx9fRETE1OqNhgbG2PHjh3Izs7Gxo0bS1VXSWRkZKj9XZBp2rQpAODRo0cV1k7GdAEHdYwxJRcuXAAA9OjRo0yDuvT0dMybNw/79u1D3bp1cfToUbx8+RKmpqbo1KkTTE1N4ebmBiDvbRanT5/G2bNn8euvv0IkEuGbb75Benq6wu3Qs2fPIisrC3/++Sd++eUX1KhRA66urjA2Nlbaf3BwMEaNGoU5c+bg9u3bkEqluH37Nvbv34+5c+di3759WLp0KYKDg9G7d28sWbIE//77b7FBXXnR5HzJbN68GTdv3gQAuLi4aLS/Fi1awNbWFkKhEPXq1YOtrS0+++wzfPDBB5g6dWq5BEl16tRReZU0KysL9+7dA6D+d0GmR48eyMnJwaVLl8q8vYzpOq2P1uDEiZPupYsXLypN5wGonqKjYCpuNKWdnR35+vpSUlISZWVlUUxMDPn6+iqVHzp0KN27d4/EYjFFRkbSokWLVE4+PGTIELp79y5lZGRQTEwMrV27lgYOHEhERA4ODvJyderUocOHD1NycjLl5uYq1GNsbEweHh4UFxdH2dnZFBERQatWrVJ4Y4K6x6+t8yVL4eHhFBISonYbZfuXyc7OpsTERLpy5Qr99NNPZGlpqbRNeY9+jYmJKdF3QfbdLThimBOn9yRpvQGcOHHSwfTpp5+SRCKhRo0aab0tnNRPHTp0IKL/TZdSlZOqoK5p06aUm5urMA0NJ07vS+IpTRhjKh07dgy3bt3C4sWLtd0UpoamTZuib9++2LVrF54/fy6fjuV98/333+P8+fM4d+6ctpvCWIXjoI4xVqiZM2fi+fPn5TZHGSs7P/zwA86ePYtatWphzJgxyMzM1HaTKpxIJMKzZ88U5upj7H0iQN4lO8YYY4wxVonxlTrGGGOMsSqAgzrGGGOMsSqAgzrGGGOMsSqAgzrGGGOMsSqA3yhRARo1aoS0tDRtN4MxxhhjlYCRkZHSO6TVwUFdOXFzc8PcuXOhp6eHli1bars5jDHGGKtEzM3NNQ7seEqTcmZkZITU1FSYm5vz1TotEYlE6N+/P86ePYvc3FxtN4epwH1UOXA/6T7uI91XXB8ZGRkhLi4OH3zwgcZxA1+pqyBpaWkc1GmJSCRCZmYm0tLS+JecjuI+qhy4n3Qf95HuK88+4oESjDHGGGNVAAd1jDHGGGNVAAd1jDHGGGNVAD9TpwMMDAxgamrKL00vJyKRCCYmJrCysuJnTHQU91HlUJp+IiIkJiYiMzOznFrHGOOgTsvat2+PBQsWoFq1atpuSpVmYGAAR0dHbTeDFYH7qHIoTT9JJBJs3LgRDx8+LONWMcYADuq0ysDAAAsWLEBoaCh8fHyQk5Oj7SZVWUZGRjz6WMdxH1UOJe0nPT09ODk5YcGCBfj888/5ih1j5YCDOi0yNTVFtWrV4OPjg2fPnmm7OVVa7dq18ebNG203gxWB+6hyKE0/+fj4oGPHjjA1NUV0dHQZt4wxxgMl1GRgYIDIyEisW7euzOqUPUPHV+gYY+8D2e86fn6YsfLBQZ2avvvuO9y4cUPbzShETeS9GITefWaMMcbY+4aDOjU0b94crVu3hp+fn7abUiU4OzsjJSVF281gjDHGNCQE4ABg/Lt/dSuM0q3WlAM7OzucPHkScXFxICKMGDFCqYyrqyvCw8ORmZmJoKAg9O7dW2H9+vXrsXjx4opqcgnk70Y7VES3mpqaYseOHYiKioJYLEZ8fDxOnz6NHj16FLvtoUOH0LJlS/mys7MziEienj9/jkOHDqFJkybleASMMcaYJpwARAK4AODPd/9GvsvXDVU+qDM0NMT9+/fx+eefq1w/duxYbNq0CatWrULnzp0RGBiIU6dOwcLCAgAwfPhwPH78GE+ePKnIZmvACUBovuXTqIgv2d9//41OnTrB2dkZLVu2xPDhw3HhwgXUrVu32G3FYjESExMV8t68eYOGDRvCzMwMEydOhI2NDU6ePAmhsMp/RRljjOk8JwBHAZgXyDd/l687gR29L4mIaMSIEQp5169fJw8PD4W8R48e0erVqwkArV69mqKjoykiIoISExPp9evX9MMPPxS6D319fTIyMpKnRo0aERFRnTp1SCQSKaSmTZvS/v37ycrKqoTH5ERA7rtE+ZIsz6lczmPt2rWJiMje3r7IMjt37qQXL15QZmYmBQcH05AhQwgAOTs7U0pKirxswWUANHHiRCIiatmyJXl6epKvr6/CepFIRPHx8eTi4lJsewUCAdWuXZsEAoHWv4OcuI8qcyptP1lZWdH+/fupadOmSr8POZVN0tfXp+HDh5O+vr7W21JVklBYjYBoUv5bm/9vbhQJhdXKpI/q1KlDRERGRkYa/4y911OaVKtWDV27dsXPP/+skH/mzBn06tULALBkyRIsWbIEQN5twvbt22PlypWF1rl48WIsW7ZMKb9///5K8zKZmJjAwMAARkZGqF27tkZtJxIiLW0riADlC65CAFIIBFtgZHQBAoFUo7qLIxKJkJaWhnHjxiE0NBTZ2dkK6wUCAfz9/VGrVi3Mnj0bERERaN26NWrUqIHatWujZs2aEAgE8mMuuAxAfoWubt26+Ouvv+Dn54eWLVsiISEBAPDJJ5+gVq1a8Pf3V+vcGRoaltXhs3LCfVQ5lKafjIyMYGBgAHt7eyQlJZVhq5iMSCRCly5dIBAI+O0sZSQpqT2uX7coooQQgCW6d/8KJibFT6xdXB8ZGBiUuK3vdVBnYmICPT09eaAgk5CQgIYNG5aozjVr1mDDhg3yZSMjI8TFxeHs2bNKE3ZaWVnB0dERaWlpJZj3yQHKl4HzE4KoMVJTOwK4qGHdxZs2bRp+//13uLi44M6dO7h48SL++usvBAcHo3///ujatSvatGkjv2394MED+bYZGRkgIvkxF1w2NzeHm5sbYmJicPv2bUgkEvzf//0fRowYIZ9SZuzYsThy5AieP39ebFtl0yekpqaC8qJgpmO4jyqH0vZTnTp1kJmZiUuXLiEqKqqsm8eQFzAQEU6fPs1BXRmRSj9Qq9yNG9EQCk8VW664PjIyMtK4jTLvdVAnU/CXk0AgUPkLa9++fcXWlZ2djezsbLi5uWHu3LnyK065ublKnVe6HzizMi6nmWPHjuHff/+FnZ0devbsiUGDBmHRokWYMWMG6tevj9jYWI2eQ6xTpw7S0tIgEAhgaGiI27dv49NPP4VEIgEA7N69G7NmzcK6detgamqKIUOGoF+/fmrVLetLDhZ0F/dR5VBW/aTq9yErO1KplM9xmYpTqxRRnNrnvKg+Kk2/vddPoSclJSEnJ0fpqlz9+vWVrt5pysPDA+3atUP37t1LVU/h4su4nOaysrJw7tw5rFy5Eh999BH27t2L5cuXl+j1P6mpqbCxsUGHDh1gaGiIbt26ISgoSL5+//79aNq0KXr06IHJkycjMjISly9fLsvDYYwxxlQIBBADoLBHmaQAot+V0673OqiTSCS4ffs2+vfvr5Dfv39/XL16VUutUpfufckePXoEQ0NDPHjwAI0bN0aLFi3U3lYqleLZs2eIiIhARkaG0vrk5GQcP34cLi4ucHFxgZeXV1k2nTHGGCuEFIB7vs8F1wHAfBXrKl6Vv/1qaGiI5s2by5etra3RqVMnJCcnIyYmBhs2bMCBAwcQFBSEa9euYdasWbC0tMSOHTtKtd+Ct1/LnuxLdvTdZ2GBdUB5fcnq1q2LI0eOYM+ePXjw4AHS0tLQrVs3LFq0CCdOnMClS5dw6dIl/P333/jyyy/x9OlTtG7dGkQEf3//Eu939+7d+OeffyASidS6Fc4YY4yVDR8AowFsBpB/0EQs8v7W+mihTappfZh8eSYHBwdSxcvLS17G1dWVIiIiSCwWU1BQENnZ2ZXZ/o2MjAodmiwb3l/yKU1AedOWxJDi8OooKq/pTIC8aVtWr15NQUFBlJKSQm/fvqXQ0FBasWIF1ahRgwCQsbExeXp6UmJiImVkZNCDBw9o8ODBBKg3pUlhKSIigv755x+N21y7dm2tfxc5cR9VhVSafiqb33mcikoikYiGDh1KIpFI622pmklIgAMB49/9KyzzPioqblAjafsEVe1U/kEdCKhFkAd0A6kkX7LKkAwMDCglJYWcnDQPWDlg0P3EfVQ5Egd1up04qNP9VJ5B3Xv9TF15cnNzQ0hICG7evFkBe8t/izUQunBfvywJBAKYmZlh5cqVePPmDU6ePKntJjHGGGM6p8o/U6ctHh4e8PDwgJGREVJTU8t5bxkABOW8D+2xtLREZGQkYmJiMG3aNB6mzxhjjKnAQR3TeVFRUfJJTxljjDGmGt9+ZYwxxhirAjioKycV+0wdY4wxxt53HNSVk/J/owRjjDHG2P9wUMcYY4wxVgVwUMcYY4wxVgVwUFdOKvKZupr438yDNct9b4wxxhjTRRzUlRN+po6pi4gwYsSICtmXs7MzUlJSKmRfffv2RWhoaIVNR1MR51FfXx9RUVHo0qVLue6HMcZKgoO6KiB/J9qhYjq1QYMG2LJlC549ewaxWIzo6GicPHkSjo6Oatfh5eUFIgIRQSKRICoqCh4eHqhTp45CuYiICLi7uyvkrV+/Hqmpqejbty8AICAgAM7OzqU+rqru0KFDaNmyZYXs65dffsGqVatARPK8atWqYeHChbh37x7S09ORmJiIy5cvY9q0adDTU2/azKVLl+Lu3bvl1ewiZWdnY/369Vi7dq1W9s8YY0XhyYcrOScAW/ItnwYQA8AdgE857dPKygpXrlzB69evsWjRIjx48ADVqlXDwIEDsW3bNrRp00btuk6dOgUXFxfo6emhbdu22LNnD+rUqYOJEyeqLC8UCvH7779j2LBhcHR0RFBQUFkd1ntBLBZDLBaX+3569uyJFi1a4MiRI/K8atWqwd/fH506dcIPP/yAK1euIDU1FT169MDXX3+Np0+f4vLly+XettLy9vbGunXr0Lp1a4SFhWm7OYwxJsdX6ioxJwBHATQqkG/+Lt+pnPbr4eEBIkL37t3x999/48mTJ3j06BE2btyIHj16AAA8PT3h6+ursJ1IJEJ8fDxcXFzkeVlZWUhISEBcXBzOnj2LQ4cOYcCAASr3q6+vjyNHjqB///6wt7cvMqBbunQpoqKiIBaLERcXV+yVlWHDhuHWrVvIzMxEYmIi/v77bwDADz/8gAcPHiiVDwoKwvLlywEADg4OuHHjBt6+fYuUlBRcvnwZlpaW8rJz5szB06dPkZWVhbCwMEyePLnQdly9ehVr1qxRyDMxMUF2djb69OkDIC84Wrt2LWJjY/H27Vtcv34dDg4ORR6fTP7bry1btgQRoVWrVgplFixYgIiICPmxEREGDx6Me/fuITMzE9evX0f79u2L3M/48eNx5swZZGVlyfPmz58Pe3t79OvXDx4eHrh//z4iIiLw559/wtbWFs+ePcOUKVOQlJQEfX19hfqOHj2Kffv2wdnZGcuWLYONjY38Km/+K7QmJiY4duwY0tPT8fjxYwwbNkyhHnt7e9y4cQNisRjPnz/HmjVrIBKJ5OsDAgKwefNmrF27Fq9evUJ8fDyWLl2qUEdycjKuXr2KCRMmFHe6GWOswhGnsk9ubm4UEhJCoaGhRERkZGSkVMbKyor2799PVlZWGtcvBCgaoFyASEXKBSjqXbmyPC5jY2PKzc2lb7/9tshyPXv2JIlEQg0bNpTnDRs2jNLS0sjQ0JAAkJeXF/n4+MjXW1tb08OHDyk+Pl6hroiICPruu+/o7NmzFBYWRhYWFkr7CwgIIGdnZwJAo0aNotevX9OgQYPIwsKCPvzwQ5o3b16hbR08eDBJJBJatmwZtW7dmjp27EiLFy8mAGRubk45OTnUrVs3efkOHTpQbm4uWVtbk0gkopSUFPrll1+oadOm1Lp1a5o6daq8jSNHjqSsrCxydXWlFi1a0IIFC0gikVCfPn3k9RERjRgxggDQ3LlzKTIyUqF9c+fOpZiYGBIIBASA/vjjD7p8+TL17t2bmjZtSl999RVlZmZS8+bNi+0/Z2dnSklJkS/funWLVqxYoVDm1q1btGrVKgJADg4OREQUEhJCH3/8MbVv355OnjxJ4eHhpKenV+h+7t69S4sWLVLIu3fvHp0+fbrQbWrXrk01atSglJQUGj16tDy/Xr16JBaLqU+fPlSjRg1at24dBQcHU4MGDahBgwZUo0YN+XmMjo6m8ePHU7NmzWjTpk2UmppKxsbGBIAaNWpEb9++pd9++41atWpFI0aMoJcvX9LSpUsVvkevX7+mH3/8kZo3b05Tpkyh3Nxc+vjjjxXa+vPPP9N///1Xpj9blSXVrl27xNuW5nceJ/WSSCSioUOHkkgk0npbOJWsj4yMjAqNG9RI2j/AqpyK6pzS/IJzgOpgrmByKOPj+fDDD4mIaOTIkcWWffjwIS1cuFC+fOzYMdqzZ4982cvLiyQSCaWlpVFGRgbJzJ8/X6GeiIgIEovFlJiYSKampsXud8GCBRQWFqYQdBT1h+jKlSt04MCBQtf/+++/tG3bNvnyhg0b5H/QjY2NiYjI3t5e5baXL1+mnTt3KuQdOnSI/vnnH/ly/qDOxMSEsrOzqXfv3grtW7t2LQGgpk2bUm5uLpmZmSnUefbsWXkgVlQqGNTNnz+fnj59Kl9u0aIFERG1adMm73v2LqgbO3asvIyxsTGlp6fTmDFjCt1PSkoKTZ48WSEvPT2dNm3aVOg2sj7atm0b/fvvv/L8L774QqGNS5cupbt37yptT0QKAWrNmjUpNzeXBg4cSADop59+otDQUIVtXF1dKTU1VR4wBwQE0KVLlxTK3Lhxg9asWaOQN2/ePAoPDy/Tn63Kkjio0+3EQZ3up/IM6vj2ayVlVsbl1CUbyZj/4ffC7N69W36r1dTUFEOGDMGePXsUygQEBMDGxga2trbYsmULTp8+ja1btyrVdebMGRgaGmLJkiXF7vfIkSMwMDBAeHg4du3ahZEjRyrcYivIxsYG58+fL3T977//jgkTJqB69erQ09PDpEmT5MeRkpICLy8v+Pv74+TJk/jiiy/QsGFD+bZt2rTBlStXFOq7cuVKoc8dJiUl4ezZs5g0aRIAoEmTJujVqxe8vb0BAF26dIFQKMTjx4+RlpYmTw4ODmjWrFmx56agv/76C1ZWVrC1tQUATJo0CXfv3kVoaKhCuWvXrsk/p6Sk4P/+7/+KfHbSwMBA6dk9gUCg1vfm999/x4ABA9CoUd6DBS4uLti7d69ax5P/VnlGRgbS0tJQv359AHl9kf84gLy+MDIyQuPGjVXWAQDx8fHyOmQyMzNRsyZPIMQY0y0c1FVS8WVcTl1PnjyBVCpVazDE/v370bRpU/To0QOTJ09GZGSk0oPw6enpePbsGYKDg+Hu7o7q1asrPcMEAOfPn8fw4cMxa9YsbNmyRWl9frGxsWjVqhXmzp2LzMxMeHh4wM/Pr9DRlZmZmUXW5+vri6ysLDg5OWHYsGGoXr26/Jk7AJg+fTp69uyJq1evYty4cXj8+LE8SAKUA+Dightvb2+MHj0aenp6mDhxIh4+fCgPNIRCIXJyctC1a1fY2NjIU5s2bZRGCKvjxYsXCAgIkA9MmTBhAv744w+1ti3qGJKSkmBsbKyQ9/jxY7W+N/fu3cP9+/cxdepUdO7cGR06dFA7qJNIJEptFArzfs2pOu+q/pNSVB0ydevWRWJiolptYoyxisJBXSUViLxRrtJC1ksBRL8rV5ZSUlLg7++PuXPnqrxSUbt2bfnn5ORkHD9+HC4uLnBxcYGXl1ex9S9fvhxff/01zMyUrzGeO3cOQ4cOxfTp0/Hbb78VWY9YLIavry/c3d3Rp08f2NraokOHDirLPnjwAP369Su0rtzcXOzbt09+HH/99ZdSIHjv3j38/PPP+Oijj/Dw4UN5kBQaGorevXsrlO3Vq5fSlbD8jh8/jho1amDQoEGYOHGiQpB19+5d6OnpoX79+nj27JlCSkhIKPKcFMbb2xvjxo1Djx490KxZM/z1119KZWQDYACgTp06aNmyZZEjP+/evYu2bdsq5B08eBAff/wxbGxslMqLRCKF75PsKu/06dNx7tw5xMbGytdlZ2cXeeW1MI8ePUKvXr0U8nr16oXU1FTExcVpVFf79u21Nq0KY4wVRev3l6tyKq9n6gCQE/IGRBQcLCHLcyqnY2rSpAk9f/6cHj58SJ9++ik1b96cWrduTfPmzaNHjx4plP34449JLBaTRCJReg6s4EAJWbp16xZt3bpVvhwREUHu7u7yZQcHB0pLS1N4zi1/cnZ2punTp1O7du3I2tqaVq5cSenp6VS3bl2V5R0cHCgnJ0c+UKJ9+/YKzwICoObNm5NEIiGJRELdu3dXOBerV6+mHj16kKWlJfXv35+SkpJozpw5BIBGjBhBWVlZNHv2bGrevLl8oISDg4O8jvzP1MnSH3/8QXfv3qXc3FylgSEHDhyg8PBwcnJyoiZNmlC3bt1o0aJF9MknnxTbdwWfqZN9RzMyMuju3bt09uxZpXNDRBQcHEyOjo7Url07On78OEVGRlK1atUK3c/nn39Ot27dUsjT19enixcv0qtXr8jNzY06duxI1tbWNGbMGAoKClJ4jtDIyIjevn1LYrFY4Xk+ADRhwgRKS0ujTp06Ub169UhfX7/Q85iSkiIfQCMbKLF161Zq1aoVDR8+XOVAiY0bNyrU4ePjQ15eXgp5ERERSs8Mvi+Jn6nT7cTP1Ol+4oESlTiVZ1AH5AVuMVAM6qJQfgGdLDVs2JC2bt0qH8QQExNDx48fVwhWZCkiIkJhYIAsFRbUTZgwgcRiMTVu3Fi+ff6gDgDZ2dlRamoqbd++XWn7ESNG0LVr1+j169eUlpZGV69epWHDhhV9Hp2c6M6dOyQWi+nly5d09OhRpTIXL16khw8fKuTVr1+fjh07RnFxcSQWiykiIoKWLVsmf/AeAM2ZM4eePn1KWVlZFBYWphQMqApGPvnkEyIiunDhglI79PT0aNmyZRQeHk5ZWVn0/Plz+vvvv6l9+/bF9puqoA7IG7xBRDRt2jSFfFlQN2TIEAoODiaxWEw3btygjh07FrmfOnXqUHp6OrVs2VIhX19fn7755hu6f/8+ZWRkUFJSEgUGBtLUqVOVgu59+/ZRUlKSPGjLX8eRI0coOTmZiEgetBUX1AEge3t7unHjBonFYnr+/DmtWbNG4RerOkFdjx49KDk5WT7q9n1LHNTpduKgTvcTB3WVMJX3lCb5Uy38L6AbiLKfxqQ0ycDAgFJSUsjJyUmr7SjNHyJZCgsLowULFmj9nFZkkgV1JTl/a9eupR07dpS4j86cOUObN2/W+jkomA4fPiyf8uZ9TBzU6XbioE73E49+rYQq8t2v+Z+rC0Thz9lVJIFAADMzM6xcuRJv3rzByZMntd2kEjM1NcWXX34Jc3NztZ4LZHlWrVqFqKgopUEGxTE2Nsa4cePg6OiIbdu2lVPrSkZfXx/379/Hxo0btd0UxhhTwq8JqwIyAFTMK9PVZ2lpicjISMTExGDatGnIzc3VdpNK7OXLl0hMTMSsWbPw+vVrbTenSH5+frCzs1O5bvXq1UpvqyhPqampJdrfnTt3YGxsjG+++QaPHz8uh5aVXHZ2NlatWqXtZjDGmEoc1LFyERUVJZ8uorKrTMcxY8YMGBgYqFyXnJyscX0XL16s8OO3trau0P0xxlhVwUEdY1XI8+fPtd0ExhhjWsLP1DHGGGOMVQEc1DHGGGOMVQEc1DHGGGOMVQEc1DHGGGOMVQEc1JUTNzc3hISE4ObNm+W/s5o1IZ9+WMX7WBljjDFW9XFQV04qcvJhVvkFBARU2IS2VlZWICJ06tSp3PdVt25dJCQkwMrKqtz3RUQYMWJEue5DX18fUVFR6NKlS7nuhzHGSoKDuqog/4z9dnaKy+WkQYMG2LJlC549ewaxWIzo6GicPHkSjo6Oatfh5eUFIgIRQSKRICoqCh4eHqhTp45CuYiICLi7uyvkrV+/Hqmpqejbty+AvKDI2dm51Mf1PoiJiUHDhg3x8OHDct/X4sWL4evri6ioKAD/CyhlKTk5GRcvXoS9vb3adS5duhR3794tryYXKTs7G+vXr8fatWu1sn/GGCsKB3WVnZMTEBr6v+XTp4HIyLz8cmJlZYXbt2/D0dERixYtQocOHTBo0CAEBARo/FqnU6dOoWHDhmjSpAlmzJiBYcOGwcPDo9DyQqEQnp6emDp1KhwdHREQEFDaw3nvSKVSJCQklPtbPmrUqIHPPvsMu3fvVlrXr18/NGzYEA4ODkhNTYWfn1+FXM0rC97e3rCzs0Pr1q213RTGGFPAQV1l5uQEHD0KNGqkmG9unpdfToGdh4cHiAjdu3fH33//jSdPnuDRo0fYuHEjevToAQDw9PSEr6+vwnYikQjx8fFwcXGR52VlZSEhIQFxcXE4e/YsDh06hAEDBqjcr76+Po4cOYL+/fvD3t4eQUFBhbZx6dKliIqKglgsRlxcXJFXVmRXfmbNmoXo6Gikp6fj8OHDqF27NgDAzs4O2dnZaNCggcJ269evx8WLFwHkvRbt5MmTSE5Oxtu3b/Hw4UN88skn8rL29va4ceMGxGIxnj9/jjVr1kAkEqlsz+rVq3Ht2jWl/Pv372PZsmXy5WnTpuHRo0fIzMxEaGgoXF1dCz3G/PLffhUIBIiJicHs2bMVynTu3BlEJH+7AxFhzpw58PPzQ0ZGBsLDwzF69Ogi9/PJJ58gJycH169fV1r36tUrJCQkIDg4GLNnz4ahoSH69u2LKVOmICkpCfr6+grljx49in379sHZ2RnLli2DjY2N/Gpf/iu0JiYmOHbsGNLT0/H48WMMGzZMoZ7i+iEgIACbN2/G2rVr8erVK8THx2Pp0qUKdSQnJ+Pq1auYMGFCkcfPGGPaQJzKLxkZGRERkZGRkdI6Kysr2r9/P1lZWWlet1BIiI4m5OaSwv0sWcrNJURF5ZUrw+MxNjam3Nxc+vbbb4ss17NnT5JIJNSwYUN53rBhwygtLY0MDQ0JAHl5eZGPj498vbW1NT18+JDi4+MV6oqIiKDvvvuOzp49S2FhYWRhYaG0v4CAAHJ2diYANGrUKHr9+jUNGjSILCws6MMPP6R58+YV2talS5dSWloanTt3jjp16kR2dnb0+PFj+uOPP+RlwsLC6Ouvv5Yvi0QievHiBU2bNo0AkK+vL/n7+1P79u3J2tqahgwZQnZ2dgSAGjVqRG/fvqXffvuNWrVqRSNGjKCXL1/S0qVLFdq/ceNGAkDt2rUjIqKmTZvK17dt25aIiFq0aEEAaMaMGRQXF0dOTk7UpEkTcnJyoqSkJJo6dWqxfWhlZUVERJ06dSIAtG7dOrp06ZJCmXXr1tGVK1fky0REiYmJ9Nlnn1GLFi1oxYoVJJFIqHXr1oXuZ+PGjeTn51fkvgFQnTp1iIjo66+/pho1alBKSgqNHj1avr5evXokFoupT58+VKNGDVq3bh0FBwdTgwYNqEGDBlSjRg15G6Ojo2n8+PHUrFkz2rRpE6WmppKxsbFG/fD69Wv68ccfqXnz5jRlyhTKzc2ljz/+WOE4fv75Z/rvv//K5XeGrqfatWuXeNtS/c7jpFYSiUQ0dOhQEolEWm8Lp5L1UVFxgxpJ+wdYlVO5BXUODqqDuYLJwaFMj+fDDz8kIqKRI0cWW/bhw4e0cOFC+fKxY8doz5498mUvLy+SSCSUlpZGGRkZJDN//nyFeiIiIkgsFlNiYiKZmpoWu98FCxZQWFgY6enpyfOK+kO0dOlSkkgkZG5uLs8bOHAg5eTkUIMGDQgALVy4kEJCQuTrhw8fTqmpqVSzZk0CQPfv36cff/xRZf0//fQThYaGKuS5urpSamoqCQQCAhSDOgB07949+v777+XLq1atohs3bsiXo6KiaPz48Qp1fvfddwqBWGGpYGBlY2NDubm5ZGlpSQBIIBBQTEwMubq6yrchIvLw8FCo59q1a7Rt27ZC9+Pj40O7d+8uct81a9ak7du3k0QioZ49exIA2rZtG/3777/ybb744gt6+vSpQn/dvXtXaX9ERCtWrJAv16xZk3Jzc2ngwIEa9UPBAPfGjRu0Zs0ahbx58+ZReHh4mf5sVZbEQZ1uJw7qdD+VZ1DHt18rKzOzsi2nJtnL3Ymo2LK7d++W32o1NTXFkCFDsGfPHoUyAQEBsLGxga2tLbZs2YLTp09j69atSnWdOXMGhoaGWLJkSbH7PXLkCAwMDBAeHo5du3Zh5MiRhd7qlImOjkZcXJx8+dq1axCJRGjVqhUAYO/evWjevDlsbW0BANOnT8fhw4eRkZEBANiyZQu+//57XL58GcuWLUOHDh3kdbVp00bpduqVK1dgZGSExo0bq2yPt7c3Jk2aJF+eMGECvL29AeTdYrS0tISnpyfS0tLk6fvvv0ezZs2KPT8F3bt3D2FhYfLbiQ4ODqhfvz4OHz6sUK7gMVy7dg1t2rQptF4DAwOIxWKV665evSpv97Bhw+S3kgHg999/x4ABA9Do3WMFLi4u2Lt3r1rH8uDBA/nnjIwMpKWloX79+gDU74f8dQBAfHy8vA6ZzMxM1OTpgxhjOoaDusoqPr5sy6npyZMnkEqlRf4xl9m/fz+aNm2KHj16YPLkyYiMjMTly5cVyqSnp+PZs2cIDg6Gu7s7qlevrvQMEwCcP38ew4cPx6xZs7Bly5Yi9xsbG4tWrVph7ty5yMzMhIeHB/z8/KCnp6f2ccqCVtm/iYmJ8PX1hYuLC0xNTTF48GCFANXT0xNNmzbFgQMH0KFDBwQFBeHzzz8HkBcIFwyCiwuODx48iJYtW6Jz587o1asXLCws8NdffwHIGywCADNnzoSNjY08tW/fXv5Mo6a8vb0xceJEAMDEiRPh7++PV69eFbtdUcF9UlISjI2NVa4bN24cOnXqBFNTUzRu3FgesAJ5Qeb9+/cxdepUdO7cGR06dFA7qJNIJErtk50vdfuhqDpk6tati8TERLXaxBhjFYWDusoqMBCIiQGkUtXrpVIgOjqvXBlKSUmBv78/5s6dq/JKhWxwAZD3QPnx48fh4uICFxcXeHl5FVv/8uXL8fXXX8NMxRXGc+fOYejQoZg+fTp+++23IusRi8Xw9fWFu7s7+vTpA1tbW4WrZwVZWloq7LNnz57Izc3F48eP5Xm7d+/G+PHjMXv2bDx79gxXr15VqCM2NhY7d+7EqFGj8Ouvv2LmzJkAgEePHqFXr14KZXv16oXU1FSFq4P5xcXF4dKlS5g0aRImTZqEc+fO4eXLlwCAly9fIjY2Fk2bNsWzZ88UUmRkZJHnpTAHDx5Ex44d0aVLF4wePVohyJIpGDD26NEDYWFhhdZ59+5dtG3bVuW6mJgYhIeHIzk5WeV62VXe6dOn49y5c4iNjZWvy87OLvbKqyol6YfCtG/fXmvTqjDGWGE4qCtGrVq1cPPmTdy9excPHjzAjBkztN2kPFIpIJu7rWBgJ1ueP7/woK8U3NzcIBKJcPPmTXz66ado3rw5WrdujXnz5ind3tq9ezecnZ3Rpk0b7Nu3r9i6L168iJCQkEJvswYEBGDIkCFwdnYudPoUZ2dnTJ8+He3atYO1tTWmTJmCjIwM+VxpqojFYuzbtw8dO3ZE7969sWXLFhw+fBgJCQnyMv7+/njz5g2+//57pQB148aNGDBgAJo0aYLOnTvD0dERoe+mmvHw8ICFhQW2bt2KVq1aYfjw4Vi+fDk2bNhQ5JUub29vjB8/HmPGjMEff/yhsG7ZsmVYvHgxvvjiC7Ro0QLt27fHtGnTsGDBgkLrK0pkZCSuXLkCT09P6Onp4cSJE0plxowZAxcXF7Ro0QLLli1D9+7diwyu/f390a5dO6V5B9Xh7e0Nc3NzzJw5U+mWfWRkJKytrdGpUyfUq1dPaaRsYUraD6rY2dnhzJkzGm3DGGMVQesPDepyEgqFZGBgQADIwMCAnj17RnXr1lV7+3IbKCFLTk6EmBjFwRFRUXn55XheGjZsSFu3bpUPYoiJiaHjx4+Tg4qBGREREfTPP/8o5Rcc/SpLEyZMILFYTI0bN5Zv7+7urlDGzs6OUlNTafv27Urbjxgxgq5du0avX7+mtLQ0unr1Kg0bNqzQY5E9eD9nzhyKjY2ljIwMOnr0KNWpU0ep7PLly5VG9QKgLVu20JMnTygzM5MSEhJo3759Ct8Te3t7unHjBonFYnr+/DmtWbNG4SHZggMlgLwH0jMzM+nt27fyEcMFz9OdO3dILBbTq1ev6MKFC2oNYFE1AhXIGzRARLR3716lbYiIXF1dyd/fnzIzMykiIoLGjRtX7L6uXr1Ks2bNKnbfsuPNv7xv3z5KSkoifX19hXx9fX06cuQIJScnExHJRz0TEY0YMUKhbEpKinx9SfvBx8eHvLy85Ms9evSg5ORk+ajb9y3xQAndTjxQQvcTj37VkWRsbEyRkZFUr149tbcp96AOINSq9b+AbuDAMp/GpDTJwMCAUlJSyKmcg8ziUnGjX1WNplSVdu3aRSdOnND6ea3opCpgUid98sknFBISIh9dqkkfnTlzhjZv3qz1Yy+YDh8+TIsXL9Z6O7SVOKgrzyQkwIGA8e/+1fx3OQd1up949Gsp2NnZ4eTJk4iLiyv03ZCurq4IDw9HZmYmgoKC0Lt3b4X1tWvXxr179xAbG4tffvlFrQfIK1T+W6yBgeVyy1VTAoEAZmZmWLlyJd68eYOTJ09qu0ml8sEHH6Bfv36YNGmSytG5TLVTp05h586dMDc3V3sbY2NjjBs3Do6Ojhq/oaS86evr4/79+xX2nl72PnECEAngAoA/3/0b+S6fMfVU+aDO0NAQ9+/fl49ELGjs2LHYtGkTVq1ahc6dOyMwMBCnTp2ChYWFvMybN29gY2MDa2trTJw4UWl6A63LyAAEgrz0booNbbO0tMTz588xduxYTJ8+vdxfSVXeTpw4gZMnT2Lnzp04d+6ctptTpMWLFytMdZI/+fn5VXh7tmzZojDQoTh37tzBzp078c033ygMVNEF2dnZWLVqVaFTtTBWMk4AjgIo+J8f83f5HNgx9ag/x0Mldfr0aZw+fbrQ9V9++SU8PT3h6ekJAFiwYAEGDhwIV1dXpYf1X758iQcPHsDe3h5Hjx5VWZ++vj6qV68uXzYyMgKQ94qsgiP2SjKCr7KIioqSTxehbbJ2qJrSAsgbcbt8+fIi6+jbt2+5tK087NixQ2mOOZnMzMwS1VnefZm/j2SvJmO6p7ifJXWp+n34viISQird/G6p4HUWIQApgE0QCv+BQFD8XRiRSAShUMjnV4cV10el6bsqH9QVpVq1aujatSt+/vlnhfwzZ87Ipz6oX78+MjMzkZaWBiMjI9jb22P79u2F1rl48WKF93PK9O/fX+kPqomJCQwMDGBkZKQwFQgre4aGhtpuQoWRSqVISkoqdL2uftfepz6qzErTT0ZGRjAwMIC9vX2R39H3SVJSe1y/blFECSEAS3Tv/hVMTB4WW59IJEKXLl0gEAgq/R2Sqqq4PjIwMChx3e91UGdiYgI9PT2FaSsAICEhAQ0bNgQANG7cGJ6enhAIBBAIBPjtt98QHBxcaJ1r1qzBhg0b5MtGRkbyl9WnpaUplLWysoKjoyPS0tLw5s2bMjwylp/s6kJqamqpri6w8sN9VDmUtp/q1KmDzMxMXLp0qcgpht4nUukHapW7cSMaQuGpYsuJRCIQEU6fPs1BnY4qro9kd/hK4r0O6mRUzTIvy7tz5w46d+6sdl3Z2dnIzs6Gm5sb5s6dK5+JPjc3V6nz+AeuYhR8OwTTPdxHlUNZ9ZOq34fvL/UmviaKU/ucSaVSPsc6rqg+Kk2/VfmBEkVJSkpCTk6O/KqcTP369ZWu3mnKw8MD7dq1Q/fu3UtVD2OMsaosEEAM8p6dU0UKIPpdOcaK9l4HdRKJBLdv30b//v0V8vv376/0CijGGGOs7EkBuOf7XHAdAMxXsY4xZVX+9quhoSGaN28uX5a9Xig5ORkxMTHYsGEDDhw4gKCgIFy7dg2zZs2CpaUlduzYUar9Frz9yhhjjKnmA2A0gM0A8g+aiEVeQOejhTYxlYRCwM4OMDMD4uN1Zm7Y/LQ+u3J5JgcHB1Il/2t/XF1d5a+7CgoKIjs7uzLbf0W8UaImasrfEVYTNbV+znUxlWYW/IpIql5PVV6pqFd1lXWqW7cuJSQkqPUdL20flfStF5xUv4pP034aMmQI3blzp8i3h/AbJYpL/EYJnU5OToToaMXXckZHa/xaTn6jRClcvHhRPnI1f3JxcZGX2b59O6ytrVGjRg1069YNgYGV69kFYb676HawU1guLw0aNMCWLVvw7NkziMViREdH4+TJk3B0dFS7Di8vL/nPhUQiQVRUFDw8PJReAB8REQF3d3eFvPXr1yM1NVU+f1xAQACcnZ1LfVzvg5iYGDRs2BAPHxY/PUJpLV68GL6+vvKRjlZWVgq/D5OTk3Hx4kXY29urXefSpUtx9+7d8mpyhXN2dgYR4dQpxZGNtWvXBhHBwcFBSy3TzL///gsiwsSJE7XdlEpMCuAigL/e/atbV4Dea05OwNGjQMG345ib5+U76cYE0VU+qNMWNzc3hISE4ObNm+W6Hyc4IRSh8uXTOI1IRMKpHGcgt7Kywu3bt+Ho6IhFixahQ4cOGDRoEAICAjR+rdOpU6fQsGFDNGnSBDNmzMCwYcPg4eFRaHmhUAhPT09MnToVjo6OCAgIKO3hvHekUikSEhLKfWRcjRo18Nlnn2H37t1K6/r164eGDRvCwcEBqamp8PPzg5WVVbm2p6J4eXlh6dKlGm0jkUjQr18/9OnTp3waVUG8vLwwb948bTeDsbIlFAKbN//vc8F1ALBpk/I6LdB+C6qoihj96gQnHMVRNEIjhXxzmOMojpZbYOfh4QEiQvfu3fH333/jyZMnePToETZu3IgePXoAADw9PeHr66uwnUgkQnx8vMJV0qysLCQkJMjn8jt06BAGDBigcr/6+vo4cuQI+vfvD3t7ewQFBRXaxqVLlyIqKgpisRhxcXFYu3ZtkWXv3r2LWbNmITo6Gunp6Th8+LB8kl47OztkZ2ejQYMGCtutX78eFy9eBJD3WrSTJ08iOTkZb9++xcOHD/HJJ5/Iy9rb2+PGjRsQi8V4/vw51qxZU+is4atXr8a1a9eU8u/fv68wsfW0adPw6NEjZGZmIjQ0FK6uroUeY36yq2WdOnWCQCBATEwMZs+erVCmc+fOICL52x2ICHPmzIGfnx8yMjIQHh6O0aNHF7mfTz75BDk5Obh+/brSulevXiEhIQHBwcGYPXs2DA0N0bdvX0yZMgVJSUnQ19dXKH/06FHs27cPzs7OWLZsGWxsbORX+/JfoTUxMcGxY8eQnp6Ox48fY9iwYQr1FNcPAQEB2Lx5M9auXYtXr14hPj5e4wCtJNLT0+Hl5aU0EXp+Dg4OICKFyaM7deoEIpIHxM7OzkhJScGQIUMQFhaG9PR0HDlyBDVr1sTUqVMRERGB5ORkbNmyRel5XyMjI3h7eyMtLQ1xcXFKr1ZcsGABHjx4gLi4OERHR2Pbtm1KExGfPHkStra2/FYQVrXY2QEWFoUHbUIhYGmZV04HaP8+dRVO5fVMnRBCikY05SKXFG/w56Vc5FIUokhYgmcyikrGxsaUm5tL3377bZHlevbsSRKJhBo2bCjPGzZsGKWlpZGhoSEBIC8vL/Lx8ZGvt7a2pocPH1J8fLxCXREREfTdd9/R2bNnKSwsjCwsLJT2FxAQQM7OzgSARo0aRa9fv6ZBgwaRhYUFffjhhzRv3rxC27p06VJKS0ujc+fOUadOncjOzo4eP35Mf/zxh7xMWFgYff311/JlkUhEL168oGnTphEA8vX1JX9/f2rfvj1ZW1vTkCFD5M9mNmrUiN6+fUu//fYbtWrVikaMGEEvX76kpUuXKrRf9kxdu3btiIioadOm8vVt27YlIqIWLVoQAJoxYwbFxcWRk5MTNWnShJycnCgpKYmmTp1abB8WfKZu3bp1dOnSJYUy69atoytXrsiXiYgSExPps88+oxYtWtCKFStIIpFQ69atC93Pxo0byc/Pr8h9A6A6deoQEdHXX39NNWrUoJSUFBo9erR8fb169UgsFlOfPn2oRo0atG7dOgoODqYGDRpQgwYNqEaNGvI2RkdH0/jx46lZs2a0adMmSk1NJWNjY4364fXr1/Tjjz9S8+bNacqUKZSbm0sff/yx2j8jXl5eCnUWl5ydnSklJYXMzMwoPT2dRo0aRUDes2tERA4ODgT87/ng/M+0derUiYhI/jvE2dmZsrKyyN/fn2xsbMjOzo4SExPp9OnT9Ndff1GbNm1oyJAhJBaLaezYsQo/Y2/evKFvvvmGWrRoQZ9//jlJJBKF43Z3d6c+ffpQx44dqW/fvhQaGkrbtm1TOp4XL14U+j3kZ+rKP/EzdeWQxo9X9WdWOY0fXyZ9VJpn6qD1k1XFU3kFdQ5wUOMbRuQAhzI9ng8//JCIiEaOHFls2YcPH9LChQvly8eOHaM9e/bIl728vEgikVBaWhplZGTIB7HMnz9foR7ZIJbExEQyNTUtdr8LFiygsLAw0tPTk+cV9RD+0qVLSSKRkLm5uTxv4MCBlJOTQw0aNCAAtHDhQgoJCZGvHz58OKWmplLNmnkDU+7fv08//vijyvp/+uknCg0NVchzdXWl1NRU+UPlBQdK3Lt3j77//nv58qpVq+jGjRvy5aioKBpf4BfId999pxCIFZYKBlY2NjaUm5tLlpaWBIAEAgHFxMSQq6urfBsiIg8PD4V6rl27pvKPuiz5+PjQ7t27i9x3zZo1afv27SSRSKhnz54EgLZt20b//vuvfJsvvviCnj59qtBfd+/eVdofEdGKFSvkyzVr1qTc3FwaOHCgRv1QMMC9ceMGrVmzRu2fkZIGdQBo9erVFBYWRiKRqMRBXcH/EGzfvp3evn0r/88UADp16hRt375d4WesYAD+559/KvRDwZ+l0aNHU2JiotL627dvF/qzwEFd+ScO6sohOTioF9Q5qPf3lgdKVELl/UydGczKtJy6ZK8JIjVmlN+9e7f8VqupqSmGDBmCPXv2KJQJCAiAjY0NbG1tsWXLFpw+fRpbt25VquvMmTMwNDTEkiVLit3vkSNHYGBggPDwcOzatQsjR44s9gXJ0dHRiIv738zu165dg0gkQqtWrQAAe/fuRfPmzWFrawsAmD59Og4fPoyMjAwAwJYtW/D999/j8uXLWLZsGTp06CCvq02bNkq3U69cuQIjIyM0btxYZXu8vb0xadIk+fKECRPg7e0NIO8Wo6WlJTw9PZGWliZP33//PZo1a1bs+Sno3r17CAsLw4QJEwDk3earX78+Dh8+rFCu4DFcu3YNbdq0KbReAwMDiMVileuuXr0qb/ewYcPkt5IB4Pfff8eAAQPQqFHeYwUuLi7Yu3evWsfy4MED+eeMjAykpaWhfv36ANTvh/x1AEB8fLy8DlUmTpyo0A+TJk3CkiVLFPLUHTywdu1amJqaYvr06WqVVyU9PR3h4eHy5YSEBERGRiI9PV0hr+AxFde/ffr0wZkzZ/Do0SOkpqZi//79MDExQc2aNRW2y8zMVMpjrFILDARiYgqfukQqBaKj88ppGQd15aS8n6mLR3yZllPXkydPIJVKi/xjLrN//340bdoUPXr0wOTJkxEZGYnLly8rlElPT8ezZ88QHBwMd3d3VK9eXeUzTOfPn8fw4cMxa9YsbNmypcj9xsbGolWrVpg7dy4yMzPh4eEBPz8/6OmpPy2jLGiV/ZuYmAhfX1+4uLjA1NQUgwcPVghQPT090bRpUxw4cAAdOnRAUFCQ/Jmk/K+dkykuOD548CBatmyJzp07o1evXrCwsMBff/0FAPJnoWbOnAkbGxt5at++vfyZRk15e3vLA4+JEyfC398fr169Kna7ooL7pKQkGBsbq1w3btw4dOrUCaampmjcuLE8YAXygsz79+9j6tSp6Ny5Mzp06KB2UCeRSJTaJztf6vZDUXWocvLkSYV+OHnyJHbs2KGUp443b95gzZo1WLp0qVJgJH33B0XWZgCoVq2aUh2q2q/pMeUvB+Q9M+rn54eHDx9i6tSp6Nq1K+bOnauyDXXr1kViYmKxdTNWaUilgGwGhoKBnWx5/nydmK+Og7pKKhCBiEEMpIUMeZdCimhEI7CMXy2TkpICf39/zJ07V+X/xvM/xJ2cnIzjx4/DxcUFLi4u8PLyKrb+5cuX4+uvv4aZmfIVxnPnzmHo0KGYPn06fvvttyLrEYvF8PX1hbu7O/r06QNbW1uFq2cFWVpaKuyzZ8+eyM3NxePHj+V5u3fvxvjx4zF79mw8e/ZM6a0jsbGx2LlzJ0aNGoVff/0VM2fOBAA8evQIvXr1Uijbq1cvpKamKlwdzC8uLg6XLl3CpEmTMGnSJJw7dw4vX74EALx8+RKxsbFo2rQpnj17ppAiIyOLPC+FOXjwIDp27IguXbpg9OjRCkGWTMGAsUePHggLCyu0zrt376Jt27Yq18XExCA8PBzJyckq18uu8k6fPh3nzp1DbGysfF12dnaxV15VKUk/qOPt27cKfZCWlobk5GSFvLdv36pd39atWyGVSpWm8ZEFSvm/pzY2NiVud0FF9W+3bt2gp6eHr776CkFBQXjy5In8Smp+1atXR7NmzarUlDOMAQB8fIDRo4GCvytiY/PyfXy0064COKirpKSQwv3dq2UKBnay5fmYX2jQVxpubm4QiUS4efMmPv30UzRv3hytW7fGvHnzlG7h7N69G87OzmjTpg327dtXbN0XL15ESEhIobdZAwICMGTIEDg7Oxc6fYqzszOmT5+Odu3awdraGlOmTEFGRoZ8rjRVxGIx9u3bh44dO6J3797YsmULDh8+rPAOYH9/f7x58wbff/+9UoC6ceNGDBgwAE2aNEHnzp3h6OiI0NC8qWY8PDxgYWGBrVu3olWrVhg+fDiWL1+ODRs2FHmly9vbG+PHj8eYMWPwxx9/KKxbtmwZFi9ejC+++AItWrRA+/btMW3aNCxYsKDQ+ooSGRmJK1euwNPTE3p6ejhx4oRSmTFjxsDFxQUtWrTAsmXL0L179yKDa39/f7Rr105p3kF1eHt7w9zcHDNnzlS6ZR8ZGSl/M0y9evWURsoWpqT9UNGysrKwdOlSfPHFFwr5T58+RXR0NJYtW4YWLVpg8ODB+Oqrr8psvx999BEWLlyIFi1awM3NDWPGjMHmd9M4PHv2DNWqVcO8efNgZWWFyZMnY86cOUp19OjRA1lZWSpHbzNW6fn4AE2aAH36ABMm5P1rba0zAZ2M9h9CrILJzc2NQkJCKDQ0tFwGSsiSE5woBjEKT2tGIYqcoNkM15qmhg0b0tatW+WDGGJiYuj48ePyh7rzp4iICPrnn3+U8guOfpWlCRMmkFgspsaNG8u3LzjbvZ2dHaWmpio87C1LI0aMoGvXrtHr168pLS2Nrl69SsOGDSv0WGQP3s+ZM4diY2MpIyODjh49SnXq1FEqu3z5cqVRvQBoy5Yt9OTJE8rMzKSEhATat28f1a1bV77e3t6ebty4QWKxmJ4/f05r1qxReEhW1RslateuTZmZmUoPuec/T3fu3CGxWEyvXr2iCxcuqDWApbA3Sri6uhIR0d69e5W2ISJydXUlf39/yszMpIiICBo3blyx+7p69SrNmjWr2H3Ljjf/8r59+ygpKYn09fUV8vX19enIkSOUnJxMRCQf9Uyk/EaJlJQU+fqS9oOPj4/CG2iKS6UZKCFLQqGQHj58qDBQAgD16tWL7t+/TxkZGXTx4kUaNWqU0kCJgnWpGlhS8GcvIiKCfvjhB/rrr7/o7du3FB8fT1988YXCNvPnz6e4uDhKT0+nU6dO0eTJk5UGbuzYsUPlz2T+/ueBEuWbeKCE7ice/VqJU0W8JqwWaskDuoEYWObTmJQmGRgYUEpKCjlp+BqVsk7FjX5VNZpSVdq1axedOHFC6+e1opOqgEmd9Mknn1BISEiRr44qrI/OnDlDmzdv1vqxcyq6n2TJxMSEkpKSqEmTJoVuy0Fd+ScO6nQ/lWdQp/6T40xn5b/FGojAcrnlqimBQICGDRviq6++wps3b9R+UFxXffDBB/jwww8xadIkjBgxQtvNqTROnTqFFi1awNzcXOG5uKIYGxtjwIABcHR0VJoAl+kua2truLm5lfi5TsZY6XFQVwVkIAMCCIovWIEsLS0RGRmJmJgYTJs2rdxfSVXeTpw4ge7du2Pnzp04d+6ctptTpMWLFxf6TGJgYCAGDx5coe0pbrRyQXfu3IGxsTG++eYbhYEqTLfdunULt27d0nYzGHuvcVDHykVUVJTC1Au6bPny5Vi+fHmRZfr27VtBrSm9HTt2KM0xJ5OZmVmiOiuyL/kVU4wxVjIc1JUTNzc3zJ07V625oBgrSykpKUhJSdF2MxhjjFUwjjjKSXlPPswYY4wxlh8HdYwxxhhjVQAHdYwxxhhjVQAHdYwxxhhjVQAHdYwxxhhjVQAHdeXEzc0NISEhuHnzZvnvrBqAZe9StfLfHWOMMcZ0Dwd15YRHv1YtAQEB2LhxY7nV7+DgACJC7dq1y20f+Xl5ecGngl5CvWLFCuzcubNC9qUOKysrEBE6depUqnrWrVsnf+E9Y+z9IIQQDnDAeIyHAxwg1LEwSrdaw0om/7ywlgWWy0mDBg2wZcsWPHv2DGKxGNHR0Th58iQcHR3VrsPLy+vdG2sJEokEUVFR8PDwQJ06dRTKRUREwN3dXSFv/fr1SE1NlU8KHBAQAGdn51If1/vC3d0d06ZNK/f91K9fH+7u7li9erU8T9bv33zzjULZIUOGgIjKvU1l5ZdffoGLiwuaNGmi7aYwxiqAE5wQiUhcwAX8iT9xARcQiUg4wUnbTZPjoK6yawMg/+sxpwCY/y6/nFhZWeH27dtwdHTEokWL0KFDBwwaNAgBAQHYtm2bRnWdOnUKDRs2RJMmTTBjxgwMGzYMHh4ehZYXCoXw9PTE1KlT4ejoiICAgNIeznspNTUVb968Kff9fPbZZ7h27RqioqIU8jMzM/HNN98oBfCVSWJiIs6cOYM5c+ZouymMsXLmBCccxVGYw1wh3xzmOIqjOhPYcVBXmbUBMBaAUYH8D97ll1Ng5+HhASJC9+7d8ffff+PJkyd49OgRNm7ciB49egAAPD094evrq7CdSCRCfHw8XFxc5HlZWVlISEhAXFwczp49i0OHDmHAgAEq96uvr48jR46gf//+sLe3R1BQUKFtXLp0KaKioiAWixEXF4e1a9cWWfbu3buYPHkyIiIi8Pr1a/z555+oVauWQjk9PT1s3boVKSkpSEpKwsqVKxXWu7q64vHjx8jMzMSLFy9w5MgRhbZv3rwZCQkJyMzMRGBgILp166ayPR988AEyMjIwcOBAhXwnJye8ffsWhoaGAIBGjRrhr7/+QnJyMpKSknD8+HFYWVkVepz55b/9OmvWLMTGxiq9CuzEiRPYu3evwjmaNWsWoqOjkZ6ejsOHDxd7u3j8+PE4efKkUv65c+fw4sULLF68uNBtZfvMz93dHREREUrHsXjxYrx48QIpKSn48ccfIRKJ8Msvv+DVq1eIiYlR+M7JtG7dGleuXEFmZiYePnwIBwcH+TqhUIjdu3cjPDwcGRkZCAsLwxdffKFUx8mTJzFhwoQizwFjrHITQojN2Cz/XHAdAGzCJp24Fav9FrCSEQAYlO9zwXV4t76Mb8UaGxtj0KBB2LZtGzIyMpTWy67+7N69G4MGDULDhg3l6wYPHoxatWoV+l5Sa2trDBo0CBKJRGldrVq18O+//6Jdu3b46KOPEBYWVmgbR40ahQULFmD27Nlo0aIFRo4ciZCQkCKPq1mzZhg5ciSGDh2KoUOHwsHBAd9++61CGWdnZ+Tk5MDW1hZffPEFFixYgBkzZgAAunbtii1btuDHH39Eq1atMGjQIFy6dEm+7S+//IJRo0bB2dkZXbp0wdOnT+Hv7w9jY2OltqSmpuLff//FpEmTFPInTpyIEydOID09HQYGBggICMDbt29hb2+P3r174+3btzh9+jSqVdNstMyRI0dgYmKi8H7bOnXqYODAgfD29pbnNW/eHGPHjsWwYcMwaNAg2NjYFHlltk6dOmjfvr3K4Ds3NxdLlizBvHnzYG5urmJr9Tk6OqJRo0awt7fHl19+ieXLl+Off/5BSkoKbG1tsWPHDuzYsQONGzdW2G7dunX49ddf0blzZ1y9ehUnT55E3bp1AeQFdbGxsRg7dizatm2LFStWYPXq1RgzZoxCHTdv3oSlpSUsLS1LdQyMMd1lBztYwKLQoE0IISxhCTvYVXDLVCNO5ZeMjIyIiMjIyEhpnZWVFe3fv5+srKw0r7sJCMvUSE3K9ng+/PBDIiIaOXJksWUfPnxICxculC8fO3aM9uzZI1/28vIiiURCaWlplJGRQTLz589XqCciIoLEYjElJiaSqalpsftdsGABhYWFkZ6enjyvdu3ahZZfunQpvX37lmrVqiXPW7t2LV27dk2+HBAQQCEhIQrbrVmzRp7n5OREr1+/VqhDlmrWrElZWVk0YcIEeZ6enh7FxsbS119/TQDIwcGBiEjezpEjR1JqaioZGBjIv0cZGRn0ySefEABycXGh0NBQhf1Uq1aN0tPTqX///sWeIy8vL/Lx8ZEvHz9+nHbv3i1fnjlzJj1//pyEQqH8HEkkEjI3N5eXGThwIOXk5FCDBg1U7qNTp05ERNS4ceNC93316lX5fidOnEiU91CdfJ93795V2Nbd3Z0iIiIU6oqIiCCBQCDPCw0NpYsXL8qXhUIhpaWl0bhx4+Q/d0REixYtkpcRiUQUHR2t8H0tmH777Tc6cuSIQp7s59ve3r5Mf850ORX1s1RcKtXvPE5qJZFIREOHDiWRSKT1tlSVNB7j3z39XXQaj/Fl0kdFxQ3FJb5SV1nVKr6IRuXUJLtFp84D7bt375bf9jI1NcWQIUOwZ88ehTIBAQGwsbGBra0ttmzZgtOnT2Pr1q1KdZ05cwaGhoZYsmRJsfs9cuQIDAwMEB4ejl27dmHkyJEQiURFbhMZGYm3b9/Kl+Pj41G/fn2FMtevX1dYvnbtGlq0aAGhUIizZ88iKioK4eHh2L9/PyZOnAgDAwMAeVcB9fX1ceXKFfm2OTk5uHnzJtq0UX2P/N9//0VOTg6GDx8OIO/qY1paGs6cOQMg78pg8+bNkZaWJk/JycmoUaMGmjVrVuw5Ksjb2xujRo2Cvr4+AGDSpEn466+/IJVK5WWio6MRFxencPwikQitWrVSWafs+MVicaH7/eabb+Ds7FzoeVBHSEiIwvcxISEBwcHB8mWpVIpXr14p9ee1a9fkn3NzcxEUFKTQjtmzZ+PWrVt4+fIl0tLSMHPmTKUrcpmZmQCAmjVrlrj9jDHdFo/4Mi1Xnjioq6zeFl9Eo3JqevLkCaRSqVp/hPfv34+mTZuiR48emDx5MiIjI3H58mWFMunp6Xj27BmCg4Ph7u6O6tWrY+nSpUp1nT9/HsOHD8esWbOwZcuWIvcbGxuLVq1aYe7cucjMzISHhwf8/Pygp6dX6DYFb/kSEYRC9X883r59iy5dumDChAmIj4/HihUrcP/+fdSuXbvQQFggEBQaHEskEhw9ehQTJ04EkHfr9dChQ8jNzQWQd3vw9u3bsLGxUUgtW7bEwYMH1W63jK+vL4RCIYYMGYLGjRvDzs4Of/zxR5HbyNpe2DEkJSUBgMpbzDKBgYHw9/dXGB0rI5VKlZ7zU3VrWVXflbQ/ZccyZswYbNy4EXv27MGAAQNgY2MDLy8vedArI7tdm5iYWGzdjLHKKRCBiEEMpJCqXC+FFNGIRiACK7hlyjioq6yiALxB3gVXVejd+qhC1pdQSkoK/P39MXfuXJVXJ/I/OJ+cnIzjx4/DxcUFLi4u8PLyKrb+5cuX4+uvv4aZmZnSunPnzmHo0KGYPn06fvvttyLrEYvF8PX1hbu7O/r06QNbW1t06NBBjSMsnGwQSP5lWZAL5F3tOX/+PL755ht07NgRTZo0gaOjI54+fYqsrCz07t1bvq2enh66deuG0NDQQvfn7e2NQYMGoW3btujbt6/C82137txBixYt8PLlSzx79kwhpaamanxsYrEYx44dw6RJkzBhwgQ8fvwYd+7cUShjaWmp0C89e/ZEbm4uHj9+rLLOZ8+e4c2bN2jbtm2R+/72228xbNgwpTkdExMTFZ7JBAAbGxsNjqpo+ftTJBKha9eu8mc17ezscPXqVWzfvh337t3Ds2fPVF4Bbd++PbKzs4t9ZpMxVnlJIYU73OWfC64DgPmYX2jQV5E4qCsn5f5GCQJwOt/nguvwbn3xd0k15ubmBpFIhJs3b+LTTz9F8+bN0bp1a8ybN0/hlhaQdwtWdntt3759xdZ98eJFhISEFHqbNSAgAEOGDIGzs3OhD+k7Oztj+vTpaNeuHaytrTFlyhRkZGQoTauhKQsLC/z6669o2bIlxo8fj3nz5sknnx0yZAjmzZuHTp06wdLSElOnToVQKMT//d//ISMjA9u3b8e6deswcOBAtGnTBr///jtq1qwJT0/PIs9FQkICvL29ERkZiRs3bsjXeXt7IykpCSdOnEDv3r3RpEkT2NvbY9OmTSUeeODt7Y0hQ4Zg+vTpKq/SicVi7Nu3Dx07dkTv3r2xZcsWHD58GAkJCSrrIyKcO3dOIZhV5eHDh/D29sasWbMU8i9cuABTU1MsWrQITZs2hZubGz755JMSHZsqc+fOxciRI9GqVSts27YNxsbG8scDnj59im7dumHAgAFo0aIFVqxYgQ8//FCpDjs7OwQGBhZ5i5kxVvn5wAejMRpxiFPIj0UsRmM0fOCjpZYp4qCunFTIGyVCARwGkFYgP/VdfuEXgUolMjISXbp0QUBAAH799Vc8fPgQZ8+eRb9+/eDq6qpQ9ty5c4iPj4e/vz/i49V73mDDhg2YOXOm0mhFmYsXL2Lw4MGYMmUKtm/frrT+9evXmDlzJq5cuYIHDx6gX79+GD9+PJKTkzU/2Hz2798PAwMD3Lx5E9u2bcPWrVuxa9cu+T4//fRT/PfffwgNDcWcOXMwYcIEPHr0CEDe1ai///4bBw4cwJ07d9C8eXMMHDgQr1+/LnKff/75J2xsbBSu0gF5z3LZ29sjOjoax44dQ2hoKPbs2QMDA4MSXakDgP/++w/Jyclo3bq1ylu4T58+xbFjx+Dn54czZ87g4cOHcHNzK7LOXbt2Yfz48Uq3UQv64YcflMqEhYXBzc0Nc+fOxf3799G9e3esX79e8wMrxLfffotvvvkG9+/fh52dHUaMGIFXr14BAHbs2IFjx47h0KFDuHHjBurVq6dy/sQJEybg999/L7M2McZ0lw980ARN0Ad9MAET0Ad9YA1rnQnoZLQ+sqQqp3Ib/Zo/6eN/o12bgSDQ/nHLkoGBAaWkpJCTk5NW21GaEXucVI9EVTddv36dxo8vflRYZeujwYMHU0hIyHs3ypBHv+p24tGvup949CsrGuX7HF1gWUsEAgHMzMywcuVKvHnzRuUEtOz9MGvWrCIHqVRWhoaGcHFxkQ9eYYwxbat6v2nfRxIAy7TdCEWWlpaIjIxETEwMpk2bxn/4KlhaWsF78v/zySefKI1CLk8PHjzAgwcPKmx/FSX/G0MYY0wXcFDHykVUVFSxz1Gx8lPUKNH8c82pa/ny5Vi+fHkpWsQYY6y8cVDHWBX07NkzbTeBMcZYBeNn6rRINtFpcW87YIyxqkD2u06dN9IwxjTHQZ0WyZ57Kvj6IsYYq4pkv+tKOu0OY6xofPtVi16/fo2wsDCMHTsWycnJyMrK0naTqiwjIyPUqVNH281gReA+qhxK2k/Vq1fH2LFjERYWhjdv3pR9wxhjHNQVp3Hjxjhw4ADq16+PnJwcrFy5EkePHi2TuokIv//+O1atWoXvv/++TOpkqhkYGMhfvs50E/dR5VCafhKLxVizZg3ffmWsnHBQV4ycnBzMnz8f9+/fh6mpKe7cuQM/Pz9kZGSUSf2JiYlwc3NDw4YN+dm6ciISiWBvb49Lly7x1Co6ivuocihNP+Xm5uLFixfIyckpp9YxxtQK6ubNm6dxxV5eXnj79q3G2+maFy9e4MWLFwDyArDk5GTUrVu3zII6IC9wjI2NLbP6mCKRSISkpCRERUVxwKCjuI8qghCAHQAzAPEAAgENX0DO/cSYblMrqNu0aRNiY2PV/iG2sLDAP//8oxNBnZ2dHRYuXIiuXbuiUaNGGDlyJE6cOKFQxtXVFQsXLoSZmRlCQkIwf/58lZOzdu3aFUKhkAMwxlgl4wRgMwCLfHkxANwBHXtvJWOs5NS+/dqtWzckJiaqVVaXRjYZGhri/v378PLywrFjx5TWjx07Fps2bYKbmxuuXLmC2bNn49SpU2jbti1iYmLk5erWrYv9+/djxowZFdl8xhgrJScAqp4DNn+XPxoc2DFWNagV1C1fvlyjq26rV69GcnJyiRtVlk6fPo3Tp08Xuv7LL7+Ep6cnPD09AQALFizAwIED4erqiiVLlgAA9PX14ePjgzVr1uDatWtF7k9fXx/Vq1eXLxsZGQHIu23Bz8xph0gkglAo5POvw7iPygeREFLp5ndLBWewEiLv9usmCIX/QCAo/lYs95Pu4z7SfcX1UWn6Tq2gbsWKFRpV+vPPP5eoMRWtWrVq6Nq1q1J7z5w5g169esmX9+7di//++w9//PFHsXUuXrwYy5YtU8rv378/j+zTEpFIhC5dukAgEPBzQDqK+6h8JCW1x/XrFkWUEAKwRPfuX8HE5GGx9XE/6T7uI91XXB8ZGBiUuG6NR7/WqFEDAoFAHqBYWlrCyckJjx49wtmzZ0vcEG0wMTGBnp4eEhISFPITEhLQsGFDAMBHH32EcePG4cGDBxg5ciQAYMqUKXj4UPUvwDVr1mDDhg3yZSMjI8TFxeHs2bNFvmSdlR+RSAQiwunTp/mXnI7iPiofUukHapW7cSMaQuGpYstxP+k+7qPyRQICLAGqRRC8FQDRgIA0e895cX0ku8NXEhoHdSdOnMCxY8ewc+dO1K5dGzdu3IBEIoGJiQm+/PJL7Nixo8SN0ZaCcyYJBAJ53pUrVzS6FJqdnY3s7Gy4ublh7ty5EArzbnnk5ubyD5gWSaVS7gMdx31UHuLUKkUUp/Z5537SfdxH5aQNgEEAauctEgh4A+A0gFDNqiqqj0rTbxq/JqxLly4IDAwEAIwePRoJCQmwsrLC1KlT8cUXX5S4IdqQlJSEnJwc+VU5mfr16ytdvdOUh4cH2rVrh+7du5eqHsYYK7lA5I1yLex5OSmA6HflGGOFagNgLICCF78/eJffpsJbpJLGV+pq1qwpv404YMAAHDt2DESE69evw8rKSq069PX10b17dzRp0gQ1a9ZEYmIi7t69i8jISE2bUyoSiQS3b99G//79cfz4cXl+//79laY9YYyxykeKvGlLjr77LCywDgDmQ9P56hh7rwiQd4VO9rngOnq3PuzdZy3SOKh7+vQpRo4cCR8fHwwcOBAbN24EkHd1q7ipTHr27Il58+Zh5MiR0NfXx+vXr5GZmYm6deuievXqCA8Px65du7Bjx44ym+PO0NAQzZs3ly9bW1ujU6dOSE5ORkxMDDZs2IADBw4gKCgI165dw6xZs2BpaVnq28gFb78yxph2+CBv2pKC89TFIi+g4+lMdIZQCNjZAWZmQHw8EBgISDng1joryG+5qiR4t94KQGRFNKhopEkaNWoUZWVlUU5ODvn7+8vzv/32W/Lz8yt0u+PHj1NcXBytW7eO7OzsyMDAQGG9tbU1TZ06lU6dOkXPnz+njz/+WKN2FZYcHBxIFS8vL3kZV1dXioiIILFYTEFBQWRnZ1cm+wZARkZGRERkZGRUZnVy0iyJRCIaOnQoiUQirbeFE/eR9pKQAAcCxr/7V8j9pEvJyYkQHU0g+l+Kjs7L5z7SbmoPwjI1Uvuy6aPSxA0aX6n7+++/YWlpCTMzM9y/f1+ef/78efj4+BS63ZkzZzBmzBhIJBKV6yMiIhAREYH9+/ejbdu2aNSokaZNU+nixYsQCIoembJ9+3Zs3769TPbHGGO6SQrgorYbwVRxcgKOqpgg2tw8L3/0aKCIv6+snKl741D7L9HSfKAEkDflx7179xRGjd66dQv/93//V+g2Hh4ekEgkEAqFsLe3R506dQot++jRI5w7d64kTdMZbm5uCAkJwc2bN7XdFMYYY7pKKAQ2b/7f54LrAGDTJuV1rOJEIW+UKxWynt6tj6qwFhVK4yt11atXx7x589C3b1/Ur19f6Zmxrl27Frm9VCqFv78/2rRpg9evX2u6+0rDw8MDHh4eMDIy0qnXpjHGGNMhdnaARRETRAuFgKVlXrmLfKVVKwh505aMffdZUGAd3q0vLOirQBoHdXv27EH//v1x9OhR3Lx5U2mON3UEBwejadOmFT7alTHGGNMpZmZlW46Vj1AAh6EwTx0AIBUlmqeuvGgc1A0ZMgSDBw/G1atXS7zT7777DuvXr8cPP/yA27dvIz09XWF9VXjzAo9+ZYwxVqz4+LItx8pPKPKmLbECUAt5z9BFQSeu0MloHNTFxcWVOug6ffo0AODkyZMKV/pkb3LQ09O4WTqHb78yxhgrVmAgEBOTNyhC1UUAqRSIjc0rx7SPoBPTlhRG4+jpq6++wtq1azFnzhxER0eXaKd9+/Yt0XaMMcZYlSKVAu7ueaNcpVLFwE42R938+TxfHVOLxkFdUFAQatSogfDwcGRkZChNUVKvXr1i67h06ZKmu2WMMcaqJh+fvGlLNm9WHDQRG5sX0PF0JkxNGgd1f/75J8zNzbFkyRIkJCSUaKAEAPTu3RuzZ89G06ZNMWbMGDx//hyTJ09GREQErly5UqI6GWOMsUrJxwc4cYLfKMFKReOgrlevXujZsycePHhQ4p1++umnOHDgALy9vdGlSxdUr14dAGBkZIQlS5ZgyJAhJa5bV/BACcYYYxqRSnnaElYqGkccYWFhMDAwKNVOv//+e8yZMwezZs1SuH179epVdOnSpVR16woPDw+0a9cO3bt313ZTGGOMMfYe0Dio+/bbb/Hrr7/CwcEBdevWhZGRkUJSR6tWrVQ+V5eamlrkmyYYY4wxxphqGt9+lU1Hcv78eYV8TaYjiY+PR/PmzREVpfhOjd69eyM8PFzTJjHGGGOMvfc0DurKYjqSnTt3YvPmzZg+fTqICI0aNULPnj2xfv16rFixotT1M8YYY4y9bzQO6spiOpJ169ahdu3aCAgIQI0aNXDp0iVkZWVh/fr12LZtW6nr1wU8UIIxxhhjFUmtiKNDhw4QCATFF3ynbdu2EIlERZb5/vvvYWJigu7du6NHjx4wNTXFjz/+qPY+dB0PlGCMMcZYRVIrqLt7965akwrLXLt2DZaWloWu9/T0RK1atZCZmYnbt2/j1q1bSE9PR82aNeHp6an2fhhjjDHGWB61br8KBAKsXLkSGRkZalWqr69f5HpnZ2d8++23ePv2rUK+gYEBpk6dis8++0yt/TDGGGOMsTxqBXWXLl1Cq1at1K702rVryMzMVMo3MjKCQCCAQCCAkZERxGKxfJ1IJMLgwYPx8uVLtffDGGOMMcbyqBXUlcWIVwB4/fo1iAhEhMePHyutJyIsXbq0TPbFGGOMMfY+0Xj0a2n07dsXAoEA//33H0aNGoXk5GT5uuzsbERFRSE+Pr4im1RuePQrY4wxTQghhB3sYAYzxCMegQiEFPzuV6a+Cg3qZNOhWFtbIzo6WmUZCwsLxMTEVGSzyoWHhwc8PDxgZGSE1NRUbTeHMcaYDnOCEzZjMyxgIc+LQQzc4Q4f+GixZawy0cplpPDwcJiamirl161bFxEREVpoEWOMMaYdTnDCURyFOcwV8s1hjqM4Cic4aallrLLRSlBX2Jx3tWrVUhg8wRhjjFVlQgixGZvlnwuuA4BN2KS0jjFVKvT266+//gogb0DEihUrFKZIEYlEsLW1xb179yqySYwxxpjW2MFO4ZZrQUIIYQlL2MEOF3GxAlvGKqMSBXWTJ0/GnDlzYG1tjZ49eyI6Ohru7u6IiIjAyZMnC92uc+fOAPKu1HXo0AHZ2dnyddnZ2bh//z7Wr19fkiYxxhhjlY4ZzMq0HCtfQgB2AMwAxAMIBHRqKIvGQd2cOXOwYsUKbNq0Cd999538dWCvX7/G/PnziwzqHB0dAQB79uyBu7s70tLSSthsxhhjrPKLh3ozPqhbjpUfJwCbAYXrqjEA3AGdGcqi8U36efPmYebMmVi9ejVyc3Pl+UFBQejQoYNadUyfPh1paWlo1qwZBgwYgBo1amjaDMYYY6zSC0QgYhBT6NQlUkgRjWgEIrCCW8bycwJwFCgwlCVv+ei79bpA46DO2toad+/eVcrPysqCoaGhWnUYGxvj3LlzePz4Mfz8/GBmlndZeffu3Xz7lTHG2HtDCinc4S7/XHAdAMzHfJ6vTouEwLuhLMpBk2x5k4p12qBxGyIiImBjY6OU/8knn+DRo0dq1bFp0yZIJBJYWloqDJY4dOgQBg0apGmTGGOMsUrLBz4YjdGIQ5xCfixiMRqjeZ46LbND3i3XwgImIQDLd+W0TeNn6tatW4dt27ahRo0aEAgE6N69OyZMmIDFixdjxowZatUxYMAADBw4EHFxil/gJ0+ewMrKStMm6SR+owRjjDF1+cAHJ3CC3yihg9QdoqILQ1k0Dur27t0LPT09/PLLL6hZsyYOHjyIuLg4uLu749ChQ2rVYWhoqHCFTsbExARZWVmaNkkn8RslGGOMaUIKKU9booPUHaKiC0NZSnQZaffu3WjSpAnq16+Phg0bwtLSEnv27FF7+0uXLmHq1KnyZSKCQCDAwoULERAQUJImMcYYY4yVuUDkjXIt7JqpFED0u3LaVqrJh1+9elWi7RYuXIgLFy6gW7du0NfXxy+//IJ27dqhbt26+Oijj0rTJMYYY4yxMiNF3rQlR999FhZYBwDzoRvz1Wl8pa5u3br47bffEBISgsTERLx69UohqSM0NBQdO3bEzZs3cfbsWRgaGuLYsWPo3LkzwsPDNT4IxhhjjLHy4gNgNFBgKAsQ+y5fV4ayaHyl7o8//kCzZs3g6emJhIQEEFGJdpyQkIBly5aVaFvGGGOMsYrkA+AEqtgbJXr37o3evXvjwYMHZdKAmjVrYty4cTAwMMCZM2fw9OnTMqmXMcYYY6wsSQGdHsqi8e3XsLAwGBgYlGhnFhYWuHDhAlJTU3HmzBlYWFjgzp072L17N7Zu3Yp79+7Bzk4XZnphjDHGGKtcNA7q3NzcsGrVKtjb26Nu3bowMjJSSEVZv3499PX14erqioyMDPj7++PJkycwMzNDgwYN4Ofnx7dkGWOMMcZKQOPbr69fv0bt2rXx33//KeQLBAIQEfT0Cq/S3t4ew4cPx61bt+Dn54ekpCRMnz4dL1++BAD89NNPOH/+vKZNKnfHjh1Dnz59cP78eYwZM0bbzWGMMcYYU6JxUOft7Y3s7GxMnDhR44ESpqamiIqKAgCkpKQgIyMDCQkJ8vUvXryAsbGxpk0qd1u2bMGePXvg7Oys7aYwxhhjjKmkcVDXvn17dO7cGY8fP9Z4Z7KreTIlHTlb0S5cuAAHBwdtN4MxxhhjrFAaB3VBQUGwsLAoUVAHACtWrJC/IkxfXx/fffcd3rx5AyBvJGxZs7Ozw8KFC9G1a1c0atQII0eOxIkTJxTKuLq6YuHChTAzM0NISAjmz5+Py5cvl3lbGKuahNDtQf6MMfZ+0Dio27p1KzZv3ox169YhODgYEolEYX1wcHCh2166dAmtWrWSL1+9ehVNmzZVKlOWDA0Ncf/+fXh5eeHYsWNK68eOHYtNmzbBzc0NV65cwezZs3Hq1Cm0bdsWMTExZdoWxqoeJwCbAVjky4tB3vzrujIdJ2OMvR80DuoOHToEAArvepW9u7W4gRJ9+/YtQRNL5/Tp0zh9+nSh67/88kt4enrC09MTALBgwQIMHDgQrq6uWLJkSUU1k7FKyAl5L84pyPxdvi7Ns84YY1WfxkGdtbV1ebRDK6pVq4auXbvi559/Vsg/c+YMevXqVaI69fX1Ub16dfmybJoXkUgEkUhU8sayEhOJRBAKhXz+yxCREFLp5ndLBWdGEiLv9usmCIX/QCAo/lYs91HlwP2k+7iPdF9xfVSavtM4qIuOji7xznSNiYkJ9PT0FEbgAnmvMGvYsKF8+fTp0+jSpQsMDQ0RExMDJycnBAUFqaxz8eLFKufa69+/PzIzM8u0/Uw9IpEIXbp0gUAgQG5urrabUyUkJbXH9esWRZQQArBE9+5fwcTkYbH1cR9VDtxPuo/7SPcV10clfcEDoGZQN2zYMJw6dQo5OTkYNmxYkWV9fX1L3BhtKTgKt+Ao3UGDBqld15o1a7Bhwwb5spGREeLi4nD27FmkpaWVvrFMYyKRCESE06dP8y+5MiKVfqBWuRs3oiEUniq2HPdR5cD9pPu4j3RfcX1U3IsciqJWUHf8+HE0bNgQiYmJOH78eKHlinumTtckJSUhJydH4aocANSvX1/p6p26srOzkZ2dDTc3N8ydOxdCYd6tqdzcXP4B0yKpVMp9UKbi1CpFFKf2Oec+qhy4n3Qf95HuK6qPStNvar0mTCQSoUaNGvLPhaXKFNABgEQiwe3bt9G/f3+F/P79++Pq1aulqtvDwwPt2rVD9+7dS1UPY7opEHmjXAt7Xk4KIPpdOcYYYxVB7Xe/RkREwNTUtEx2OnDgQHz00UfyZTc3N9y9exfe3t6oU6dOmexDxtDQEJ06dUKnTp0A5A306NSpEyws8p4H2rBhA2bMmAEXFxe0bt0aGzZsgKWlJXbs2FGm7WCsapEib9oS2eeC6wBgvop1jLFCCQA0AdD+3b8CbTaGVUZqB3UCQdl9u9atW4cPPsh7Jqd9+/b49ddf4efnh6ZNmyo8j1YWunXrhnv37uHevXsAgI0bN+LevXtYsWIFAODw4cOYP38+fvzxR9y7dw/29vYYPHhwqQeEuLm5ISQkBDdv3iztITCmo3yQN21JwVuxseDpTHSQUAg4OADjx+f9K1T71z+rCG2Q9/+gacj78Zn2brmNthrEKiOt3C+1trbGo0ePAACjRo3CP//8g++++w6dO3eGn59fme7r4sWLxQak27dvx/bt28t0vx4eHvDw8ICRkRFSU1PLtG7GdIcPgBPgN0roOCcnYPNmwCLfiOWYGMDdHfDh4Fvr2gAYqyL/g3f5hwGEVmiLWCWlUVA3Y8YMvH37tsgyW7duLbae7Oxs+SvBPv74Y+zfvx8AkJycLL+CxxirLKQALmq7EawwTk7AURWTRJub5+WPHs2BnTYJAAzK97ngOnq3PuzdZ8aKoFFQN2fOnCJHZRCRWkHd5cuXsWHDBly5cgXdu3fHuHHjAAAtW7ZEbGysJk3SWQVHvzLGWIUTCvOu0Mk+F1wnlQKbNgEnTuR9ZhXPCkDtItYL3q23AhBZEQ1ilZlGQV23bt2QmJhY6p1+/vnn8PDwwOjRo+Hq6ornz58DAD755JMiX+lVmfDtV8aY1tnZKd5yLUgoBCwt88pd5KutWlGrjMux95raQV3BCXpLIyYmRuUkxl9++WWZ7YMxxt57ZmZlW46VvaKfaNK8HHuvqR3UlXb0q5GRkfyNCsXNllwV3rzAt18ZY1oXH1+25VjZiwLwBnmDIlT9mSUAqe/KMVYMtYO65cuXFztIoigpKSkwMzNDYmIiXr9+rfLKn+z1XJVtEmNV+PYrY0zrAgPzRrmam6uewkQqBWJj88ox7SAAp5E3ypWgGNjJ/kyeBg+SYGpRO3qSzetWUo6OjkhOTgYA9O3bt1R1McYYU4NUmjdtydGjeZ/zB3aygRHz5/MgCW0LRd60JYOgOGgiFXkBHU9nwtRUYZfELl26pPIzY4yxcuTjkzdtScF56mJj8wI6ns5EN4Qib9oSK+QNiniLvFuufIWOaaDy3+dkjDFWNB+fvGlL7OzyBkXEx+fdcuUrdLqFwNOWsFLhoK6c8EAJxphOkUp52hLGqrgSRRwikQj9+vXDrFmzUKtW3uQ5ZmZmMDQ0LNPGVWYeHh5o164dunfvru2mMMYYY+w9oPGVOktLS5w+fRqWlpaoXr06zp49i7dv32LRokWoUaMGXF1d1arj5cuXEIvFJWo0Y4wxxhhTpPGVus2bNyMoKAjGxsbIzMyU5/v4+KBfv37Fbi8QCPDkyRM0btxY010zxhhjjLFCaHylrnfv3vjoo48gkUgU8qOiomBubl7s9kSEJ0+eoF69enj69Kmmu2eMMcYYYypofKVOKBRCJBIp5Tdu3FjtN0EsWrQI69atQ7t27TTdfaXh5uaGkJAQ3Lx5U9tNYYwxxth7QOOg7uzZs5g/f758mYhgaGiI5cuXw8/PT606/vjjD3Tv3h33799HRkYGXr16pZCqAh4owRhjjLGKpPHt1wULFiAgIAAhISGoUaMGDh48iBYtWiApKQkTJkxQq478QSFjjDHGGCs9jYO6+Ph42NjYYMKECejSpQuEQiE8PT3h7e2t9mjW/fv3a9xQxhhjjDFWuBJNPiwWi+Hl5QUvL68S77hp06ZwcXFBs2bN4O7ujsTERAwcOBAxMTF49OhRietljDHGGHsfaRzUDRs2TGU+EUEsFuPp06eIjIwssg57e3ucOnUKV65cgb29Pb777jskJiaiY8eOmDFjBsaMGaNpsxhjjDHG3msaB3XHjx8HEUEgECjky/KICJcvX8bIkSPx+vVrlXX8/PPP+P7777Fx40akpqbK8wMCAuDu7q5pk3QSvyaMMcYYYxVJ44ijf//+uHXrFvr374/atWujdu3a6N+/P27evImhQ4fC3t4e9erVw/r16wuto0OHDvDx8VHKT0xMRL169TRtkk7i0a+MMV0ihBAOcMB4jIcDHCAs2VsiGWM6TOMrdZs3b8asWbNw7do1ed5///2Hr7/+Grt27UL79u0xf/587Nmzp9A6Xr9+DTMzM6XbtJ07d0ZcXJymTWKMMVYEJzhhMzbDAhbyvBjEwB3u8IHyf7AZY5WTxv9Va9asmcItU5nU1FQ0bdoUAPDkyROYmJgUWsfBgwexdu1aNGjQAEQEoVCIXr16Yf369TwyljHGypATnHAUR2EOxTf+mMMcR3EUTnDSUssYY2VN46Du9u3bWLdunULQZmJigl9++QW3bt0CALRo0QKxsbGF1vHdd98hOjoacXFxqFWrFh49eoRLly7h6tWr+Omnn0pwGIwxxgoSQojN2Cz/XHAdAGzCJr4Vy1gVofHt188++wwnTpxAbGwsYmJiQESwtLREeHg4RowYAQCoVasWVq5cWWgdOTk5mDx5Mn788Ud07twZQqEQd+/e5XfBMsZYGbKDncIt14KEEMISlrCDHS7iYgW2jDFWHjQO6h4/fow2bdpg4MCBaNmyJQQCAcLCwnD27FkQEQDgxIkTRdbRvHlzPH36FOHh4QgPDy9ZyxljjBXJDGZlWo6VLyEAOwBmAOIBBAKQarVFrLIp0eTDAODv7w9/f/8Sbft///d/iI+Px8WLF3Hx4kVcuHABjx8/LmlTGGOMqRCP+DItx8qPE4DNgMJ11RgA7gAPZWFqK1FQV7NmTTg4OMDS0hL6+voK67Zu3Vrs9mZmZnB0dISDgwMWLFiA7du3IyEhQR7g7dy5syTNYowxlk8gAhGDGJjDXOVzc1JIEYtYBCJQC61jMk4AjqrIN3+XPxoc2DH1kSbJxsaGnj9/Tq9fvyaJREIJCQmUm5tLaWlp9OzZM43qkqVmzZqRl5cXZWdnU05OTonq0NVkZGRERERGRkZab8v7mkQiEQ0dOpREIpHW28KJ+6iikxOcKBe5lItcIpA8yfKc4MT9pMUkBCgaoFyASEXKBSjqXTnuo6qRiuuj0sQNGg952rhxI3x9fVG3bl1kZmaiR48esLKywu3bt/H111+rVYehoSEGDhyINWvW4OrVqwgODkbHjh2xdetWfPrpp5o2SSe5ubkhJCQEN2/e1HZTGGPvMR/4YDRGIw6Kc4DGIhajMZrnqdMyO+Tdci3sj7EQgOW7cowVR+PbrzY2Npg9ezakUilyc3NRvXp1REREYNGiRdi3b5/KN0UUlJKSguTkZBw4cAA//fQTLl++rHLuu8rMw8MDHh4eMDIyqnLHxhirXHzggxM4ATvYwQxmiEc8AhEIKT+Gr3XqDlHhoSxMHRoHdRKJRD7KNSEhAZaWlggLC8ObN29gaWmpVh3//vsvevfujSlTpsDCwgKWlpa4cOECwsLCNG0OY4wxNUgh5WlLdJC6Q1R4KAtTh8a3X+/evYtu3boBAAICArBixQpMnDgRmzZtQnBwsFp1ODk5wdTUFP3798fly5fRr18/XLhwAfHx8fjzzz81bRJjjDFWKQUib5RrYddMpQCi35VjrDgaX6lbsmQJjIyMAAA//PAD9u3bh+3bt+Pp06dwcXHRqK7g4GCIRCJUq1YN1atXx6BBg6rMM3WMMcZYcaTIm7bk6LvPwgLrAGA+eL46ph6Ng7rExESEhIQAAJKSkjBkyBCNdzp//nz06dMHdnZ2MDIywr1793Dx4kXs3LkTly5d0rg+xhhjrLLyQd60JQXnqYtFXkDHQ1mYujQK6gQCAZ48eYJ27dqV6pVekyZNwoULF/D777/j0qVLSEtLK3FdjDHGWGXnA+AE+I0SrHQ0CuqICE+ePEG9evVKFdR9+OGHJd6WMcYYq4qkAA9lYaWi8e3XRYsWYd26dXB1dZXfhi2J2rVr47PPPkObNm1ARAgNDYWnpydP/8EYY4wxVgIaj379448/0L17d9y/fx8ZGRl49eqVQlJH165d8ezZMyxYsAB169aFiYkJFixYgGfPnqFz584aH0R5GzJkCMLCwvD48WN89tln2m4OY4wxxpgSja/UzZ8/v9Q73bhxI06ePImZM2ciNzcXACASibB7925s2rQJDg4Opd5HWRGJRNiwYQP69u2L1NRU3LlzB8eOHUNKSoq2m8YYY4wxJqdxULd///5S77Rbt24KAR0A5Obm4pdffkFQUFCp6y9L3bt3R0hICJ4/fw4A8PPzw8CBA/HXX39puWWMMcYYY/+j8e1XAGjatClWrlyJgwcPwtTUFAAwcOBAtG3bVq3tU1NTVb59wsLCosxHwtrZ2eHkyZOIi4sDEWHEiBFKZVxdXREeHo7MzEwEBQWhd+/e8nWNGjVCXNz/3pkYGxsLc3PzMm0jY4wxxlhpaRzU2dvbIzg4GLa2tvj0009Rq1YtAEDHjh2xfPlyteo4dOgQPD09MXbsWDRu3Bjm5uYYN24cdu/eXeZvlDA0NMT9+/fx+eefq1w/duxYbNq0CatWrULnzp0RGBiIU6dOwcIib7YggUCgtI3sNWmsIggBOAAY/+7fEv0/hDHGGHsvkCbp6tWrtGDBAgJAqampZG1tTQCoW7duFBsbq1Yd1apVo02bNpFYLKacnBzKycmhzMxM2rBhA+nr62vUHk0SEdGIESMU8q5fv04eHh4KeY8ePaLVq1cTAOrZsycdO3ZMvm7Tpk00YcIEtfdpZGRERERGRkbldlxVNzkREE0A5UvR7/LVr0ckEtHQoUNJJBLpwDFx4j6qvIn7SfcT95Hup+L6qDRxg8bP1HXo0AETJ05Uyk9MTES9evXUqkMikWD+/PlYvHgxmjVrBoFAgKdPn0IikcDMzAwxMTGaNqtEqlWrhq5du+Lnn39WyD9z5gx69eoFALh58ybat2+PRo0aITU1FYMHD8aKFSsKrVNfXx/Vq1eXL8teqSYSiSASicrhKKomopGQSg+rWGMO4CiEwrEQCI6rVZdIJIJQKOTzr8O4jyoH7ifdx32k+4rro9L0ncZB3evXr2FmZobIyEiF/M6dOys8e6aOzMxMPHz4UL7csWNH3LlzB3p6GjerRExMTKCnp4eEhASF/ISEBDRs2BBA3gCOr776CgEBARAKhfjll1+QnJxcaJ2LFy/GsmXLlPL79++PzMzMMm1/VUUkxPnz2yEWCwAUvP0tBCCFvv529OsngUBQ/HzrIpEIXbp0gUAgUBicw3QH91HlwP2k+7iPdF9xfWRgYFDiujWOng4ePIi1a9dizJgxICIIhUL06tUL69evL5ORsdpQ8Bk5gUCgkOfr6wtfX1+16lqzZg02bNggXzYyMkJcXBzOnj3Lr0NTE5EDpFLTIkoIIRab4tSptxAIip9/XSQSgYhw+vRp/iWno7iPKgfuJ93HfaT7iusj2R2+ktA4qPvuu++wd+9exMXFQSAQ4NGjRxCJRDh48CB++umnEjdEG5KSkpCTkyO/KidTv359pat36srOzkZ2djbc3Nwwd+5cCIV5D/bn5ubyD5ja6qtVSiqtD0C9cyqVSrkPdBz3UeXA/aT7uI90X1F9VJp+03goYU5ODiZPnoyWLVti7NixmDx5Mlq3bo2pU6dCKq1crx6WSCS4ffs2+vfvr5Dfv39/XL16tVR1e3h4oF27dujevXup6nk/xZdxOcYYBACaAGj/7l/lgf2MsUpO4yt19vb2uHTpEsLDwxEeHq7Rth06dChyfatWrTRtTrEMDQ3RvHlz+bK1tTU6deqE5ORkxMTEYMOGDThw4ACCgoJw7do1zJo1C5aWltixY0eZt4WpKxBADPIGRaj6f4cUQOy7ckzrhELAzg4wMwPi44HAQKCS/QevymsDYBCA2vny3gA4DSBUKy1ijJUDjYO6s2fP4sWLFzh48CD++OMPhISEqL3tvXv3QESFzv1W8Fm2stCtWzdcuHBBvrxx40YAwN69e+Hi4oLDhw+jXr16+PHHH2FmZoaHDx9i8ODBiI6OLtV+C95+ZZqQAnAHcPTdZ2GBdQAwP99npjVOTsDmzcC7eR0BADExgLs74OOjvXax/2kDYKyK/A/e5R8GB3aMVREaB3WNGjXC+PHjMWHCBCxatAgPHz7EH3/8gYMHDxY7+tXa2rrEDS2pixcvqgwi89u+fTu2b99epvv18PCAh4cHjIyMkJqaWqZ1vx98AIwGsBlAvoABscgL6Dhg0DonJ+DoUeV8c/O8/NGjObDTNgHyrtDJPhdcR+/Wh737zBir1DQO6l69eoVt27Zh27ZtaNKkCSZOnIipU6di9erVuHTpEvr161fotqW9+sXeNz4ATgCwA2CGvGfoAsFX6HSAUJh3hU72ueA6qRTYtAk4cYJvxWqTFRRvuRYkeLfeCkBkRTSIMVaeSnVvMDIyEj///DO+/fZbBAcHw8HBodCyFvlvz6ihUaNGpWma1rm5uSEkJAQ3b97UdlMqOSmAiwD+evcvBwg6wc4u75ZrYY8XCIWApWVeOaY9tcq4HGNMp5U4qOvVqxe2bduG+Ph4HDx4ECEhIRg6dGih5W/duoVdu3bhww8/LLTMBx98gBkzZiA4OBiffvppSZumE3j0K6vSzMzKthwrH2/LuBxjTKdpfPt11apVmDBhAho1aoRz585h/vz5OH78eLFvS2jTpg2WLFmC06dPQyKRICgoCM+fP4dYLIaxsTHatm2Ldu3aISgoCAsXLsTp06dLfFCMsXIWr+Z0MuqWY+UjCnmjXD+A6ilMCEDqu3KMsUpP4yt1ffr0wfr162Fubo6hQ4fizz//lAd0nTp1KnS7lJQULFy4EI0aNYKrqyseP34MExMTtGjRAgDg7e2Nrl27onfv3lUioOPbr6xKCwzMG+Va2PNyUikQHZ1XjmkPIW/aEtnnguvwbj0PkmCsStD4St1HH32ksPzBBx9g0qRJmDFjBjp16lTse1uzsrLg4+MDnyo+Kq5yjX4VggcjMI1IpXnTlhw9mvc5/7N1skBv/nweJKELQpE3bUnBeepSwfPUMVbFaBzUyfTt2xfTp0/Hp59+iqioKPz999/47LPPyrJtrEI4QXnakBjkzRNXtQNvVko+PnnTlhScpy42Ni+gq+L/catUQpE3bYkV8gZFvEXeLVe+QsdYlaJRUGdubo5p06Zh+vTpMDQ0xOHDh1GtWjWMGjUKoaH8373Kxwl5E/wWZP4ufzT+v727D4uqTP8A/p0Z0BBHXd8AEZAyFTTfUNs1J93dMNf9Xem0pNla6V5moRXYu/7K7NpK20zRauxlDbMXS7kkuzZlrV9CrFqGGARib4rAhAiBDgqoMffvj4FZZpiBAead7+e6zgXznGfOuWfuAW6ec85zWNhRm9LTTdOW8I4S3k/AaUuI/JzD59R98sknOH78OGJjY/HAAw9gyJAhePDBB10ZG7mUEqYRuubvrdcBQIqNdURWjEYgKwv44APTVxZ0REQe4fBI3cyZM7F582Zs2bIFP/74oytj8gvef5swDSwPuVpTAohs6pflloiIiIio8xyuODQaDdRqNXJycvDll19i+fLlGDhwoCtj82neP0+do/OHcZ4xIiIiX+BwUffll19i6dKlCAsLw+uvv47bb78der0eSqUS8fHx6N2bU5L7FkfnD+M8Y0RERL6gw8cG6+vrkZqaCo1Gg+uuuw4vvfQSnnjiCZw9exZ79uxxRYzkEtkwXeVq7/wnI4CSpn5ERETk7bp0wtf333+Pxx9/HEOHDsWCBQucFRO5hRGmaUuav7deBwDJNtYRERGRN3LKWfxGoxF79uzBnDlznLE5v+Abd5RIh2naEr1Vexk4nQkREZFv6fTkw9Q237mjRDqAPeAdJYiIiHwbizqCqYDjtCVERES+zFsnUSMiIiKiDuBInU9TgodNiYiICGBR58O0MN3mq+VdIUphuqKVFzgQERF1Nzz86iKuvfpVCyANQLhVe3hTu9YF+ySyTQklpmM6bsftmI7pUPLXChGRR/C3r4u47jZhSphG6Jq/t14HACk21hE5nxZaFKMYmcjEDuxAJjJRjGJo+Y8FEZHb8S+/z9HAdMjVXuqUACKb+hG5jhZapCEN4VYjxuEIRxrSWNgREbkZizqfE+bkfkQdp4QSm5pGjK0PtzY/TkEKD8USEbkRf+P6nHIn9yPqOA00iECE3aJNCSUiEQkNR4yJiNyGV7/6nGyYrnINh+2a3AjTbb6y3RkUdTNhDo4EO9qPXI8TIBH5P47U+RwjTNOWNH9vvQ4Akm2sI3KecgdHgh3tR66lBVAMIBPAjqavxeB18kT+hkWdT0oHkABAb9Ve1tTOeerItbKRjVKUwmjnnwcjjChBCbI5YuxxnACJqPtgUeez0gEMAzADwIKmr9FgQUfuYIQRSU0jxtaFXfPjZCTbLfrIPTgBElH3wp9ln2YEkAXgg6av/ANK7pOOdCQgAXqrEeMylCEBCUjnPxgexwmQiLoXXijhIsuWLcPy5cuhVLJuJv+VjnTswR5ooEEYwlCOcmQjmyN0XoITIBF1LyzqXESn00Gn00GtVsNgMHg6HCKXMcKILGR5OgyygRMgEXUvHEYiIvJTzRMg2Rs3NQIoASdAIvIXLOqIiPwUJ0Ai6l5Y1BER+TFOgETUffCcOiIiP5cOYA94Rwkif8eijoioG2ieAImI/BcPvxIRERH5ARZ1RERERH6ARZ0Ddu/ejerqauzatcvToRARERHZxKLOAZs3b8Zdd93l6TCIiIiI7GJR54DMzEzU1tZ6OgwiIiIiu3y+qNNoNPj444+h1+shIpgzZ06rPomJiTh58iTq6+uRk5ODadOmeSBSIiIiItfx+SlNgoODkZeXh9TUVOzevbvV+nnz5iElJQXLli3DwYMHce+992Lfvn2IjY1FaWkpACAnJwc9e/Zs9dyZM2eivJx3RSRqkwJAFIDeAC4AOA1APBoREVG35PNFXUZGBjIyMuyuf+ihh7B161Zs3boVALBixQrcfPPNSExMxKpVqwAAkyZNckusRH4nBsAsAH1btJ0HkAGgyCMRERF1Wz5f1LUlMDAQcXFxWLdunUX7/v37MXXqVJfss0ePHhajfmq1GgCgUqmgUqlcsk9qm0qlglKp5PvvZDJKYEywcU+CPgDmAco0JRQnFA5tiznyDcyT92OOvF97OepK7vy6qBs4cCACAgJQUVFh0V5RUYHQ0FCHt5ORkYGJEyciODgYpaWl0Gq1yMnJsdl35cqVWLNmTav2+Ph41NfXdyh+cg6VSoWJEydCoVCgsbHR0+H4BYHg/8b+HxrQYDr82pICgAA9bumBP0b/EYpWHVpjjnwD8+T9mCPv116OgoKCOr1tvy7qmolYnuCjUChatbVl1qxZDvddu3YtNmzYYH6sVquh1+vx6aef8gpaD1GpVBARZGRk8Jeck0iUwDipjTuHKoCGng3Yd3wfFKcdK+qYI+/HPHk/5sj7tZej5iN8neHXRV1VVRV+/fXXVqNygwcPbjV65yyXL1/G5cuXsWzZMixfvhxKpekC48bGRv6AdYZSCWg0QFgYUF4OZGcDxo7fhtxoNDIHztTLsW7GXkbAwbecOfINzJP3Y468X1s56krefH5Kk7ZcuXIFR48eRXx8vEV7fHw8Dh065NJ963Q6jB49GlOmTHHpfvyaVgsUFwOZmcCOHaavxcWmdvKsC07uR0REXebzI3XBwcEYPny4+XF0dDTGjRuH6upqlJaWYsOGDXjnnXeQk5ODw4cPY+nSpYiMjMRrr73mwaipXVotkJbWuj083NSekACkp7s/LjI5DdNVrn3Q+pw6wDSliaGpHxERuYXPF3WTJk1CZmam+fHGjRsBANu2bcPixYuxc+dODBgwAKtXr0ZYWBgKCgowe/ZslJSUuDQu68Ov1AFKJbBp03+/t15nNAIpKcCePZ06FEtOIDBNWzKv6XuF1To0red8dUREbuPzRV1WVhYUirZPxN6yZQu2bNnipohMdDoddDod1Go1DAaDW/ft8zQaICLC/nqlEoiMNPXLynJfXGSpCMBOtJ6nzgDOU0dE5AE+X9SRHwoLc24/cp0iACfAO0oQEXkBFnUuwsOvXeDordl4CzfvIACKPR0EERGx4nARXv3aBdnZQGmp/fPljEagpMTUj4iIiACwqCNvZDQCSUn//d56HQAkJ/MiCSIiohZY1LnIsmXLUFhYiCNHjng6FN+Unm6atkSvt2wvK+N0JkRERDbwnDoX4dWvTpCebpq2xAl3lCAiIvJ3LOrIuxmNnLaEiIjIATz8SkREROQHWNS5CM+pIyIiIndiUecinNKEiIiI3IlFHREREZEfYFFHRERE5AdY1BERERH5AU5pQoBSybngiIiIfByLOhdZtmwZli9fDqXSywdDtVpg0yYgIuK/baWlptt0ecFdG5RQQgMNwhCGcpQjG9kwggUnERGRNS+vOHyXT1z9qtUCaWlAeLhle3i4qV2r9UxcTbTQohjFyEQmdmAHMpGJYhRDC8/GRURE5I1Y1HVXSqVphK75e+t1AJCS0nqdm2ihRRrSEKoIReawTOwYswOZwzIRqghFGtJY2BEREVnh4dfuSqOxPORqTakEIiNN/dx8my4llNiETdgdsxsrZq1AWd8y87qh54diY8ZGpBSlYA/28FAsERFRE47UdVdhYc7t50QaaPB1zNeYN28eyvqUWazT99Fj3rx5yInJgQYat8dGRETkrVjUdVfl5c7t50QhihAkzUqCQACF5TpRCAAgeVYyQhQhbo+NiIjIW/Hwq4u45epXlQL4n7HA4F7A2TrgX/lAozj23Oxs01Wu4eEABCjJBmrLAXUYEKkBoADKykz93Oy7qO8sDrlaE4WgtG8p+kf1B4rdFxfZpgSgARAGoBxANsCD4kREHsCizkV0Oh10Oh3UajUMBoPzd7BoChBbCtTlmR6HA7ghDDgeAWw70v7zjUbTtCV/vwP49wqgtkURpR4K3LwReOp9j8xXl98736n9yHW0ADYBaHl2ZimAJACenxCHiKh74eFXX7RoCjDsa6DO6tBo3RlT+yIHp1E5kQ7sus2yoAOAWr2p/YRn/izLBcdGGx3tR66hBZAG0/8TLYU3tfP6ZCIi92JR52tUCtMIHWwVNE1to0tN/dqiADDL3sqm7cxCq3Pa3OI0gPOw/RLR1H6+qR95hBKmEbrm763XAUCKjXVEROQ6/J3ra/5nbOsROgsCXCw39WtLFIC+sF+0KZrWR3UmyC4SABktvrdeh6b1HKjzGA1Mh1zt/QJRAohs6kdERO7Bos7XDO7lnH69Hdyfo/2crQjATgDWpyMamtqL3B4RteDoRDfunxCHiKj74oUSvuZsXeuTmOz1a8sFB/fnaD9XKAJwAqbRwt5NsZwGR+i8gKMT3bh/Qhwiou6LI3W+5l/5QK8wtHncNDjM1K8tp4Grzl8FhdjejkIUCDof5Pnz1gSmaUsKmr6yoPMK2TBd5Wrv2mgjgJKmfkRE5B4s6nxNo5imLQHQurBrelwY0e58dUpRYlOG6VR368Ku+fHGjI1QCj8i1JoRpmlLmr+3XgcAyTbWERGR6/Avti/adgQongz0CrVs7xVqandgnjoNNFhatBRpO9MQbrA8njvUMBRpO9Nwb9G9vBUX2ZUOIAGA3qq9rKmd89QREbkXz6lzEVffUUK7LRwbFB+iOKoY5b3LEXYhDMNOD8ND8pBDf0zDmk5hv7XoVsw5MQfZUdnm7WhOa6ASlUU/IlvSAewB7yhBROQNWNS5iCvvKKGFFmlIAwQYVjzM3G6EEWlIQwISkN5OaVfe4hR2lagwo3hGu/2IbDECyPJ0EERExMOvvkYJJTY1TfuqtEpf8+MUpLRaZy0b2ShFKYx2xlSMMKIEJcjmqe5EREQ+gUWdj9FAgwhE2C3alFAiEpHtngtnhBFJTae6Wxd2zY+TkWy36CMiIiLvwqLOxzh6jpsj/dKRjgQkQG91qnsZyhw6hEtERETeg+fU+RhHz3FztF860rEHe6CBBmEIQznKkY1sjtARERH5GBZ1Pqb5XLhwhNs8BGuEEWUo69C5cEYYkcVT3YmIiHwaD7/6GJ4LR0RERLawqPNBPBeOiIiIrLGoa8fQoUNx4MABFBYWIi8vDwkJCZ4OCYCpsBuGYZiBGViABZiBGYhGNAs6IiKiborn1LXj119/RXJyMvLy8jBo0CDk5uZi7969qKur83RoPBeOiIiIzFjUtePMmTM4c+YMAKCyshLV1dXo37+/VxR1RERERM18/vCrRqPBxx9/DL1eDxHBnDlzWvVJTEzEyZMnUV9fj5ycHEybNq1T+4qLi4NSqURZWVlXwyYiIiJyKp8fqQsODkZeXh5SU1Oxe/fuVuvnzZuHlJQULFu2DAcPHsS9996Lffv2ITY2FqWlpQCAnJwc9OzZs9VzZ86cifJy03xv/fv3x/bt27FkyRLXviAiIiKiTvD5oi4jIwMZGRl21z/00EPYunUrtm7dCgBYsWIFbr75ZiQmJmLVqlUAgEmTJrW5jx49eiA9PR1r167F4cOH2+3bskBUq9UAAJVKBZVK5dBrIudSqVRQKpV8/70Yc+QbmCfvxxx5v/Zy1JXc+XxR15bAwEDExcVh3bp1Fu379+/H1KlTHd7Otm3b8Pnnn+Pdd99tt+/KlSuxZs2aVu3x8fGor693eJ/kPCqVChMnToRCoUBjY6OnwyEbmCPfwDx5P+bI+7WXo6CgoE5v26+LuoEDByIgIAAVFRUW7RUVFQgNDXVoGzfccAPmz5+P/Px8zJ07FwBw5513oqCgwGb/tWvXYsOGDebHarUaer0en376KWprazv3QqhLVCoVRAQZGRn8JeelmCPfwDx5P+bI+7WXo+YjfJ3h10VdMxGxeKxQKFq12XPw4MEODYVevnwZly9fbtXe2NjIHzAPMhqNzIGXY458A/Pk/Zgj79dWjrqSN5+/+rUtVVVV+PXXX1uNyg0ePLjV6J2zLVu2DIWFhThy5IhL90NEREQE+HlRd+XKFRw9ehTx8fEW7fHx8Th06JBL963T6TB69GhMmTLFpfvxd0oA0wHc3vTVrz+wREREXeDzh1+Dg4MxfPhw8+Po6GiMGzcO1dXVKC0txYYNG/DOO+8gJycHhw8fxtKlSxEZGYnXXnvNg1GTI7QANgGIaNFWCiAJ4M3QiIiIrPh8UTdp0iRkZmaaH2/cuBGA6YrVxYsXY+fOnRgwYABWr16NsLAwFBQUYPbs2SgpKXFpXMuWLcPy5cuhVHJsqTO0ANJstIc3tSeAhR0REVFLPl/UZWVlQaFQtNlny5Yt2LJli5siMtHpdNDpdFCr1TAYDG7dd0cpAWgAhAEoB5ANwOjheDa1+N56nRFACoA98GycRERE3oTDSN2cFkAxgEwAO5q+Fje1e4oGpkOu9j6cSgCRTf2IiIjIhEWdi7jj6teuXkTQfIgz3Kq9+RCnpwq7MCf3IyIi6g5Y1LmIq69+7eoIW3uHOAHTIU5PfEDKndyPiIioO2BR54OcMcLmzYc4s2G6ytXe+XJGACVN/YiIiMiERZ2LuOrwq7NG2Lz5EKcRpmlLmr+3XgcAyTbWERERdWcs6lzEVYdfnTXC5u2HONNhmrZEb9VeBk5nQkREZIvPT2nS3ThrhK35EGc4bBeIRpgKKE8e4kyHadoSb5puhYiIyFuxqPMxzhphaz7Emdb0vdJqHeAdhziNALI8HAMREZEv4OFXF3HVOXXOvIiAhziJiIj8B4s6F3HVOXXOvoggHcAwADMALGj6Gg0WdERERL6Gh199UPMIm/XN7stgKug6WpDxECcREZHvY1Hno3gRAREREbXEos6HcYSNiIiImvGcOiIiIiI/wKLORVx19SsRERGRLSzqXMRVV78SERER2cKijoiIiMgPsKgjIiIi8gMs6oiIiIj8AIs6IiIiIj/Aos5FePUrERERuROLOhfh1a9ERETkTryjhJuo1WpPh9BtqVQqBAUFQa1Wo7Gx0dPhkA3MkW9gnrwfc+T92stRV+oFFnUu1pwcvV7v4UiIiIjIV6jVatTW1nboOQoA4ppwqNmQIUM6nJiOOHLkiFMO83ZmO44+x5F+bfWxt85Wu3WbWq2GXq9HeHi4S/PQFl/IkSN9nZUj63Z/ylFnt+WsnyVX5QjwfJ66c47srWOOOvccb/+bpFar8fPPP7f3MlrhSJ0bdCYxHWE0Gp3yw9uZ7Tj6HEf6tdXH3jpb7fb61tbWeqxg8IUcOdLXWTmy1+4POerstpz1s+TqHAGey1N3zpG9dcxR557j7X+TOvse8kIJP/Dqq696bDuOPseRfm31sbfOVruz3g9n8oUcOdLXWTnqaFzu4Mx4PPmzxBy5bluezJG9dcxR557jr3+TePiV/J5arYbBYECfPn08NgpEbWOOfAPz5P2YI+/nyhxxpI783qVLl7BmzRpcunTJ06GQHcyRb2CevB9z5P1cmSOO1BERERH5AY7UEREREfkBFnVEREREfoBFHREREZEfYFFHRERE5AdY1FG3t3v3blRXV2PXrl2eDoVsGDp0KA4cOIDCwkLk5eUhISHB0yGRld69e+PIkSM4duwY8vPzsWTJEk+HRHYEBQWhuLgYL774oqdDIRuuXLmCY8eO4dixY3jzzTc7/Hxe/Urd3owZM9C7d2/cfffduO222zwdDlkJDQ1FSEgI8vLyMGjQIOTm5mLkyJGoq6vzdGjURKlUomfPnqivr0dQUBAKCgowefJkVFdXezo0svLss8/i2muvRUlJCR599FFPh0NWKisrMWjQoE4/nyN11O1lZmZykk4vdubMGeTl5QEw/cKrrq5G//79PRwVtWQ0GlFfXw8AuOqqq6BSqaBQKDwcFVkbPnw4Ro0ahb1793o6FHIRFnXk0zQaDT7++GPo9XqICObMmdOqT2JiIk6ePIn6+nrk5ORg2rRpHoi0+3JmjuLi4qBUKlFWVubqsLsVZ+Sob9+++Oabb1BWVoZ//OMf+OWXX9wVfrfgjBytX78eK1eudFfI3Y4zctSnTx/k5OQgOzsbN954Y4djYFFHPi04OBh5eXm4//77ba6fN28eUlJS8Nxzz2HChAnIzs7Gvn37EBER4eZIuy9n5ah///7Yvn07li5d6o6wuxVn5Oj8+fMYP348oqOjcccdd2Dw4MHuCr9b6GqObrnlFnz//ff44Ycf3Bl2t+KMn6Nhw4Zh0qRJuO+++7B9+3ao1eoOxyFcuPjDIiIyZ84ci7Yvv/xSdDqdRdvx48fl+eeft2ibPn267Nq1y+Ovwd+XzuaoR48ekpWVJQsXLvT4a/D3pSs/R82LTqeThIQEj78Wf106k6Pnn39eSkpK5NSpU1JZWSnnzp2Tp556yuOvxV8XZ/wc7d27V+Li4jq0X47Ukd8KDAxEXFwc9u/fb9G+f/9+TJ061UNRUUuO5mjbtm34/PPP8e6777o7xG7PkRwNHjzYPKKgVqtx44034rvvvnN7rN2VIzlatWoVIiMjER0djUceeQRvvvkm/v73v3si3G7JkRz169cPPXr0AACEh4cjNjYWJ0+e7NB+ApwTLpH3GThwIAICAlBRUWHRXlFRgdDQUPPjjIwMTJw4EcHBwSgtLYVWq0VOTo67w+2WHMnRDTfcgPnz5yM/Px9z584FANx5550oKChwd7jdkiM5Gjp0KLZu3QqFQgGFQoFXXnkF3377rSfC7ZYc/V1HnuNIjmJiYvD666/DaDRCRJCUlISampoO7YdFHfk9EbF4rFAoLNpmzZrl7pDISls5OnjwIFQqlSfCohbaylFubi4mTJjgibCohfZ+1zV7++233RUSWWkrR4cPH8bYsWO7tH0efiW/VVVVhV9//bXVf6qDBw9u9d8SeQZz5P2YI+/HHHk/d+WIRR35rStXruDo0aOIj4+3aI+Pj8ehQ4c8FBW1xBx5P+bI+zFH3s+dOfL4VSJcuHR2CQ4OlnHjxsm4ceNERCQ5OVnGjRsnERERAkDmzZsnly5dksWLF8uoUaNkw4YNUltbK5GRkR6PvbsszJH3L8yR9y/MkfcvXpIjz78RXLh0dpk+fbrYkpqaau6TmJgop06dkoaGBsnJyRGNRuPxuLvTwhx5/8Icef/CHHn/4g054r1fiYiIiPwAz6kjIiIi8gMs6oiIiIj8AIs6IiIiIj/Aoo6IiIjID7CoIyIiIvIDLOqIiIiI/ACLOiIiIiI/wKKOiIiIyA+wqCMiIiLyAyzqiMhhI0eOxOHDh1FfX49jx455Opx2Pf300y6LMzU1Fenp6S7Zti84deoUkpKSPB0GEbXAoo7IDw0cOBCXL19GUFAQVCoVLly4gIiIiC5v95lnnsHFixcxcuRI/PGPf7TZJzU1FSICEcGVK1dw+vRp6HQ69OvXr8v776j169fbjdPVpk+fDhFB3759HX6ONxaKd999N2pqalq1T548GW+88YbL97906VJ88803uHDhAmpqapCbm4vHHnvMvN4b3zMiTwnwdABE5Hy/+93v8M0336C+vh5TpkxBdXU1SktLu7zda665Bp988glKSkra7Ldv3z4sXrwYAQEBiI2NxVtvvYV+/frhjjvu6HIMHXHx4kVcvHjR7vrAwEBcuXLFjRF5j66+9qqqKidGY9vf/vY3bNiwAQ8++CCysrLQs2dPjB07FrGxsS7fN5GvEi5cuPjXsnbtWtm4caMAkIceekh27NjR7nMUCoU89dRTUlpaKg0NDXLs2DG5+eabzeutPf300za3k5qaKunp6RZt69evl6qqKou2RYsWyfHjx6W+vl6KiookMTHRYv3kyZMlNzdX6uvr5euvv5a5c+eKiMi4ceMEgNx9991SU1Nj8Zw5c+aIiJgfP/3003Ls2LFWsT3xxBOi1+vl1KlTAkCGDBkiH3zwgVRXV0tVVZV89NFHEhUVZX6eUqmUl156SWpqaqSqqkpeeOEF2bZtW6vX2XKZPn26iIj07dvXIt6ZM2fK8ePHpba2Vvbt2yehoaHmWK1Nnz7dofhUKpVs2rTJHN+6detaxXfgwAF5+eWX5aWXXpLKykrJzMwUALJixQrJz8+XCxcuSElJibz66qsSHBxs8Rps5f3UqVOSlJRk3n5ERIR89NFHUltbK+fPn5cPP/xQBg8e3CoXCxculFOnTsm5c+dkx44d0rt3b7vvYXp6urz11lt213flPWv+LKxevVoqKirk/Pnz8tprr0lgYKC5z1/+8hfJz8+Xuro6qaqqkk8//VR69erl8Z9vLlzaWDweABcuXJywRERESE1NjdTU1MilS5ekrq5OampqpKGhQerr66WmpkZeffVVu89PTk6Wc+fOyfz582XEiBGybt06uXTpkgwfPlwASEhIiHz77bfy4osvSkhIiPkPv/ViXdRFR0dLQUGBlJeXm9uWLFkier1etFqtDBs2TLRarVRVVcldd90lAKRXr15SUVEhO3bskNjYWPnzn/8sP/74o1OKOoPBIG+//bbExsbK6NGjJSgoSL777jv55z//KWPGjJFRo0bJu+++K0VFReY/8I8++qjU1NTIrbfeKqNGjZI333xTzp8/3+Gi7tKlS7J//36Ji4uTCRMmSGFhobz77rsCQIKDg+WDDz6QvXv3SkhIiISEhEhgYKBD8a1atUqqqqpk7ty5MnLkSNHpdHLu3LlWRZ3BYJAXXnhBRowYISNHjhQAkpSUJDNmzJBhw4bJ73//eykqKjJ/TgIDA+XBBx+Uc+fOmWNqzrt1UXf06FH54osvZOLEiTJlyhTJycmRAwcOWOTCYDBIWlqajB49WqZNmyY///yzPPvss3bfwy1btsjx48clMjLS5vquvGfNn4Xmz9js2bOloqLCHE9oaKhcvnxZkpOTJSoqSsaMGSOJiYl2P/dcuHjJ4vEAuHDh4oRFpVJJVFSUXHfddXLp0iUZO3asXH311WIwGESj0UhUVJQMGDDA7vPLyspk5cqVFm1fffWVvPLKK+bHx44dsztC17ykpqbKlStXpLa2Vurq6swjKMnJyeY+p0+flttvv93ief/7v/8rBw8eFAByzz33SFVVlQQFBZnX33vvvU4p6srLyy1GYxYvXixFRUUW2wkMDJSLFy9KfHy8ABC9Xi+PPfaYxXtdUlLS4aJOROTqq68290lMTLQodm2NcjoSX3l5uTz88MPm9UqlUoqLi1sVdbm5ue1+jhISEqSystL82Nb7DFgWdTfddJNcuXJFhg4dal4fExMjIiKTJk0y5+LChQsWI3MvvPCCHD582G4soaGhcujQIREROXHihKSmpsptt90mCoWiy+9Zamqqzc+YwWAQhUIhEyZMEBGxW1By4eKNCy+UIPITjY2NOH36NEaNGoWvv/4a+fn5CA0NRUVFBbKzs3H69Gn88ssvNp+rVqsRHh6OgwcPWrQfPHgQMTExHY7lwIEDGD9+PK6//nps3rwZGRkZePnllwGYLuKIjIzE1q1bUVtba16efPJJXHPNNQCAmJgY5OXlob6+3rzNw4cPdzgOW7799luLc8ni4uIwfPhwi1iqq6tx1VVX4ZprrkGfPn0wZMgQi/03NjYiJyenw/u+ePEiTp48aX5cXl6OwYMHt/kcR+ILDQ3FkSNHzM8xGo04evRoq23ZinnGjBnYv38/ysrKYDAYsH37dgwcOBC9evVy+HXFxMSgtLQUZWVl5raioiLU1NRYfH6Ki4tx4cIFh1//mTNnMHXqVIwZMwabN29GYGAg3n77bWRkZEChUNh9XnvvWTNbnzG1Wo2IiAjk5eXhs88+w7fffoudO3diyZIlHrnYh6gjeKEEkZ8oKChAVFQUAgMDoVQqUVtbi4CAAAQEBKC2thanT5/GmDFj2tyGaZDrvxQKRas2R1y8eBE//fQTACApKQmff/45nn76aaxevRpKpel/yXvuuQdfffWVxfMaGxvN+22P0Whs1S8wMNCh2FpSKpU4evQo/vrXv7bqW1lZ2e72OsL6wgQRMb8f9jgan63cWbN+7ZGRkdi7dy9ee+01PPXUU6iursa0adPw1ltvOfRettyXrc+JdXtnXj8AFBYWorCwEDqdDjfccAP+85//YPr06cjMzLTZv6s5FREYjUbEx8dj6tSpmDlzJh544AE899xzuP7661FcXNzuNog8gSN1RH5i9uzZGD9+PM6cOYOFCxdi/PjxKCgoQHJyMsaPH4/Zs2fbfW5tbS30ej2mTZtm0T516lQUFRV1ObZnnnkGjzzyCMLCwnD27FmUlZXh6quvxk8//WSxNP+xPH78OMaNG4errrrKvI3f/va3FtusrKyEWq22GFEaP358h2PLzc3Ftddei7Nnz7aKx2AwwGAw4Oeff7bYv0qlQlxcXIf31Z7Lly9DpVJ1OL4zZ85gypQp5ucolUpMmDCh3f1NmjQJAQEBePjhh/HVV1/hhx9+wJAhQ9qNydrx48cRGRmJoUOHmttiYmLQr18/p3x+rPcFAMHBwXbja+89a2brM1ZbW2sx4njo0CGsWbMGEyZMwOXLl6HVap36eoiciUUdkZ8oKSnBhQsXEBISgj179qCkpASxsbHYvXs3fvrpp3anIXnxxRfx+OOPY968eRgxYgTWrl2L8ePHY9OmTV2OLSsrC4WFhVi1ahUAYM2aNVi5ciUefPBBXHvttRgzZgwWLVqEFStWAADef/99GI1GbN26FTExMfjTn/6ERx55xGKbX331Ferq6vD888/jmmuuwYIFC7Bo0aIOx/bee++hqqoKe/bswbRp0zBs2DDceOONSElJQXh4OABg06ZNeOKJJzB37lyMHDnSZfPuFRcXY+zYsRgxYgQGDBiAgIAAh+J7+eWXsXLlStxyyy0YMWIENm3ahN/85jftjrL+9NNPCAwMxAMPPIDo6GgsXLgQ9913X6uY1Go1/vCHP2DAgAEICgpqtZ3PPvsM+fn5eO+99zBhwgRMnjwZ27dvR2Zmps3DwI7S6XR48sknMXXqVERGRuL666/H9u3bcfbsWfPh8M6+ZwDQo0cP82ds1qxZeOaZZ/DKK69ARDBlyhSsXLkScXFxiIiIwK233opBgwY5vUglcjaPn9jHhQsX5yzz58+XL774QgDItGnT5Pvvv3f4uS2nNLl06VKrKU0Axy+UsHUBwYIFC6ShocF8Mv2CBQskNzdXGhoa5JdffpHMzEyZO3euuf/1118vx44dk4aGBsnNzRWtVmtxoQRgujDi+++/l7q6Ovn4449lyZIlDk1pYh1bSEiIbNu2Tc6ePSv19fXy448/yuuvvy5qtVoA04URGzdulHPnzkl1dbWsX7++01OatOxjfWHHwIED5d///rcYDAaL6TkciW/z5s1y7tw5+eWXX2Tt2rXy4Ycfyvvvv2/e9oEDB8zT3LRckpOTRa/Xy8WLF2Xfvn2ycOFCi7gBiE6nk8rKSqdMadJy30lJSeZpZWwtt956q/zrX/8SvV4vDQ0NUlZWJrt27ZIxY8Z0+T1r/iysWbNGKisrxWAwyBtvvCE9evQQADJq1CjZt2+fVFRUSH19vZw4cUKWL1/u8Z9xLlzaWhRN3xARebWoqCgUFxdj/PjxyMvL83Q4Xk2hUKCoqAg7d+7E6tWrPR2OV0pNTUW/fv14OJX8Ci+UICLycZGRkZg5c6b5rgv3338/oqOj8f7773s6NCJyI55TR0Tk44xGIxYtWoSvv/4aBw8exHXXXYebbroJJ06c8HRoRORGPPxKRERE5Ac4UkdERETkB1jUEREREfkBFnVEREREfoBFHREREZEfYFFHRERE5AdY1BERERH5ARZ1RERERH6ARR0RERGRH2BRR0REROQH/h/cT1eaByJ05gAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC2eElEQVR4nOzdd1wUx/sH8M8diFQRRUEREAuKDUusiMTeYsHYNUGNJopfY08zxlhijyUq0VhQLNFYEIwKsWAjVoINrAhSRASlc9R7fn8g++O4A+5od+Dzfr3m5e3M3OzszQGPuzuzIgAExhhjjDFWqYnV3QHGGGOMMVZ6HNQxxhhjjFUBHNQxxhhjjFUBHNQxxhhjjFUBHNQxxhhjjFUBHNQxxhhjjFUBHNQxxhhjjFUBHNQxxhhjjFUBHNQxxhhjjFUBHNQxxhhjjFUBHNQxxiqFRo0aYfv27QgJCYFEIkFiYiKuXbuGr7/+Grq6uiq3R0QyKTExEZcuXcKgQYPk6rq4uICI0KFDB5n8GjVq4ObNm5BIJOjfv3+Jjy0/HR0drF69GlFRUUhLS8ONGzfQp08fpd5ra2uLDRs2wN/fHxKJBEQEa2trhXVHjx6N/fv34+nTpyAi+Pn5Kd3HBg0a4KeffsLNmzfx7t07xMbGws/PD71791a6DcZY+SBOnDhx0uQ0aNAgSk1NpXfv3tGmTZto6tSp5OrqSocOHaKMjAzasWOHym0SEfn6+tKECRNo4sSJtGjRIoqMjKScnBzq16+fTF0XFxciIurQoYOQZ2RkRDdu3CCJREIDBgwos2M9dOgQZWZm0tq1a2natGnk7+9PmZmZ5ODgUOx7XVxcKDs7m+7fv0///fcfERFZW1srrOvn50dJSUl04cIFevv2Lfn5+Sndx5kzZ1JqaiodPHiQXF1d6euvv6Y7d+4QEdGkSZPU/n3hxOkDTmrvACdOnDgVmho2bEhJSUkUHBxM5ubmcuWNGzemr7/+WuV2iYi2bNkik9e8eXMiIjp9+rRMfsGgztDQkP79919KT0+nQYMGldmxduzYkYiI5s+fL+RVr16dnj17Rv7+/sW+38TEhAwNDQkAzZ8/v8igrkGDBiQSiQgAPXjwQKWgrkWLFlS7dm2ZPB0dHQoODqbw8HC1f2c4cfpQE19+ZYxptG+++QZGRkb44osv8Pr1a7nykJAQ/PbbbwCAS5cu4e7duwrbefz4MXx8fIrc1+PHjxEbG4vGjRsXWsfAwAA+Pj5o3749Pv30U5w5c6bINjt06AAiwueffy5X1q9fPxARBg8eDAAYOXIksrOz8ccffwh1MjIysHv3bnTr1g0NGjQocl/x8fFISUkpsk6eyMhIEJFSdQsKDg7G27dvZfIyMzNx5swZWFpawtDQsETtMsZKh4M6xphGGzJkCEJCQnD9+vVi6+7fvx/29vZo2bKlTP5HH32EZs2a4cCBA0W+v0aNGjAxMUF8fLzCcgMDA5w9exYdO3bEqFGjcPr06WL7FBAQgJCQEIwePVqubMyYMXj37h18fX0BAO3atcPTp0+RnJwsU+/WrVsAgLZt2xa7P3UyNzdHamoq0tLS1N0Vxj5IHNQxxjSWkZERGjRogAcPHihV/+jRo5BIJJg4caJM/sSJE5GSkoITJ07I5Ovq6qJ27dowNTVF+/btcfjwYWhra+PYsWMK29+3bx86d+6MUaNG4dSpU0ofx5EjR9C3b1/UrFlTyKtWrRqcnZ3h6emJ7OxsAEC9evUQHR0t9/68vPr16yu9z4rWuHFjjBgxAsePH4dUKlV3dxj7IHFQxxjTWDVq1AAAuTNXhUlKSoKXlxfGjRsn5InFYowZMwYnT56UO4M0depUxMXFITY2FgEBAejduzfWrFmDDRs2KGzfzMwM6enpiIiIUOk4jhw5Ah0dHYwYMULI69evH0xMTHDkyBEhT09PDxkZGXLvT09PF8o1kZ6enhBQf/fdd+ruDmMfLA7qGGMaKykpCUDuGTtleXh4wNraGo6OjgCAPn36wNzcHPv375ere/LkSfTp0weDBg3CkiVLQETQ19cv9F6zr776CpmZmfDx8YGtra3Sfbp//z4ePXqEMWPGCHljxoxBbGwsLl68KORJJBJUr15d7v15S7ZIJBKl91lRxGIxDh8+jBYtWmDkyJEKzzQyxioGB3WMMY2VnJyMqKgotGrVSun3+Pr64vXr18Il2IkTJyI6Ohrnz5+XqxsZGYkLFy7g7NmzWLZsGebNm4dZs2bB2dlZYdvBwcEYNGgQ9PT0cO7cuWInLuR35MgR9OzZE7Vr14aOjg6GDh2K48ePIycnR6gTHR2NevXqyb03L+/Vq1dK76+i7Ny5E5988gkmTZqk0lp3jLGyx0EdY0yj/f3332jSpAm6dOmiVH2pVIpDhw5h5MiRqFmzJoYPH44///xTqfu8duzYgefPn2PFihWF1rl9+zaGDx+OunXr4ty5czA1NVWqX0eOHEG1atXw6aefYuDAgTA2Nsbhw4dl6ty9exe2trZyZyY7d+4slGuStWvXYsqUKZg7d67csTDG1EPt66pw4sSJU2GpUaNGlJycTA8fPqS6desqLC+4Tl3btm2JiOjIkSNERNSuXTu59ylapw4ATZ8+nYiIhg0bJuQpWnx4+PDhlJWVRXfu3CEjIyOljuXevXt04cIFOnToEEVFRQnrxOWlTp06ya1Tp6OjQ0+fPqXr16/L1LW0tKRmzZoVuq/i1qnLn4pap05PT4+aNWsmty7dggULiIhoxYoVav+OcOLESUhq7wAnTpw4FZmGDBlCaWlp9PbtW9q4cSN98cUXNGPGDNq/fz+lp6fT9u3b5d5z//59IiIKCgpS2GZhQZ2uri69efOG/v33XyFPUVAHgCZNmkRERH5+flS9evVij+OHH36g7OxsSklJoc2bNyusc+TIEcrMzKQ1a9bQtGnT6Nq1a5SZmUmOjo4y9fz8/Ihyb/4TUo0aNWjRokW0aNEiOnPmDBERrVu3jhYtWkQzZ86Uqevo6CjUff36Nb148ULYzr8vJycnIiJasmSJkDd8+HAiInry5AlNmDBBLikKvjlx4lQhSe0d4MSJE6diU5MmTWjHjh304sULSk9Pp8TERLp69SrNnDmTdHR05OrnnUn67rvvFLZXWFAHgH766SciInJyciKg8KAOAM2bN4+IiLy9vUlLS6vIY2jcuDHl6datm8I61atXp7Vr19KrV69IIpHQzZs35R5bBigO6qytrakwoaGhMnWXLFlSaN38AZyioK6o9+b/3Dhx4lSxSfT+BWOMVSlff/01Nm7ciIYNG6q8BAljjFVGHNQxxqqke/fu4e3bt+jVq5e6u8IYYxVCW90dYIyxsqKvr4+hQ4eiZ8+eaNOmDYYOHaruLjHGWIXhM3WMsSrD2toaYWFhiI+Ph5ubG3788Ud1d4kxxioMB3WMMcYYY1UALz7MGGOMMVYFcFDHGGOMMVYFcFDHGCvSwoUL8ejRI4hEInV3RbBkyRLkLtHG1MnPz0/uea9169bF0aNHERcXByLC7NmzAQBNmjSBr68vEhISQEQYNmxYufRp1apVuHHjRrm0zZim46COMVYoIyMjfPvtt1izZo1MEEVEQsrJyUFUVBR8fX3h5OSkxt4qZ8aMGXBxcamw/bm4uMh8XhKJBE+ePMGWLVtQt27dCutHcdzd3WX6mZycjJCQEBw9ehQjRoxQOqjfuHEj+vfvj1WrVmHixInw8fEBAOzbtw+tW7fGokWLMHHiRNy5c0fusymY8p55q4pNmzbB3t4eQ4YMUfm9jFV2vKQJY6xQU6ZMgba2Nv7880+5sn/++QceHh4QiUSwsbGBq6srLl68iMGDBwt/yDWRq6sr4uLisG/fvgrd7+LFixEaGgpdXV10794dM2bMwKBBg9CqVStIJJIK7Uth0tPTMXXqVACAnp4erK2tMWTIEBw/fhx+fn4YNmwYkpOThfr9+vWTa6NXr17w8vLCr7/+KuTp6uqiW7duWLFiBbZt2yb3nrzPpqDnz5+rfAwxMTHw8vLCggULcOrUKZXfz1hlp/bHWnDixEkz0927d8nDw0MuX9Ejtlq1akVERD4+PoW2V716dbmH2Jck5T2mqiTvLerh9SVNRR1XYY8YW79+PRERjR07ttB29fX1K2ys3d3dKTk5WWHZt99+S0REhw8fLradnJwcue+GpaUlERHNnz9fqc+mtGnEiBGUk5NDNjY2Ffb5ceKkCYkvvzLGFGrYsCHs7e1x/vx5peo/fPgQsbGxsLGxAQA4OTmBiDBmzBgsX74ckZGRSEtLQ40aNQAAnTp1wtmzZ5GQkIDU1FRcunQJ3bp1k2vXwcEBt27dgkQiwfPnz/Hll18q3P+kSZNw4cIFxMTEID09HUFBQZg+fbpMndDQULRq1Qoff/yxcIkv/z1hNjY2+Ouvv/D27Vukpqbi+vXrGDRokEwbxR2Xsi5evCjsE8i9/JmcnIxGjRrh9OnTSEpKwsGDBwEAIpEIs2fPxsOHDyGRSPD69Wts374dNWvWFNrbu3cvYmNjoa0tfwHG19cXjx8/Vql/+a1Zswa+vr4YNWoUmjZtKuTnv6cu71KqWCzG//73P+HzXbJkCcLDwwEA69evBxEpPCtXHGNjY7i7uyMhIQHx8fHYu3cv7O3tQURyl9PzvrPldd8eY5qKL78yxhTKC7D+++8/perXrFkTJiYmcpfMFi9ejMzMTKxfvx7Vq1dHZmYmevbsibNnzyIgIABLly6FVCrF5MmTcfHiRTg6OuL27dsAgFatWuGff/5BbGwsfv75Z2hra2Pp0qWIiYmR2/+MGTMQFBQEb29vZGdnY8iQIfj9998hFovh5uYGAJgzZw62bNmClJQU/PLLLwAgtFW3bl38+++/0NfXx2+//Ya3b9/CxcUF3t7eGDlyJE6ePFnscamicePGAIC3b98Kedra2vD19cW1a9ewYMECpKWlAQB27NiBSZMmwd3dHb/99htsbGzwv//9D+3atYODgwOys7Oxf/9+uLi4oH///jh9+rTQppmZGXr16oWlS5eq1L+C9u/fj/79+6Nv37549uyZXPmVK1cwceJEHDhwQLg0DwD3799HQkICNm3ahEOHDuHMmTNISUmRea+xsTFq164tk0dEePfunbDt5eWF7t27Y/v27Xj06BGcnZ0LvYSelJSEkJAQODg4YNOmTaU6bsYqG7WfLuTEiZPmpWXLlhERkYGBgVwZEdHOnTupdu3aZGpqSh07dqRz584REdHcuXMJADk5ORER0fPnz0lXV1fm/U+ePKGzZ8/K5Onq6lJISAj5+voKeSdOnKC0tDSytLQU8po3b05ZWVlyl18L7gMAnT17lp4/fy6TV9jl1w0bNhARkYODg5BnYGBAISEh9OLFC+HyalHHpSjlXWLs1asX1a5dmywsLGj06NEUGxtLqampVL9+fQJyL38SEa1cuVLm/Q4ODkRENG7cOJn8fv36yeSLRCIKDw+nP//8U6benDlzKCcnhxo2bFhkP4u6/AqA7O3tiYjo119/FfL8/PzkPktFl+atra2LvPyqiEQiEeoNHTqUiIgWLFgg5InFYrp8+TIREbm4uMj118fHh4KCgtT+c8SJU0UmPlPHGFOodu3ayMrKQmpqqsLyqVOnCjfVA4BEIsGvv/4qd2Zk3759SE9PF7bbtm0LW1tbrFixQu7szIULF/DZZ59BJBJBJBKhf//+OHnyJCIiIoQ6jx8/hq+vLwYPHizz3vz7qFGjBqpVq4bLly9jwIABqFGjBpKSkoo83kGDBuHmzZvw9/cX8lJTU/HHH39g9erVaNGiBYKCggo9ruJcuHBBZjssLAwTJkzAq1evZPJ///13me1Ro0YhISEB586dk/m8AgICkJycjJ49e+LPP/8EEeHgwYP4+uuvYWhoKJwNmzBhAv7991+EhYUp3VdF8tozMjIqVTuKuLq64unTpzJ5OTk5wutBgwYhKytL5rORSqXYsmULevToobDN+Ph4tGvXrsz7ypgm46COMVYiJ0+exNatW4XlL4KCgoTLhfkVvH8q756svMtzihgbG6N69erQ19dXeKnvyZMnckFdt27dsHTpUnTt2hUGBgZy7RUX1FlbW+PmzZty+Y8ePRLK8wd1+Y9LLBajTp06Mu979+4dsrKyhO28wCU7OxsxMTF48uSJ3Fp7WVlZiIyMlMlr2rQpatasidjYWIX9zr8sioeHB7777js4Oztj//79sLW1xUcffYSvvvqqyGNXhqGhIQDIzH4tK7du3UJAQECh5dbW1oiOjpb7D8aTJ08KfY9IJOK1DNkHh4M6xphCb9++RbVq1WTO+uQXGRkpd/ZJkYLLdYjFufOzFixYgLt37yp8T0pKCqpXr650Xxs1aoQLFy7g8ePHmDdvHiIiIpCZmYlBgwZh3rx5wj7LUv7jsrS0lDsT9vHHH+Py5cvCdnGBCwBkZGTIBSJisRgxMTGYMGGCwvfkD/YePXqEO3fuYOLEidi/fz8mTpyIjIwM/PXXX8oeVqFatWoFoGTLjKiDiYkJ4uLi1N0NxioUB3WMMYXyZkva2NjgwYMHZdZuSEgIgNyb2YsKCmNjY5GWliYz2zJPs2bNZLaHDBkCXV1dDB06VOZSbc+ePeXeW9jZm5cvX8q1CwDNmzcXygvz+vVr9OnTRybv3r17hdZXRUhICPr06QN/f3+lLvd6eHhgw4YNMDc3x/jx43H69GkkJCSUuh+fffYZpFIpzp07V+q2VPXy5Uv07t0bBgYGMmfrFI1XHhsbmzIbA8YqC17ShDGm0PXr1wEAH330UZm2GxAQgOfPn2PBggVyl0kBwNTUFEDuPVO+vr4YPnw4LC0thfLmzZujf//+Mu/Ju/8q/1MPatSogcmTJ8u1n5qaKrMUSJ4zZ86gc+fO6NKli5Cnr6+PL7/8EqGhoQgODi70mDIyMnDhwgWZVBaBFAD89ddf0NbWxuLFi+XKtLS0YGxsLJOXd3/d5s2b0bhxYxw4cKDUffj222/Rv39/HDlyRC1n6s6cOYNq1aphxowZQp5YLMasWbMU1q9RowYaN26Mf//9t6K6yJhG4DN1jDGFQkND8eDBA/Tp0wfu7u5l1i4RYerUqTh79iyCgoLg7u6OqKgoWFhYoGfPnkhKSsLQoUMB5D7jdcCAAbh69Src3Nygra2NWbNmISgoCPb29kKb//zzDzIyMnDq1Cns2LEDhoaGmDZtGt68eYP69evL7D8gIAAzZszAokWL8Pz5c7x58wZ+fn5YvXo1xo0bh7Nnz+K3337Du3fv4OLiAhsbG3z66adquz/rypUr2L59O3744Qe0bdsW//zzD7KystC0aVOMGjUKs2fPxvHjx4X6cXFx8PHxwejRoxEfHy+zvElxtLW1hcu8urq6sLa2xtChQ2Fvb4+LFy8WukZgaQ0cOFA4I5rfv//+i9DQUJw6dQrXrl3D6tWr0bBhQwQHB2PEiBFyAW2ePn36QCwWw8vLq1z6y5gmU/sUXE6cOGlmmjNnDiUlJckt3aFo2YqCKW/pj08//VRhub29PR07doxiY2NJIpFQaGgoHT58mHr27ClTz9HRkW7fvk3p6en0/Plz+vLLLxU+UeKTTz6hu3fvUlpaGr148YIWLlxIkyZNIiIia2troV7dunXp1KlTlJiYSEQksySHjY0N/fXXX/Tu3TtKS0ujGzdu0KBBg1Q6roJJ2acmFLekyNSpU+n27duUmppKiYmJdO/ePVq9ejWZm5vL1R05ciQREW3fvl3psc5bUiVPSkoKvXjxgo4ePUojRoxQ+MSM8lzSpOBSJSYmJrRv3z5KSEig+Ph42rdvn7DMSsElTf7880+6cuWK2n9+OHFSQ1J7Bzhx4qShqUaNGhQXF0dTpkxRe184KZ/y1nXr3r272vtSnikvWMwf1JmZmVFaWhoNHTpU7f3jxKmiE99TxxgrVFJSEtauXYuFCxfK3K/GNNu0adMQEhKCa9euqbsrFW7OnDl48OABvL291d0VxtRC7ZElJ06cOHEqfRozZgz98ssvREQ0a9YstfenvJOiM3WcOH3IiSdKMMZYFXH48GEkJydj165dwvNuGWMfDhFyozvGGGOMMVaJ8T11jDHGGGNVAAd1jDHGGGNVAN9TVwHq169fLg/BZowxxljVY2RkhFevXqn8Pg7qyln9+vURFRWl7m4wxhhjrBKxsLBQObDjoK6c5Z2hs7Cw4LN1aqKlpYW+ffvi3LlzwjNCmWbhMaoceJw0H4+R5itujIyMjBAVFVWimIGDunLi6uqKmTNnQizOvW0xOTmZgzo10dLSgkQiQXJyMv+S01A8RpUDj5Pm4zHSfOU5RjxRopy4ubmhZcuW6NSpk7q7whhjjLEPAAd1jDHGGGNVAAd1jDHGGGNVAN9TpwG0tbVRr1494f47Vra0tLRgamoKa2trvsdEQ/EYVQ4lHSciQlxcHNLS0sqxd4wxDurUrG7dulixYgV0dXXV3ZUqTU9PD7169VJ3N1gReIwqh9KM06VLl+Du7g4ifjolY+WBgzo1EolEmDp1KlJSUrB+/XpkZGSou0tVlpGREc8+1nA8RpVDScZJW1sbzZs3x+jRowEAe/bsKY+uMfbB46BOjWrWrInmzZvDzc0NT58+VXd3qjRjY2MkJiaquxusCDxGlUNJxykkJAQAMGbMGBw+fJgvxTJWDvgmLjUyMjICALx580bNPWGMsfL3+PFjAICpqamae8JY1cRBnZL09PQQFhaGdevWlVmbIpEIAPjGcMbYByE7OxvA///uY4yVLb78qqRFixbhxo0b6u5GIfQBpL5/bQCAL2swxhhjZU8MwBFAPQDRAK4CkKq1R/nxmTolNGnSBM2bN8fZs2fV3ZUqwcXFBfHx8eruBmOMMaYCZwBhAC4B+PP9v2Hv8zVDlQ/qHB0d4e3tjaioKBARhg0bJlfH1dUVoaGhkEgkuHHjBjp27ChTvn79enz//fcV1eUSyD+MjqiIYTU1NYWbmxtevnyJ9PR0REdHw8fHB926dSv2vUeOHIGtra2w7eLiAiICESEnJwcRERHYs2cP6tSpU56HwBhjjCnJGcAxABYF8i3e52tGYFflgzoDAwPcu3cPM2fOVFg+evRobNiwAUuXLkX79u1x7949+Pr6CgHF0KFD8fTpUzx79qwiu60CZwCP8m37oCL+53D8+HG0a9cOLi4usLW1xdChQ3Hp0iXUrl272Pemp6cjNjZWJi8xMRHm5uZo0KABpk2bhoEDB2L//v3l1X3GGGNMSWIAm/O9LlgGAJsUlFW8Kn9PnY+PD3x8fAotnzdvHnbu3Im9e/cCAKZPn47BgwdjypQpWLNmDbp06YKxY8di1KhRMDQ0RLVq1ZCUlITly5crbE9HRwfVq1cXtvNmuGppaUFLS0umbsFt1eX9z6GgvP85jATgWcp9yDM2NkaPHj3g5OSEK1euAADCw8Nx+/ZtmTpr1qzB8OHDYWxsjOfPn+O7777D6dOn4eLigk2bNsHExESoT0SIiYkBAERHR+O3337D8uXLoauri9OnTyM4OBizZs0S6puamiIqKgoDBw7ExYsXi+xv3k3ZIpGIFz3VUDxGlUNZjZOi34esbGhpaUEsFvPnW4aInCCVWhZRQwzACmLxxxCJLhfbXnFjVJqxq/JBXVGqVauGDh06YNWqVUIeEeH8+fPo2rUrAOCHH37ADz/8ACD3MmGrVq0KDegA4Pvvv8fPP/8sl9+3b19IJBKZPFNTU+jp6cHIyAjGxsYq9Z1IjOTkLcj9varofw5SiES/wcjoEkSisr2JU0tLC8nJyRgzZgwePXqEzMxMmXKRSARfX18YGhriq6++QmhoKJo3bw5dXV0YGxtDX18fIpFIOOaC2/n3U7t2bRw6dAjr1q3DsmXLhH1NmzYN0dHRCAgIUOqzMzAwKKOjZ+WFx6hyKM04GRkZQU9PDz169EBcXFwZ9orl0dLSQvv27SESiXhlhTISFdUDgYHF17O3HwALC/1i6xU3Rnp6eiXpJoAPPKgzNTWFtra2cIYoT0xMDJo3b16iNletWoUNGzYI20ZGRoiKisK5c+fkVmG3trZGr169kJycXILFPJ0gf20/PzGIGiApqQ2A4v/noKpJkyZh586dmDx5Mv777z9cvnwZhw8fxoMHD9C3b1906NABdnZ2wmXr+/fvC+9NS0sDEQnHXHC7SZMmcHFxwe3btxEVFYUDBw5g7dq1+Pjjj3H06FEAuQuY7tmzR6nPLe/sQlJSEp8F0lA8RpVDacepZs2akEgkuHLlCl6+fFnW3WPIDRiICD4+PhzUlRGiNAALi613754P7t9X7kxdUWOUd4WvJD7ooE5V+/btK7ZOZmam3JkrIHctuoKDV7ofuHplXE81J06cwOnTp+Ho6IguXbpg4MCB+OabbzB16lTUrVsXkZGRKt2HWLNmTSQnJ0MsFkNXVxfXrl3D1KlTAQAZGRnYv38/pkyZgqNHj6Jdu3Zo1aoVhg4dqlTbeX98OFjQXDxGlUNZjZOi34es7EilUv6My9QlABHIPZGi6L45KYBISKWXoOzyJkWNUWnGTf139alRXFwcsrOzYWZmJpNvZmaG169fl6ptV1dXBAUF4datW6Vqp3DRZVxPdRkZGTh//jxWrFgBBwcH7N27F0uXLpW7zKyMpKQktG3bFq1atYKBgQGcnJxkgsJdu3ahb9++sLCwwOTJk3Hx4kWEh4eX5eEwxhhjCkgBzM73umAZAMxRUFbxPuigLisrCwEBAejdu7eQJxKJ0Lt3b1y/fr1Ubbu5uaFly5bo1KlTabtZiKvI/Z9DYV8iKYDw9/UqRnBwMAwMDHD//n00aNAATZs2Vfq9UqkUISEhCA0NRXp6ulz5w4cPcefOHUybNg3jx4/nB4IzxhirQJ7InXwYVSA/EuU1KbEkqvzlVwMDAzRp0kTYtrGxgb29Pd69e4eIiAhs2LAB+/btw507d3Dr1i3MmTMHBgYGcHd3L9V+XV1dMXPmTIjF5RU35/3P4dj71+ICZUB5/c+hVq1aOHr0KPbs2YP79+8jOTkZH330Eb755ht4eXnhypUruHLlCo4fP4558+bh+fPnaN68OYgIvr6+Jd7vrl27sHXrVqSmpsLTUzN+gBhjjH0oPAF4QZOfKAEAVJWTk5MTKeLu7i7UmTlzJoWFhVF6ejrduHGDOnXqVGb7NzIyIiIiIyMjuTJra2vy8PAga2vrUuzDmYAIAihfevk+v3w+Ux0dHVq5ciXduXOH4uPjKSUlhR49ekTLli0jXV1dAkAmJia0e/duio2NpbS0NLp//z4NGjSIAJCLiwvFx8cL7RXcLiwZGBhQSkoKbd26VeU+Gxsbq/27yInHqCqk0oxT2fzO41RU0tLSok8++YS0tLTU3hdOJRujouIGJZL6D7Aqp/IP6kCAIUEI6PoTIFb7cZdHsra2puzsbGrXrp3K7+WAQfMTj1HlSBzUaXbioE7zU3kGdR/0PXXlqfwnSuSX/9Sv5p0KLi1tbW2YmZlhxYoVuHHjBgKVWTCIMcYY+8BwUFdOyn+iRH5pAETvU1oF7K9iOTg44PXr1+jYsSOmT5+u7u4wxhhjGqnKT5Rgld/ly5eFRU8ZY4wxphifqWOMMcYYqwI4qCsnFXtPHWOMMcY+dBzUlZOKvaeOMcYYYx86DuoYY4wxxqoADuoYY4wxxqoADurKSUXeU6eP/195UL/c98YYY4wxTcRBXTnhe+qYMpycnEBEMDY2rpD9ubu7V9hzc5ctW4YdO3ZUyL4q6nO0s7NDREQE9PX5v0+MMc3DQV0VkH8QHVExg2pmZobffvsNISEhSE9PR3h4OLy9vdGrVy+l23B3dwcRgYiQmZmJFy9eYM2aNahevbpMPSLCsGHDhG1tbW0cOnQIkZGRaNmypVDH2tq6bA6uCps9ezYmTZpU7vsxMzPD7Nmz8csvv8jll/Z74+fnh40bN5Z1l5Xy6NEj3LhxA/PmzVPL/hljrCi8+HAl5wzgt3zbPgAiAMwGUF7nY6ytreHv74+EhAQsXLgQDx48QLVq1dC/f39s27YNdnZ2Srd19uxZTJ48GdWqVUOHDh2wb98+EBG+++47hfX19PRw/PhxNG3aFN27d0dYWFgZHdWHISkpqUL2M3XqVPz7778IDw8X8or73nTp0qVC+lZa7u7u2LlzJ1atWoWcnBx1d4cxxmSo/eG2VTkV9WDe0j7c2hmgnPeJ8qW8POdyOqbTp09TREQE6evry5XlPex79+7ddOrUKZkybW1tiomJoSlTphAAcnd3J09PT5k6x44do4CAAJk8IqJhw4aRsbExXbt2je7evUtmZmZydfI+x5o1a9KBAwfozZs3lJaWRk+fPiVXV9dCj0ckEtHChQvp2bNnlJ6eTi9fvqQffviBANCFCxdoy5YtMvVNTU0pIyODevXqRQBoxowZ9PTpU5JIJPT69Ws6evSoUFdHR4c2b95MMTExJJFI6OrVq/TRRx8J5U5OTkREZGxsTEZGRpSWlkYDBgyQ2d/w4cMpKSmJ9PT0CAA1aNCAjhw5QvHx8fT27Vs6efKk0t+h/J/5tGnTKCoqikQikUydkydP0u7duwkALVmyhAIDA+nLL7+k8PBwSk1NpSNHjlCNGjWK3M+DBw/kPvPivjfGxsbFfm/c3d2pIGtra+Fz7NWrF92+fZtSU1PJ39+fbG1tZdqaPn06PX/+nDIyMujx48c0ceJEue/RF198QSdOnKDU1FR6+vQpDRkyRKZOtWrVSCKRCOP/oaW8n/GSpNL+zuNUfCruYfGc1J+KG6Oi4gYlkvoPsComV1dXCgoKokePHpVLUCcGKBzyAV1eygHo5ft6ZXlcJiYmlJOTQ999912R9bp27UpZWVlkbm4u5A0fPpySk5PJwMCAAPmgrmXLlvTq1Su6fv26TFtERF999RXdvXuXrl27pvCPSv6gbsuWLfTff/9Rhw4dyNramnr37k1jxowptK+rV6+mt2/f0ueff06NGjUiBwcH+uKLLwgAjRs3jt6+fUs6OjpC/Tlz5tCLFy8IAHXo0IGysrJo7NixZGVlRW3btqVZs2YJdTdt2kSRkZE0YMAAsrOzI3d3d3r79i2ZmJgQIBvUAaC//vqLPDw8ZPp39OhRIU9bW5uCgoJo165d1KpVK2revDkdOHCAHj16RNWqVSt2/PJ/5jVr1qT09HSZ4MTExEQmb8mSJZScnEznz58ne3t7cnR0pKdPn9KBAweK/Y506tRJpe+NsbFxsd+bGjVqkL+/P+3YsYPMzMzIzMyMxGKx8Dlev36devToQXZ2dnT58mW6du2aTDsZGRk0Y8YMatq0Kc2dO5eysrLo448/lvkehYeH09ixY6lx48a0adMmSkpKEsYrL12/fp2WLFlSpj9blSVxUKfZiYM6zU8c1FXiVF5n6pygOJgrmJzK+Hg6duxIRETDhw8vtu7Dhw9p4cKFwraXlxft2bNH2HZ3d6esrCxKTk4miURCRETZ2dk0YsQImXaIiNLT0yk4OFg4W1VU8vLyEs405aXC/hAZGhqSRCIRgriCqXr16vT27VsaNWqUkHf37l366aefCAA5OztTQkICGRoayr1XX1+fMjIyaNy4cUKetrY2RUZG0oIFC3LHsUBQN2zYMJmzcnln7/r3708AaMKECfTo0SOZ/VSrVo1SU1Opb9++xX42BQNpT09P2rVrl7A9bdo0ioyMFM7eLVmyhLKysqh+/fpCnf79+1N2drbc2dK8ZG9vT0REDRo0UOl7k/cZFPe98fPzo40bN8r+POQ7U5eXN3DgQCIiql69OgGga9eu0Y4dO2Ted+TIEfr7779lvmvLli2TGUMiEj7/vHT8+HGZPn1IiYM6zU4c1Gl+Ks+gjidKVFL1yrieskQikdJ1d+3ahcmTJwMA6tati4EDB2LPnj0ydfz8/NC2bVt07twZe/fuhbu7O06cOCHX1t9//w1bW1t89dVXxe73999/x9ixYxEYGIg1a9aga9euhda1s7ODrq4uLly4oLA8IyMD+/fvx5QpUwAA7dq1Q6tWrbB3714AwLlz5/Dy5Uu8ePECHh4eGD9+PPT09AAAjRs3ho6ODvz9/YX2srOzcevWrULvOzxz5gyysrIwdOhQAMCnn36KpKQknD9/HgBgb2+PJk2aIDk5WUjv3r2Drq4uGjduXOxnU9DBgwfx6aefQkdHBwAwYcIEHD58GEQk1AkPD8erV6+E7evXr0NLSwvNmjVT2Gbe8aenpwt5Zf29Kcz9+/eF19HR0UIbQO5Y5x8LAPD395cbi/xtpKWlITExUWgjj0Qi4RmwjDGNw0FdJRVdxvWU9ezZM0ilUjRv3rzYuh4eHmjUqBG6dOmCiRMnIjQ0FNeuXZOpk5qaipCQENy/fx9TpkxB586dhQAqv7zAav369Zg7d26R+/Xx8YG1tTU2btyI+vXr48KFC1i+fLnCuhKJpNjj2LVrF/r27QsLCwtMnjwZFy9eFCYApKSkoH379hg3bhyio6OxbNky3Lt3r8RLa2RlZeHYsWMYP348AGD8+PE4cuSIcEO+oaEhAgIC0LZtW5lka2uLQ4cOqby/U6dOQSQSYfDgwWjQoAEcHR1x8ODBEvU9T1xcHADAxMREyCvr701hsrKyhNd5galYrNqvufxt5LVTsI1atWohNjZWpXYZY6y8cVBXSV1F7ixXaSHlUgDh7+uVpfj4ePj6+mLmzJkKz1TkD2bevXuHkydPYvLkyZg0aRLc3d2LbJuIsHLlSqxYsQK6urpy5R4eHpg0aRLWrl2L+fPnF9lWXFwcPDw88Nlnn2HOnDlwcXFRWO/Zs2dIS0tD7969C23r4cOHuHPnDqZNm4bx48fLnTXKycnBhQsX8O2336JNmzZo2LAhevXqhZCQEGRkZMDBwUGoq62tjY4dOyI4OLjQ/R08eBADBgxAixYt0KtXL5kg67///kPTpk3x5s0bhISEyKSSzGzNyMjAiRMnMGHCBIwbNw5PnjxBYGCgTB0rKyvUq/f/53y7dOmCnJwcPHnyRGGbISEhSExMRIsWLYS8svzeZGZmQktLS+VjffTokcxYAICDg0ORY1GYVq1ayX1OjDGmCdR+fbkqp6o4+9XGxoZevXpFDx8+pBEjRlCTJk2oefPmNGvWLAoODpap26dPH0pPT6esrCyqV6+eTJmi2a9aWloUERFB8+fPF/LyZr/mbY8fP56ysrKE+9IKpqVLl9LQoUOpcePG1KJFC/L29qbbt28Xejw//fQTvX37lj777DNq1KgRde7cWZihm5emTp1K6enp9PbtW+EeLQA0ePBgmjVrFtnb25OVlRVNnz6dsrOzqUWLFgSANm7cSJGRkdS/f3+ZiRI1a9YkQP6eurz08uVLCgwMpGfPnsnk6+np0ZMnT+jixYvUvXt3atiwITk5OdHmzZvJwsKi2LFT9Jn37t2bJBIJPXr0iBYtWiRTljdR4p9//qE2bdpQ9+7d6fHjx3To0KEi93Ps2DFat26dSt+b/J9BUd+bHTt20M2bN8na2ppq165NIpFI4eeYd29f3s/XsGHDKCMjg6ZPn05NmjQRJko4OTkV+l0DQPHx8eTi4iLzc5uTk0NWVlbl8vOl6YnvqdPsxPfUaX7iiRKVMJX37Ne85AxQBGSDupcov4AuL5mbm9OWLVsoNDSU0tPTKSIigk6ePCnzBzIvhYaGytyMnpcUBRgA6Ntvv6WYmBhh6QtFf2jHjh1LWVlZ9M0338i9f9GiRRQUFESpqakUFxdHnp6e1KZNm0KPRSQS0Q8//EChoaGUkZFBYWFhcrM0DQwMKCUlhbZu3SqT7+DgQH5+fvT27VtKTU2lu3fvykyqqF69Om3evJnevHlT7JIm+dtdvXo1ERH9/PPPcv01MzOjvXv3Cm0+f/6cduzYodQvAEWfuUgkoqioKCIisrGxkSnLW9Jk+vTpFBkZSWlpafTXX38JQWlhacCAARQRESG3XEpR35uCn0Fh35umTZvSv//+S6mpqXJLmhQV1AHKLWlSXFD33Xff0dmzZ8v150uTEwd1mp04qNP8xEFdJU7leaYuLxni/wO6/ij7ZUxKkwwMDCghIYGcnZ3V2o/S/CHKG6vs7Gxq166d2j/Tikx5QV1J3nvz5k0aO3ZsicZIU743BVO1atUoLCyMunXrpva+qCtxUKfZiYM6zU88+5UVKf99dVdR+H12FUkkEqFOnTpYvHgxEhIS4O3tre4ulYi2tjbMzMywYsUK3Lhxg++jUsGXX34JbW3VHlqj6d8bKysrrFy5Ev/++6+6u8IYY3L4MWFVQBoA5ReMqBhWVlYICwtDREQEJk2aVGkfp+Tg4IBLly7hyZMnGDlypLq7U6zk5ORCywYOHKj0LNKycO/ePdy7d0+l92j69yZvUgpjjGkiDupYuXj58qVKa5NpqsuXL1eq42jbtm2hZVFRUSq3t3TpUixdurQUPVJNVfneMMaYOnBQx1gVwmeRGGPsw8X31DHGGGOMVQEc1DHGGGOMVQEc1DHGGGOMVQEc1DHGGGOMVQEc1JUTV1dXBAUF4datW+W/M319CMsPK3iuJmOMMcaqPg7qyombmxtatmyJTp06qbsrrBIgIgwbNqxC9uXi4oL4+PgK2VevXr0QHBwMsbh8f9VU1DH1798fgYGBvOwKY0wjcVBXFeT/g+noKLtdTszMzPDbb78hJCQE6enpCA8Ph7e3N3r16qV0G+7u7iAiEBEyMzPx4sULrFmzBtWrV5epVzDg0dbWxqFDhxAZGYmWLVsKdaytrcvm4Kq4I0eOwNbWtkL2tXbtWqxYsQJSae5zTlxcXIQxz8nJQUREBPbs2YM6deoo3WZoaChmz55dXl0ukq+vL7KysjBhwgS17J8xxorCQV1l5+wMPHr0/9s+PkBYWG5+ObG2tkZAQAB69eqFhQsXonXr1hgwYAD8/Pywbds2ldo6e/YszM3N0ahRI8ydOxdfffVVkYvd6unpwdvbGx07dkT37t0RFBRU2sP54KSnpyM2Nrbc9+Pg4IDGjRvj+PHjMvmJiYkwNzdHgwYNMG3aNAwcOBD79+8v9/6Ulb179+Lrr79WdzcYY0wOB3WVmbMzcOwYUL++bL6FRW5+OQV2bm5uICJ06tQJJ06cwLNnzxAcHIyNGzeiS5cuAIDdu3fj1KlTMu/T1tZGTEwMpkyZIuRlZGQgJiYGkZGR8PLywvnz59G3b1+F+zU2Nsa5c+dQv359dO/eHWFhYQrr1axZEwcOHMCbN2+QlpaGp0+fFnlmxc/PD1u2bMGWLVuQkJCA2NhYLFu2TChfvHgxHjx4IPe+wMBAoZ6TkxNu3ryJlJQUxMfH49q1a7CyshLqTp8+Hc+fP0dGRgYeP36MiRMnFtoff39/rF69WibP1NQUmZmZcHR0BADo6Ohg3bp1iIyMREpKCm7cuAEnJ6dC28wv/6XKpk2bgojQrFkzmTpz5szB8+fPhWMjIgwaNAj37t2DRCLB9evXhbOkhRk7dizOnTuHjIwMmXwiQkxMDKKjo+Hj44PffvsNffr0ga6uLi5cuIAtW7bIHXtGRgZ69eoFPz8/NGzYEJs2bRLO+OXXr18/BAcHIzk5WfgPQx6RSITFixcjIiIC6enpCAwMRP/+/YVya2trEBGcnZ1x8eJFpKam4u7du8J3Os+pU6fQsWNHNGrUqMjjZ4wxdSBO5ZeMjIyIiMjIyEiuzNramjw8PMja2lr1tsViQng4ISeHhL9u+VNODuHly9x6ZXg8JiYmlJOTQ999912R9bp27UpZWVlkbm4u5A0fPpySk5PJwMCAAJC7uzt5enoK5S1btqRXr17R9evXZdoiIvrqq6/o7t27dO3aNTI2NpbbHxEJn+OWLVvov//+ow4dOpC1tTX17t2bxowZU2hf/fz8KCkpiTZu3Ei2trY0fvx4SklJoalTpxIAsrCwoOzsbProo4+E97Rt25ZycnLIxsaGtLS0KD4+ntauXUuNGjWi5s2b0+eff06WlpbCcWdkZNCMGTOoadOmNHfuXMrKyqKPP/5Ypv/Dhg0jAOTq6kphYWEyfZw5c6ZM3h9//EHXrl2j7t27U6NGjWj+/PkkkUioSZMmxY6hi4sLxcfHC9u3bt2iZcuWydS5ffu2kOfk5EREREFBQdSnTx9q1aoVeXt704sXL0hbW7vQ/dy9e5e++eabIvcNgObMmUNERBYWFjRu3Dh6+/Yt6ejoyJS/ePFC+P6Fh4fTjz/+SGZmZmRmZia0m5GRQf/88w916NCB2rVrR0FBQXTgwAGZdhISEmjMmDFka2tLq1evpoyMDOEzs7a2JiKi4OBgGjRoEDVt2pT++usvCg0NJS0tLZk+R0dHk4uLS5n+bFWWpOjnT9lUqt95nJRKWlpa9Mknn8h9ZzlpTipujIqKG5RI6j/AqpzKLahzclIczBVMTk5lejwdO3YkIqLhw4cXW/fhw4e0cOFCYdvLy4v27NkjbLu7u1NWVhYlJyeTRCIhIqLs7GwaMWKETDtEROnp6RQcHEx6enrF7tfLy4t2794tk1fUHyI/Pz8KCgqSyVu1apVM3unTp2nbtm3C9ubNm+nixYsE5AYaREQ9evRQ2P61a9dox44dMnlHjhyhv//+W+YY84I6U1NTyszMpO7duwvl/v7+tGrVKgJAlpaWlJWVRfXq1ZNp89y5c/TLL78U+/kUDKxmz55Nz549E7abNm1KRETNmjUj4P+DutGjRwt1TExMKDU1lUaNGlXofuLj42nixIlF7rtJkyb0+PFjunXrFhkbG1P16tXp7du3Mu3evXuXfvrpJ2E7NDSUZs+eLdcuEVGjRo2EvBkzZlB0dLSwHRkZSd9//73M+27evElbt24l4P+DuilTpgjldnZ2Mp9FXgoICJDp04eUOKjT7MRBnean8gzq+PJrZVWvXtnWU5Iqs/527dqFyZMnAwDq1q2LgQMHYs+ePTJ1/Pz80LZtW3Tu3Bl79+6Fu7s7Tpw4IdfW33//DVtbW3z11VfF7vf333/H2LFjERgYiDVr1qBr167FvufGjRsy29evX0fTpk2FWZs7d+7EuHHjUL16dVSrVg3jx48XjiU+Ph7u7u7w9fWFt7c3vv76a5nLfnZ2dvD395dp39/fH3Z2dgr7EhcXh3/++Ue4ZNywYUN069YNBw8eBAC0bt0a2traePr0KZKTk4Xk5OSExo0bF3usBR0+fBgNGzZE586dAQATJkxAQEAAnjx5IveZ5ImPj8eTJ08KPQYg9/7H9PR0ufyaNWsiOTkZqampePLkCWJiYoRjzcjIwP79+4VL9O3atUOrVq2wd+/eYo8jNTUVL168ELajo6NRt25dAICRkREsLCyUGof79+/LtAFAaCePRCKBPi8fxBjTMBzUVVbv/9iUWT0lPXv2DFKpFM2bNy+2roeHBxo1aoQuXbpg4sSJCA0NxbVr12TqpKamIiQkBPfv38eUKVPQuXNnmXvu8uT9oV+/fj3mzp1b5H59fHxgbW2NjRs3on79+rhw4QKWL1+u2oEWcOrUKWRkZMDZ2RlDhgxBtWrVcOzYMaF8ypQp6Nq1K/7991+MGTMGT58+FYKkkjh48CBGjhwJbW1tjB8/Hvfv38fDhw8BAIaGhsjOzkaHDh3Qtm1bIdnZ2ZVoVmhMTAwuXryI8ePHAwDGjx8vBJClERcXBxMTE7n8pKQktG3bFq1atYKBgQGcnJzw7NkzoXzXrl3o27cvLCwsMHnyZFy8eBHh4eHF7i8rK0tmm4hKtJRK/nby7tkr2E6tWrUqZLIJY4ypgoO6YhgbG+P27dsIDAzEgwcPMHXqVHV3KdfVq0BEBPB+qQg5UikQHp5brwzFx8fD19cXM2fOVHimwtjYWHj97t07nDx5EpMnT8akSZPg7u5eZNtEhJUrV2LFihXQ1dWVK/fw8MCkSZOwdu1azJ8/v8i24uLi4OHhgc8++wxz5syBi4tLkfULBmBdunQRAlgAyMnJwb59+zB58mRMnjwZhw8fljsLdffuXaxevRoODg54+PChECQ9evQIDg4OMnUdHBwQHBxcaH+8vLygq6uLAQMGyAVZgYGB0NbWRt26dRESEiKTYmJiijzOwhw8eBBjxoxBly5d0KhRIxw+fFiuTv4JAzVr1oStrS0e5Z95XUBgYCBatGghly+VShESEoLQ0FCFZ/IePnyIO3fuYNq0aTJnRPNkZmZCS0tLlcNDcnIyoqKiVB4HRapXr47GjRsjMDBQpfcxxlhFUPv1ZU1OYrFYuI9LX1+fXrx4QbVq1VL6/eV2Tx1AcHbOnRBRcLJEXp6zc7l8JjY2NvTq1St6+PAhjRgxgpo0aULNmzenWbNmUXBwsEzdPn36UHp6usJ7wApOlABy7zWIiIig+fPnC3n57zcDQOPHj6esrCxasGCBwv4tXbqUhg4dSo0bN6YWLVqQt7c33b59u9DjyZso8euvv5KtrS2NHTuWkpOT6csvv5Sp16RJE8rKyqKsrCzq1KmTkN+wYUNauXIldenShaysrKhv374UGxtL06dPJwA0bNgwysjIoOnTp1OTJk2EiRJO+e53LHiMAGj//v0UGBhIOTk5wqSL/GUvXrwgZ2dnatiwIXXs2JG+++47GjRoULHjp2iygqGhIaWmplJgYCCdO3dOpizvnroHDx5Qr169qGXLlnTy5EkKCwujatWqFbqf//3vf3Kfu6J956X892pNnTqV0tPT6e3bt1S9enWZer6+vnTy5EmqX78+1a5du9B2hw0bRpR7qo2A3HsHExISaPTo0WRra0urVq1SOFHC3t5epk9EJDNWTk5OlJSUpNT9nVUx8T115ZnEBDgRMPb9v6pPdON76jQ/8UQJDUkmJiYUGhoq/CFRJpVrUAfkBm4REbJB3cuX5RbQ5SVzc3PasmULhYaGUnp6OkVERNDJkydl/vjlpdDQUJlJAXlJUVAHgL799luKiYkhfX19AhQHPGPHjqWsrCy52ZUAaNGiRRQUFESpqakUFxdHnp6e1KZNm0KPxc/Pj7Zu3Upubm6UkJBAb9++pRUrViise/nyZXrw4IFMXt26denEiRMUFRVF6enpFBoaSj///DOJRCKhzvTp0+n58+eUkZFBjx8/lptAoOgYBwwYQEREly5dkuuHtrY2/fzzz/TixQvKyMigqKgoOn78OLVq1arYsSsssDp8+DAREU2aNEkmPy+oGzx4MD148IDS09Ppxo0b1Lp162J/XtLS0sjW1rbYfQOywYKBgQGlpKQIkxjyp86dO9Pdu3eFyTWFtVswqBOJRPTTTz9RREQEZWRkUGBgIPXv31/m51GZoG779u30+++/l+vPlyYnDurKKzkTEE4QnvlI77dV+13OQZ3mJw7qSpEcHR3J29uboqKiFP7hBHKXkAgNDSWJREI3btygjh07ypQbGxvT3bt3KTU1lVxdXVXaf7kHdQDB0PD/A7r+/ct8GZPSJAMDA0pISCDncg4yi0vFzX7duHGjUu08e/aM5s6dq/bPtSJTXlBXkj/ma9eupe3bt6s8RtbW1pSdnU3t2rVT+/HnT7Vr16a4uDhq2LCh2vuirsRBXXkkZwJy3qf8QV1envK/Pzmo0/zEs19LwcDAAPfu3cPMmTMVlo8ePRobNmzA0qVL0b59e9y7dw++vr4yjy1KTExE27ZtYWNjg/Hjx8vNhFO7/PfVXb1a+H12FUgkEqFOnTpYvHgxEhIS4O3tre4ulYqpqSn+97//wdzcvNh7A9n/++WXX/Dy5UulZ01ra2vDzMwMK1aswI0bNzTuvrWGDRvC1dW10IWvGVOdGMDmfK8LlgHAJgVljMnTVncHypuPjw98fHwKLZ83bx527twpLJkwffp0DB48GFOmTMGaNWtk6r558wb37t2Do6Oj3KOP8ujo6Mg8u9TIyAgAoKWlJXdzt6o3excqLQ3QsAeMW1lZISwsDBEREZg0aRJycnLU1pe8gEIkEsk9gUBZsbGxiI2NxZdffomEhIQy7F3ZO3PmjPDkiYJWrlyJVatWVVhfEhMTldpf3hh1794dfn5+ePLkCUaOHFne3VNZQEAAAgIC1N0NtSmLnyVA8e/DDxWRE6RSyyJqiAFYQSz+GCLR5WLb09LSglgs5s9XgxU3RqUZuyof1BWlWrVq6NChg8wfHSLC+fPnhbXN6tati7S0NKSkpKBGjRro0aMHfv/990Lb/P777/Hzzz/L5fft2xcSiUQmz9TUFHp6ejAyMpKZNVoVJCQkoGbNmsK2uo/PwMCg0LLhw4cDKLqPmnQsxZk3b57C2cNA7uxlVft/9+5d4fjL89gNDAwQGBhYqT7rD1FRP0vFMTIygp6eHnr06IG4uLgy7FXlFRXVA8qckLa3HwALi+LXRtTS0kL79u0hEonU+p9pVrjixkhPT6/EbX/QQZ2pqanwPNL8YmJihHXYrK2t8ccff0AkEkEkEmHLli3CemGKrFq1Chs2bBC2jYyMEBUVhXPnziE5OVmmrrW1NXr16oXk5GQkJiaW4ZGx/PLOLiQlJZXq7EJlURm/Sx/aGFVWpR2nmjVrQiKR4MqVK3j58mVZd69SIkoDsLDYevfu+eD+feXO1BERfHx8OKjTUMWNUd4VvpL4oIM6Zdy+fRvt2rVTun5mZiYyMzPl8nNycuQGj3/gKkbeHx8OFjQXj1HlUFbjpOj34YfrEoAIABZQfN+cFEAkpNJL718XTyqV8mes4Yoao9KM2wd952VcXByys7NhZmYmk29mZobXr1+Xqm1XV1cEBQXh1q1bpWqHMcZYVSYFMDvf64JlADBHQRlj8j7ooC4rKwsBAQHo3bu3kCcSidC7d2+Z51yWhJubG1q2bIlOnTqVtpuMMcaqNE8AIwFEFciPfJ/vWeE9YpVTlb/8amBggCZNmgjbNjY2sLe3x7t37xAREYENGzZg3759uHPnDm7duoU5c+bAwMCg1MtWuLq6YubMmSV69iRjjLEPjScALwCOAOoBiAZwFXyGTsOIxYCjI1CvXu6z1TVkGbH81L4QX3mmvIVTC3J3dxfqzJw5k8LCwoSV8vM/Aqq0qSIWH9aHvvA4CX3oq/0z18RUmgVTOfEYcSqbceLFh8s/8eLD5ZicnQnh4bJPcAoPV/kJTrz4cClcvnxZmLmaP02ePFmos23bNjRs2BC6urro0qUL3wfHKhwRYdiwYRWyLxcXF8THx1fIvnr16oXg4OByP2NdkcdU1ZTVZ3f9+nWMGDGiDHrEmAZydgaOHQMsLGTzLSxy852d1dOvAqp8UKcuFTlRQpxvGB3hKLNdXszMzPDbb78hJCQE6enpCA8Ph7e3N3r16qV0G+7u7sJ/djIzM/HixQusWbNGZvFmQD7g0dbWxqFDhxAZGYmWLVsKdaytrcvm4Kq4I0eOwNbWtkL2tXbtWqxYsQLS95cnXFxchDHPyclBREQE9uzZI/MEl+KEhoZi9uzZ5dXlChcaGgoiQufOnWXyN27cCD8/PzX1SnUrVqzA6tWrlX56CGOVhlgMbN78/68LlgHApk3yZWqg/h5UURU1UcIZzniER8K2D3wQhjA4o/z+12BtbY2AgAD06tULCxcuROvWrTFgwAD4+flh27ZtKrV19uxZmJubo1GjRpg7dy6++uorLF26tND6enp68Pb2RseOHdG9e3cEBQWV9nA+OOnp6YiNjS33/Tg4OKBx48ZyT19JTEyEubk5GjRogGnTpmHgwIHYv39/ufenopTkPxgSiUTuCTaVzdmzZ2FkZISBAwequyuMlS1HR8DSsvCgTSwGrKxy66kZB3WVmDOccQzHUB/1ZfItYIFjOFZugZ2bmxuICJ06dcKJEyfw7NkzBAcHY+PGjejSpQsAYPfu3Th16pTM+/IWep4yZYqQl5GRgZiYGERGRsLLywvnz59H3759Fe7X2NgY586dQ/369dG9e/dCn79Zs2ZNHDhwAG/evEFaWhqePn2KCRMmFHo8fn5+2LJlC7Zs2YKEhATExsZi2bJlQvnixYvx4MEDufcFBgYK9ZycnHDz5k2kpKQgPj4e165dg5WVlVB3+vTpeP78OTIyMvD48WNMnDix0P74+/tj9erVMnmmpqbIzMwUHv+lo6ODdevWITIyEikpKbhx4wacnJwKbTO//JfbmjZtCiJCs2bNZOrMmTMHz58/F46NiDBo0CDcu3cPEokE169fF86SFmbs2LE4d+4cMjIyZPKJCDExMYiOjoaPjw9+++039OnTB7q6urhw4QK2bNkid+wZGRno1asX/Pz80LBhQ2zatEk445dfv379EBwcjOTkZOE/DHlEIhEWL16MiIgIpKenIzAwEP379xfKra2tQURwdnbGxYsXkZqairt37wrf6fL0xx9/oEuXLkUGRH5+fti4caNMnqenp8ykrtDQUCxatAj79u1DcnIywsLCMGTIEJiamuLkyZNITk7GvXv30KFDB7n2hw0bhqdPn0IikcDHxwcNGjQQyho1aoSTJ0/i9evXiIyMxK1bt2RWDQBy1906c+YMxo4dW9KPgTHNVK9e2dYrRxzUVVJiiLH5/UOgC15uzdvehE1lfinWxMQEAwYMwLZt25CWliZXnvc0g127dmHAgAEyf1Q/+eQT6Ovr48iRIwrbbtmyJbp166Zw8WZzc3Ncvpy7mrqTk5PcU0DyW758OVq0aIGBAwfCzs4OM2bMwNu3b4s8LhcXF2RnZ6NTp06YPXs25s2bh6lTpwIA9uzZAzs7O3z00UdC/bZt26JNmzZwd3eHlpYWTp48icuXL6NNmzbo2rUr/vjjDyHgGD58ODZv3oxff/0VrVq1wo4dO+Du7o6PP/5YYV8OHjwo94dxzJgxePXqFa5evQoA2Lp1K7p27YqxY8eiTZs2OHr0KHx8fGRmeivj2bNnuH37tlzQO2HCBBw6dEgmb926dZg/fz46duyI2NhYnDp1CtrahU+gd3R0xJ07d4rtg0QigZaWFrS1tbFr1y6MHz8eOjo6QvnEiRMRFRWFixcvYsSIEYiIiMDixYthbm4u8/3S19fHggUL8Nlnn6FHjx6wsrLC+vXrhfLZs2dj/vz5WLBgAdq0aQNfX194e3vLfWa//PIL1q9fj7Zt2+Lp06f4888/y/05mqGhodi+fTtWrVpV6suXc+fOhb+/P9q1a4fTp09j//798PDwwIEDB9C+fXuEhITAw8ND5j36+vpYtGgRPv/8czg4OKBmzZo4fPiwUG5oaIgzZ86gd+/e6NGjB3x8fHDq1ClYWso+s/TWrVuFPneYsUorOrps65Uz9c8oqYLJ1dWVgoKC6NGjR+Uy+9UJTiQ7BUdxcoJTmR5Xx44diYho+PDhxdZ9+PAhLVy4UNj28vKiPXv2CNvu7u6UlZVFycnJJJFIiIgoOzubRowYIdMOEVF6ejoFBweTnp5esfv18vKi3bt3y+QVNWPPz8+PgoKCZPJWrVolk3f69Gnatm2bsL1582a6ePEiASATExMiIurRo4fC9q9du0Y7duyQyTty5Aj9/fffMsc4bNgwAkCmpqaUmZlJ3bt3F8r9/f1p1apVBIAsLS0pKyuL6tWrJ9PmuXPn6Jdffin283FxcaH4+Hhhe/bs2fTs2TNhu2nTpkRE1KxZs9zv2vsZ5KNHjxbqmJiYUGpqKo0aNarQ/cTHx9PEiROL3HeTJk3o8ePHdOvWLTI2Nqbq1avT27dvZdq9e/cu/fTTT8J2aGgozZ49W65dIqJGjRoJeTNmzKDo6GhhOzIykr7//nuZ9928eZO2bt1KQO7PIxHRlClThHI7OzuZz0KZREQq/UznHY+pqSklJiYKn9nGjRvJz89P5nu6ceNGmfd6enrKzOQPDQ0lDw8PYdvMzIyIiJYuXSrkde7cmYiIzMzMZD67/LP+mzVrRkREHTt2lOtv3s/SgwcPaObMmTJlQ4YMoezsbBKJRAqPlWe/ln/i2a/lkMTi3FmuOTmK/9Tm5BBevsytVwZjxLNfNVB531NXD8qd5lW2nrJUOYuwa9cuYZZx3bp1MXDgQOzZs0emjp+fH9q2bYvOnTtj7969cHd3x4kTJ+Ta+vvvv2Fra4uvvvqq2P3+/vvvGDt2LAIDA7FmzRp07dq12PfcuHFDZvv69eto2rSpMGtz586dGDduHKpXr45q1aph/PjxwrHEx8fD3d1dOPPz9ddfy5xBsrOzg7+/v0z7/v7+sLOzU9iXuLg4/PPPP8LZs4YNG6Jbt244ePAgAKB169bQ1tbG06dPkZycLCQnJyc0bty42GMt6PDhw2jYsKFwo/6ECRMQEBCAJ0+eyH0meeLj4/HkyZNCjwHIvf8xPT1dLr9mzZpITk5Gamoqnjx5gpiYGOFYMzIysH//fuESfbt27dCqVSvs3bu32ONITU3FixcvhO3o6GjUrVsXQO6zFC0sLJQah/v378u0AUBoR5EzZ87IjAMABAUFCdtFPSs6v7i4OKxfvx7Lli1DtWrVlHqPIvn7n3dGO//tA3l5+Y8pKysLt2/fFrafPHmC+Ph44bMxMDDAunXrEBwcjJcvXyI5ORl2dnYytxgA/3/WteBkJ8YqNakUyJucVXBNurztOXM0Yr26Kr/4cFUVDeVO8ypbT1nPnj2DVCpF8+bNi63r4eGB1atXo0uXLujWrRtCQ0Nx7do1mTqpqakICQkBAEyZMgX37t3DlClT5IK//fv3w9vbG3v27IFIJJK7tyg/Hx8fWFtbY9CgQejbty8uXLiAXbt24euvvy7BEec6deoUMjIy4OzsjMzMTFSrVg3Hjh0TyqdMmYLffvsNAwYMwJgxY7BixQr07dsXN2/eLNH+Dh48iN9++w2zZs3C+PHjcf/+fSE4MDQ0RHZ2Njp06CD3jMCUlBSV9xUTE4OLFy9i/PjxuHnzJsaPH4/ff/+9RP3OLy4uDiYmJnL5SUlJaN++PaRSKaKjo4XAz9jYGEDufwbu3r0LCwsLTJ48GRcvXkR4eHix+8vKypLZJqISLaWSv528S+hFtTN16lTo6ekJ28+fP8egQYMQFRWlsF9F2bBhA1xdXeHq6ipXJpVK5f5TpSj4U7Q/VY+poPXr16Nv375YsGABYmJi8ObNGxw7dkzmMjkA1KpVCykpKQqDecYqNU9PYOTI3Fmw+W87iIzMDeg8PdXWtfz4TF0ldRVXEYEISAtZbVwKKcIRjqu4Wqb7jY+Ph6+vL2bOnAl9fX258rw/zADw7t07nDx5EpMnT8akSZOKfUoHEWHlypVYsWIFdHV15co9PDwwadIkrF27FvPnzy+yrbi4OHh4eOCzzz7DnDlz4OLiUmT9gstJdOnSRQhggdwHLO/btw+TJ0/G5MmTcfjwYbk/XHfv3sXq1avh4OCAhw8fYvz48QCAR48ewcHBQaaug4MDgoODC+2Pl5cXdHV1MWDAAIwfP144SwfkTtDQ1tZG3bp1ERISIpOKutewKAcPHsSYMWPQpUsXNGrUSOZ+qvyfSZ6aNWvC1tYWjx49kquXv58tWrSQy5dKpQgJCUFoaKjCP/4PHz7EnTt3MG3aNJkzonkyMzNVvsctOTkZUVFRKo+DMl69eiUzBgDw8uVLYVuZgDRPamoqli9fjkWLFsHIyEimLDY2FvXy3YgtFovRqlWrUvU9T7Vq1WTuGbW1tYWJiYkwvg4ODti7dy9OnjyJ4OBgvH79Gg0bNpRrp1WrVggMDCyTPjGmcTw9gYYNgY8/BsaNy/3XxkZjAjqAg7pyU97r1Ekhxez3D4EuGNjlbc/BnEKDvtKYOXMmtLS0cOvWLYwYMQJNmjRB8+bNMWvWLLln5u7atQsuLi6ws7PDvn37im376NGjyMnJwcyZMxWWHzhwAC4uLli9ejUWLFigsM7SpUsxdOhQNG7cGC1atMAnn3yCp0+fFrlfKysr/Prrr7C1tcXYsWMxa9YsbM5blyjfsfTq1QsDBgyQCTQaNmyIlStXokuXLrCyskLfvn3RtGlT4Q/iunXrMGnSJEyfPh1NmjTB3LlzMWLECJmb+AtKS0vDyZMnsXz5ctjZ2eHPP/8Uyp49e4YDBw7Aw8MDzs7OaNiwITp27IjvvvsOgwYNKvI4C3PixAkYGRnh999/h5+fn3DZMb+ffvoJvXr1QsuWLbF3717ExcXh5MmThbbp6+uL7t27l6g/u3btwnfffQeRSATPAr8ww8LC0KNHD9SvXx+1a9dWus1169bh22+/xejRo2Fra4tVq1ahbdu2cuOsbn/88QcSExOF/xTkuXjxIgYPHoxBgwahWbNm+P3331GzZs0y2WdmZia2bNmCTp06oX379ti7dy+uX78uXJJ99uwZRowYAXt7e7Rq1QqHDh1SeKbP0dER//zzT5n0iTGNJJUCly8Dhw/n/qsBl1wLUv9NiFU4lfdjwpzhTBGIkLlr8yVekjNUe2yJqsnc3Jy2bNlCoaGhlJ6eThEREXTy5ElycpKfmBEaGiozKSAvubu7k6enp1z+t99+SzExMaSvn/vIs/yTCPLS2LFjKSsri7755hu59y9atIiCgoIoNTWV4uLiyNPTk9q0aVPosfj5+dHWrVvJzc2NEhIS6O3bt7RixQqFdS9fvkwPHjyQyatbty6dOHGCoqKiKD09nUJDQ+nnn3+WuVl8+vTp9Pz5c8rIyKDHjx/LTSBQdIwDBgwgIqJLly7J9UNbW5t+/vlnevHiBWVkZFBUVBQdP36cWrVqVezYFZyskJcOHz5MRESTJk2Syc+bKDF48GB68OCB8Di91q1bF7kfExMTSktLI1tb22L3DchOZjEwMKCUlBRhEkP+1LlzZ7p7964wuaawdocNGyaUAyCRSEQ//fQTRUREUEZGBgUGBlL//v1lfh6JiOzt7WX6REQKv9eFpZJOlCj4/SYimYkS2tratG3bNoqLi6PXr1/Tt99+q3CiRMG2Cn63Ch5n3mfn7OxMz58/J4lEQv/88w9ZWlrKvOfChQuUmppK4eHh5OrqKjdxo379+pSRkUEWFhaFHitPlCj/xBMlND+V50QJqPvgqnqqiGe/GsJQCOj6oz+JodwMnIpIBgYGlJCQQM4qPhuvrFNxs18LziosLD179ozmzp2r9s+1IlNeUFeSZ36uXbuWtm/frvIYWVtbU3Z2NrVr107tx8+p8HHKn1avXi03y7tg4qCu/BMHdZqfePYrK1L+S6xXcbVcLrmqSiQSoU6dOli8eDESEhLg7e2t7i6ViqmpKf73v//B3Ny82HsD2f/75Zdf8PLlS6VnTWtra8PMzAwrVqzAjRs3+P6sSuTNmzdYvHixurvB2AeNZ79WAWlIgwia9bxFKysrhIWFISIiApMmTZKbpVnZxMbGIjY2Fl9++SUSEhLU3Z0inTlzptAFYFeuXIlVq1ZVWF8SExNV2p+DgwMuXbqEJ0+eYOTIkeXYM1bWNmzYoO4uMPbB46CunLi6umLmzJklWlKhKlDl7Iy69ezZs9g6leVYAPklNvJ79+6dyu1dvny5wo6/IvfFGGNVDQd15cTNzQ1ubm4wMjJCUlKSurvDPiCvXr1SdxcYY4ypwYd5GokxxhhjrIrhoI4xxhhjrArgoI4xxhhjrArgoI4xxhhjrArgiRLlpEJnv1YDsOj9618AKP/8cMYYY4wpSQwxHOGIeqiHaERrzNqwefhMXTlxc3NDy5Yt0alTJ3V3hZUBIsKwYcPKrf0lS5ZU6EK7oaGhmD17doXs6/Llyxg3blyF7EsZLi4uiI+PL3U7169fx4gRI8qgR4yxysAZzghDGC7hEv7En7iESwhDGJzhrO6uCTioqwryL+tlVWC7nJiZmeG3335DSEgI0tPTER4eDm9vb/Tq1UvpNtzd3YUn1mZmZuLFixdYs2YNqlevLlOvYEClra2NQ4cOITIyEi1bthTqWFtbl83BfQA6duyIP/74o9z3M2TIEJiZmeHw4cNCXmhoKIgInTt3lqm7atUq+Pn5lXufysqKFSuwevVqXlePsQ+AM5xxDMdgAQuZfAtY4BiOaUxgx0FdZWcH4H/5tj8DMOd9fjmxtrZGQEAAevXqhYULF6J169YYMGAA/Pz8sG3bNpXaOnv2LMzNzdGoUSPMnTsXX331FZYuXVpofT09PXh7e6Njx47o3r07goKCSns4H6S4uDhIJJJy38/XX38tBO/5SSQSrFmzptz3X57Onj0LIyMjDBw4UN1dYYyVIzHE2IzNwuuCZQCwCZvkytRB/T1gJWcHYDQAowL5Nd7nl1Ng5+bmBiJCp06dcOLECTx79gzBwcHYuHEjunTpAgDYvXs3Tp06JfM+bW1txMTEYMqUKUJeRkYGYmJiEBkZCS8vL5w/fx59+/ZVuF9jY2OcO3cO9evXR/fu3REWFqawXs2aNXHgwAG8efMGaWlpePr0KSZMmFDo8fj5+WHz5s1Ys2YN3r59i+joaCxZskSuXr169XDmzBmkpaUhJCQEn376qVBWrVo1bNmyBa9evYJEIkFYWBi+++47odzS0hInT55EcnIyEhMTceTIEdStW1dhf/r27QuJRAJjY2OZ/E2bNuHChQvCtoODA65cuYK0tDSEh4dj8+bN0NfXL/Q488t/+fXgwYMyZ9KA3LGKjY3FZ599JnxGW7ZswZYtW5CQkIDY2FgsW7asyH2YmpqiV69ect8DAPjjjz/QpUuXIgMiPz8/bNy4USbP09NT5tm7oaGhWLRoEfbt24fk5GSEhYVhyJAhMDU1FT7ve/fuoUOHDnLtDxs2DE+fPoVEIoGPjw8aNGgglDVq1AgnT57E69evkZycjFu3bqF3794y75dKpThz5gzGjh1b5OfAGKvcHOEIS1gWGrSJIYYVrOAIxY9nrEgc1FVWIgAD8r0uWIb35WV8ZcjExAQDBgzAtm3bkJaWJleemJgIANi1axcGDBgAc3NzoeyTTz6Bvr4+jhw5orDtli1bolu3bsjMzJQrMzc3x+XLlwEATk5OiImJKbSPy5cvR4sWLTBw4EDY2dlhxowZePv2bZHH5eLigtTUVHTu3BnffPMNfvrpJ/Tp00eu3ePHj8Pe3l4IhJo3bw4g94zU0KFDMXr0aDRr1gwTJkwQgk6RSAQvLy/UqlULTk5O6Nu3Lxo1alTo53DhwgUkJCTIBI1isRhjxozBwYMHAeQGHT4+Pjh+/DjatGmDMWPGoHv37ti6dWuRx6nIwYMHMWTIEBgYGAh5/fv3h76+Pjw9PWU+o+zsbHTq1AmzZ8/GvHnzMHXq1ELb7d69O9LS0vDo0SO5stDQUGzfvh2rVq0q9eXLuXPnwt/fH+3atcPp06exf/9+eHh44MCBA2jfvj1CQkLg4eEh8x59fX0sWrQIn3/+ORwcHFCzZk2ZwNbQ0BBnzpxB79690a5dO/j4+ODUqVOwtLSUaefWrVuFPmeXMVY11EO9Mq1X3ohT+SUjIyMiIjIyMpIrs7a2Jg8PD7K2tla97YYg/KxEali2x9OxY0ciIho+fHixdR8+fEgLFy4Utr28vGjPnj3Ctru7O2VlZVFycjJJJBIiIsrOzqYRI0bItENElJ6eTsHBwaSnp1fsfr28vGj37t0yecbGxoXW9/PzoytXrsjk3bx5k1atWiXTBzc3N5k6169fp23bthEA2rx5M50/f15h+3369KGsrCxq0KCBkGdnZ0dERB999BEBoCVLllBgYKBQvnHjRpn2+vbtSxKJRDiOnTt30vbt22X24+DgQNnZ2VS9evViP6PQ0FCaPXs2ASAtLS168+YNTZw4USg/ePAg/fnnnzKfUVBQkEwbq1atksvLn2bPnk3Pnz8vdN+mpqaUmJgo7NfNzY38/Pxk9rlx40aZ93p6epK7u7tMWx4eHsK2mZkZEREtXbpUyOvcuTMREZmZmREAcnFxISKiTp06CXWaNWtGREQdO3Ys9HgePHhAM2fOlMkbMmQIZWdnk0gkKtOfM01ORf0sFZdK9TuPk1JJS0uLPvnkE9LS0lJ7X6pKcoLT+7u/i05OcCqTMSoqbigu8Zm6ysqwjOspSZWzKrt27cLkyZMBAHXr1sXAgQOxZ88emTp+fn5o27YtOnfujL1798Ld3R0nTpyQa+vvv/+Gra0tvvrqq2L3+/vvv2Ps2LEIDAzEmjVr0LVr12Lfc//+fZnt6Ohoucuj169fl9u2s8u9xr137160bdsWT548webNm2UuIdvZ2SEiIgKRkZFC3qNHjxAfHy+8v6CDBw/i448/Rr16uf/zmzBhAk6fPi2cCbW3t8ekSZOQnJwsJF9fX2hpacHGxqbY480vJycHf/31l3CJWl9fH8OGDRPOCua5ceOG3PE3bdq00GV79PT0kJ6eXuh+4+LisH79eixbtgzVqlVTqc/55R+7vDO4Dx48kMvLP55ZWVm4ffu2sP3kyROZ8TAwMMC6desQHByM+Ph4JCcnw87ODlZWVjL7lkgk0NLSkpvcwxirOq7iKiIQUejSJVJIEY5wXMXVCu6ZPA7qKquUMq6npGfPnkEqlQqXHYvi4eGBRo0aoUuXLpg4cSJCQ0Nx7do1mTqpqakICQnB/fv3MWXKFHTu3Fnmnrs8+/fvx5QpU7B+/XrMnTu3yP36+PjA2toaGzduRP369XHhwgUsX768yPdkZcku7kdEKq0xGBgYCBsbGyxevBh6enr466+/cPToUaXfX9CdO3cQEhKCsWPHQldXF87OzjJBlqGhIXbs2IG2bdsKyd7eHk2aNEFISIjK+zt48CB69+6NOnXqYPjw4cJ9ZqURFxcHExOTIuts2LABenp6cHV1lSuTSqVy/4lQFPwVHLuCeXmTNFQZz/Xr18PZ2Rk//PADHB0d0bZtWzx48AA6Ojoy9WrVqoWUlJQig1fGWOUmhRSzMVt4XbAMAOZgjkasV8dBXTlxdXVFUFAQbt26VT47eAkgEbknXBWh9+Uvy3a38fHx8PX1xcyZMxXelJ//5v53797h5MmTmDx5MiZNmiRzg7vCLhNh5cqVWLFiBXR1deXKPTw8MGnSJKxduxbz588vsq24uDh4eHjgs88+w5w5c+Di4qLkERYubxJI/u3894slJyfjr7/+wpdffokxY8Zg5MiRMDExwaNHj2BpaSlzI76dnR1MTEwQHBxc6P4OHjyICRMmYMiQIZBKpTh9+rRQ9t9//6FFixYICQmRS4qCnOJcv34dERERGDNmDCZMmICjR48iOztbpk7BJUi6dOkiBPmKBAYGwtzcHDVr1ix0v6mpqVi+fDkWLVoEQ0PZ08qxsbHCmUogNyhr1aqVikemWLVq1fDRRx8J27a2tsJYAbmTUPbu3YuTJ0/i4cOHeP36NRo2bCjXTqtWrSp0fUHGmHp4whMjMRJRiJLJj0QkRmIkPOGppp7J4qCunJT74sMEwCff64JleF9eWNBXCjNnzoSWlhZu3bqFESNGoEmTJmjevDlmzZold4ly165dcHFxgZ2dHfbt21ds20ePHkVOTg5mzpypsPzAgQNwcXHB6tWrsWDBAoV1li5diqFDh6Jx48Zo0aIFPvnkEzx9+lT1Ay1g1KhRmDx5Mpo2bYqff/4ZnTp1EiYmzJ07F2PHjkWzZs3QtGlTjBo1CtHR0UhISMD58+fx4MEDHDx4EO3atUPHjh3h4eGBS5cuISAgoND9HTx4EB06dMCiRYtw7NgxmQkka9asQbdu3bBlyxbhDN3QoUOxZcuWEh/foUOHMH36dPTt21fu0isAWFlZ4ddff4WtrS3Gjh2LWbNmYfPmzYW2FxgYiLi4ODg4OBS53z/++AOJiYkYOXKkTP7FixcxePBgDBo0CM2aNcPvv/9eZICoiszMTGzZsgWdOnVC+/btsXfvXly/fl24JPvs2TOMGDEC9vb2aNOmDQ4dOqTwTJ+joyP++eefMukTY0yzecITDdEQH+NjjMM4fIyPYQMbjQnoAA7qKrdHAP4CkFwgP+l9vvykwzIRGhqK9u3bw8/PD7/++isePnyIc+fOoXfv3pgxY4ZM3fPnzyM6Ohq+vr6Ijo4utu2cnBxs3boV33zzTaHLcxw6dAifffYZVq1ahW+++UauPDMzE6tWrcL9+/dx5coV5OTk4IsvvijZweazZMkSjB07Fvfv38fnn3+OcePGCWd2kpOT8c033+DOnTu4ffs2GjZsiEGDBgmX/oYNG4b4+HhcuXIF58+fx4sXLzBmzJgi9xcSEoKbN28Ks23ze/DgAZycnGBra4urV68iMDAQy5Ytw6tXr0p8fAcPHkTLli0RFRUFf39/uXIPDw/o6enh1q1b2LZtGzZv3lzkAsZSqRTu7u5FLicDANnZ2cJl6/z27NmDffv2wcPDA5cvX8aLFy/KbHHitLQ0rFmzBocOHYK/vz9SUlJkxmPevHmIj4/Hv//+i1OnTsHX1xf//fefTBv169dHt27dij0DzRirOqSQ4jIu4zAO4zIua8Ql14LUPrOkKqdym/2aP+ng/2e7NgZBpP7jzksGBgaUkJBAzs7Oau1HaWbscVI8E1WZZGZmRnFxcWRlZVXlxmj16tW0Y8cOtfejohPPftXsxLNfNT/x7FdWNMr3OrzAtpqIRCLUqVMHixcvRkJCAry9vdXdJaYGMTEx+OKLL+RmjVYFb968weLFi9XdDcYYE2iruwOsDGQB+FndnZBlZWWFsLAwREREYNKkScjJyVF3lz4Y3bt3x9mzZwstNzIq+AiS8uXl5VWh+6soGzZsUHcXGGNMBgd1rFy8fPmSH3SuJnfu3EHbtm3LtM2ePXuWaXuMMcbKHgd1jFUx6enpJVqrjjHGWOXG99QxxhhjjFUBHNSpUd5yF1paWmruCWOMlT9t7dyLQ3m/+xhjZUupy6+zZs1SuWF3d3ekpJTxM6rUoEGDBti/fz/q1q2L7OxsLF++HMeOHSuTtpOTcxeYq1u3Ll68eFEmbTLGmKbKe7xgXFycmnvCWNWkVFC3adMmREZGKj2D0dLSEn///XeVCOqys7MxZ84c3Lt3D2ZmZggICMCZM2eQlpZW6rYTEhLw+PFjjB49Gu/evUNGRkYZ9JgpYmRkVGZPI2Dlg8eoIhgg99d+NoDUErVQknHS1tZG8+bNMXr0aFy6dKlMfn8yxuQpPVHio48+QmxsrFJ1k5KSStwhTfP69Wu8fv0aQO6aW3FxcahVq1aZ/FIiIuzcuRO//PILfvzxx1K3xwqnp6cHiUSi7m6wIvAYlSd9ALUA5L/VIwfAOwCq/S4rzThdunSJn8DBWDlSKqhbunSpSmfdVq5ciXfv3pW4U2XJ0dERCxcuRIcOHVC/fn0MHz5cbt0sV1dXLFy4EObm5rh37x5mzZolPAMyv/bt20NLSwuRkZFl1r/Y2Fi4urrC3Nyc760rJ1paWujRo4fwyDCmeXiMylNfAHnP6M1/G3Xe441mAzinVEslHSciQlxcHJ+hY6wCqP2RGeWZBgwYQMuXL6fhw4cTEdGwYcNkykePHk3p6ek0adIksrOzox07dtC7d++oTp06MvVMTEzo4cOH1LVrV5X2X5rHfXAqm8SPzdH8xGNUXklMQDgBOQSQgpRDwMv39XicqkLiMdL8VJ6PCVN5nTpdXV2IRCLh9LuVlRWcnZ0RHByMc+eU+99eRfLx8YGPj0+h5fPmzcPOnTuxd+9eAMD06dMxePBgTJkyBWvWrAEA6Ojo4OTJk1i9ejWuX79e5P50dHRQvXp1YTtv9X4tLS0+E6cmWlpaEIvF/PlrMB6j8kHkBKnUsogaYgBWEIs/hkh0udj2eJw0H49R+SIRAVYAGRJEKSIgHBCRagvtFzdGpRk7lYM6Ly8vnDhxAjt27ICxsTFu3ryJrKwsmJqaYt68edi+fXuJO1PRqlWrhg4dOmDVqlVCHhHh/Pnz6Nq1q5C3d+9eXLx4EQcOHCi2ze+//x4///yzXH7fvn35fiE10dLSQvv27SESifjSnobiMSofUVE9EBhYfD17+wGwsNAvth6Pk+bjMSo/0TWjEWQVhHSddAAAgaCbqYuW4S1RL6Ge0u0UN0Z6enol7qPKQV379u0xd+5cAMDIkSMRExODdu3a4dNPP8WyZcsqVVBnamoKbW1txMTEyOTHxMQIU+8dHBwwZswY3L9/H8OHDwcAfPbZZ3j48KHCNletWiXzTEgjIyNERUXh3LlzwhImrGJpaWmBiODj48O/5DQUj1H5IEoDsLDYevfu+eD+feXO1PE4aTYeo/JBzQnSkVK5/PRq6QhoHADxMTFEj5U7Y1fcGJXm+dwqB3X6+vpCcNKvXz+cOHECRIQbN27A2tpaqTZ0dHTQuXNnWFtbQ19fH7GxsQgMDERYWJiq3Sl3/v7+Kp0KzczMRGZmJlxdXTFz5kyIxbk3Jufk5PAPmBpJpVIeAw3HY1QeLgGIAGABxWvNSwFEQiq9hP+fOFE0HifNx2NUxkQA+uV7XbCMAGk/KRCc+1oZRY1RacZN5aDu+fPnGD58ODw9PdG/f39s3LgRQO4CusUtZdKtWzfMnj0bQ4YMQbVq1ZCYmAiJRIJatWqhevXqePHiBf744w9s3769Qta4i4uLQ3Z2NszMzGTyzczMhGVMSsrNzQ1ubm4wMjKqUku8MMYqEylyZ7cee/9a0ezXOVA2oGPlTCwGHB2BevWA6Gjg6lVAymOjdtYAjIsoF70vtwYQVhEdKpzKjwlbtmwZ1q9fj7CwMNy8eRM3btwAkHvWLrCImze8vLxw5MgRhIWFoV+/fjAyMoKpqSksLS1hYGCApk2bYsWKFejduzeePn2KPn36lPyolJSVlYWAgAD07t1byBOJROjdu3exEyIYY6xy8AQwEkBUgfzI9/meFd4jpoCzMxAWBly6BPz5Z+6/YWG5+Uy9DMu4XjlS+Uzd8ePHYWVlhXr16uHevXtC/oULF+DpWfgvh9OnT+PTTz9Fdna2wvLQ0FCEhobCw8MDdnZ2qFdP+ZsOi2JgYIAmTZoI2zY2NrC3t8e7d+8QERGBDRs2YN++fbhz5w5u3bqFOXPmwMDAoNQLZBa8/MoYY+rjCcALgCOAegCiAVwFn6HTEM7OgKLHT1pY5OaPHAkU8feVlTNlLxxqyEO0KnR9FrFYTI6OjmRsbFwh+3NyciJF3N3dhTozZ86ksLAwSk9Ppxs3blCnTp3KbP+8Tp36E6/bpPmJx6hyJB6nckhiMSE8nJCTQyCSTzk5hJcvc+vxGKkniUCYC8ISEH5WkJa8Lxcp155GrVNXvXp1zJo1Cz179kTdunXlzkR16NChyPdLpVL8888/sLOzQ2Jioqq7V9nly5chEhU9I2Xbtm3Ytm1bufeFMcYYk+HoCFgWsZagWAxYWeXWu1z8DGVWDgiAD4DR71+LCpThfTlB7VQO6nbv3o1+/frh2LFjuHXrFohUP4qHDx+iUaNGGjnbtazw5VfGGGPFUvZWozK6JYmV0CMAfwEYANlJE0nIDegeqaNT8lQO6j755BMMGjQI//77b4l3+uOPP2L9+vVYvHgxAgICkJqaKlNeFdZz49mvjDHGihUdXbb1WPl5BOAxcme5GiL3HrqX0IgzdHlUDuqioqJKHXSdOXMGAODt7S1zpk8kEoGIoK2tcrcYY4yxyufqVSAiIndShKIrO1IpEBmZW4+pH0Hty5YUReXoaf78+VizZg2mT5+O8PDwEu20Z8+eJXofY4wxVqVIpcDs2bmzXKVS2cAub426OXN4vTqmFJWDujt37kBXVxcvXrxAWloasrKyZMpr165dbBtXrlxRdbeVDt9TxxhjTCmenrnLlmzeLDtpIjIyN6Dj5UyYklQO6v78809YWFjghx9+QExMTIkmSgBA9+7d8dVXX6FRo0YYNWoUXr16hYkTJyI0NBT+/v4lalOT8D11jDHGlObpCXh58RMlWKmoHNR169YNXbt2xf3790u80xEjRmD//v04ePAg2rdvj+rVqwMAjI2N8cMPP2Dw4MElbpsxxhirlKRSXraElYrK1wYfP34MPT29Uu30xx9/xPTp0/Hll1/KXL719/dH+/btS9U2Y4wxxtiHSOWg7rvvvsOvv/4KJycn1KpVC0ZGRjJJGc2aNVN4X11iYiJq1qypapc0kqurK4KCgnDr1i11d4UxxhhjHwCVL7/6+PgAyH3Wa36qLEfy+vVrNGnSBC9fvpTJ7969O168eKFqlzQS31PHGGOMsYqkclBXFsuR7Ny5E5s3b8aUKVNARKhfvz66du2K9evXY/ny5aVunzHGGGPsQ6NyUFcWy5GsXr0aYrEYFy5cgL6+Pq5cuYKMjAysX78eW7duLXX7jDHGGGMfGqXuqWvdujVEIlHxFd9r0aIFtLS0iqyzcuVK1KpVC61atUKXLl1Qp04d/PTTT0rvgzHGGGOM/T+lgrrAwEClFhXOc/36dVhZWRVavnv3bhgaGiIrKwuPHj3C7du3kZqaCn19fezevVvp/WgynijBGGOMsYqk1OVXkUiE5cuXIy0tTalGdXR0iix3cXHBd999h5SUFJl8PT09fP755/jiiy+U2o8m44kSjDHGGKtISgV1V65cQbNmzZRu9Pr165BIJHL5RkZGEIlEEIlEMDIyQnp6ulCmpaWFQYMG4c2bN0rvhzHGGGOM5VIqqCuLGa8AkJCQACICEeHp06dy5USEJUuWlMm+GGOMMcY+JCrPfi2Nnj17QiQS4eLFi/j000/x7t07oSwzMxMvX75EdHR0RXaJMcYYY6xKqNCgLm85FBsbG4SHhyusY2lpiYiIiIrsFmOMMcZYpafyY8LKwosXL1CnTh25/Fq1aiE0NFQNPSp7PPuVMcaYKsQQwwlOGIuxcIITxOr5E80qMbV8Ywpb887Q0FBm8kRl5ubmhpYtW6JTp07q7gpjjDEN5wxnhCEMl3AJf+JPXMIlhCEMznBWd9dYJVKhl19//fVXALkTIpYtWyazRIqWlhY6d+6Mu3fvVmSXGGOMMbVyhjOO4ZhcvgUscAzHMBIj4QlPNfSMVTYlCuomTpyI6dOnw8bGBl27dkV4eDhmz56N0NBQeHt7F/q+du3aAcg9U9e6dWtkZmYKZZmZmbh37x7Wr19fki4xxhhjlY4YYmzGZuF1wTIppNiETfCCF6SQqqOLrBJROaibPn06li1bhk2bNmHRokXC48ASEhIwZ86cIoO6Xr16AQD27NmD2bNnIzk5uYTdZowxxio/RzjCEpaFloshhhWs4AhHXMblCuwZU0QMwBFAPQDRAK4CGhVqq3xP3axZszBt2jSsXLkSOTk5Qv6dO3fQunVrpdqYMmUKkpOT0bhxY/Tr1w+6urqqdoMxxhir9OqhXpnWY+XHGUAYgEsA/nz/b9j7fE2hclBnY2ODwMBAufyMjAwYGBgo1YaJiQnOnz+Pp0+f4syZM6hXL/fLunv3br78yhhj7IMRDeXWZlW2HisfzgCOAbAokG/xPl9TAjuVg7rQ0FC0bdtWLn/AgAF49OiRUm1s2rQJWVlZsLKykpksceTIEQwYMEDVLjHGGGOV0lVcRQQiCr1fTgopwhGOq7hawT1jecTA+7se5YOmvO1NCsrUQeV76jZs2IBt27ZBV1cXIpEInTp1wrhx4/D9999j6tSpSrXRr18/9O/fH1FRUTL5z549g7W1tapdYowxxiolKaSYjdk4hmOQQiozWSIv0JuDOTxJQo0cgSLueswN5qze11P3XY8qB3W7d++GRCLBihUroK+vj0OHDuHVq1eYPXs2jhw5olQbBgYGMmfo8tSqVQsZGRmqdkkjubq6YubMmRCLNSF2Z4wxpqk84YmRGInN2CwzaSISkZiDObyciZopezejJtz1WKKI49ChQ7C1tYWhoSHMzc1haWmJPXv2KP3+q1ev4vPPPxe2iQgikQjffPMN/Pz8StIljcOLDzPGGFOWJzzREA3xMT7GOIzDx/gYNrDhgE4DKHs3oybc9ViqxYclEgkkEonK7/vmm29w4cIFfPTRR9DR0cHatWvRsmVL1KpVCw4ODqXpEmOMMVYpSSHlZUs00FUAEcidFKHoTJgUQOT7euqm8pm6WrVqYevWrQgKCkJsbCzevn0rk5QRFBQEW1tbXLt2DV5eXjAwMMCJEyfQrl07vHjxQuWDYIwxxhgrD1IAs/O9LlgGAHMUlKmDymfq9u/fjyZNmmD37t2IiYkBEZVox0lJSVi5cmWJ3ssYY4wxVlE8AYxE7izY/JMmIpEb0GnKRXKVgzpHR0d0794d9+/fL5MO6OvrY8yYMdDT08M///yD58+fl0m7jDHGGGNlxROAFzT7iRIqB3WPHz+Gnp5eiXZmaWmJ/fv3o3379rhx4wa++OILnDt3Dk2bNgWQe4/ewIEDcfWqJlyZZowxxhj7f1Kof9mSoqh8T52rqyt++eUX9OjRA7Vq1YKRkZFMKsr69euho6OD6dOnIy0tDb6+vnj27Bnq1asHMzMznD17Fj///HNJj4Uxxhhj7IOl8pm6hIQE1KhRAxcvXpTJF4lEICJoaxfeZI8ePTB06FDcvn0bZ8+eRVxcHKZMmYI3b94AAJYvX44LFy6o2iXGGGOMsQ+eykHdwYMHkZWVhfHjx6s8UaJu3bp4+fIlACA+Ph5paWmIiYkRyl+/fg0TExNVu8QYY4wx9sFTOahr1aoV2rVrh6dPn5Zoh/mDwJLOnK1oJ06cwMcff4wLFy5g1KhR6u4OY4wxxpgclYO6O3fuwNLSssRB3bJly4RHhOno6GDRokVITEwEkDsTVhNt3rwZe/bsgYuLi7q7wpgGEkOz54MxxtiHQeWgbsuWLdi8eTPWrVuHBw8eICsrS6b8wYMHhb73ypUraNasmbD977//olGjRnJ1NM3ly5fh5OSk7m4wpoGcIb9yUwRyl+rUlJWbGGPsw6ByUHfkyBEAkHnWa96zW4ubKNGzZ88SdLF0HB0dsXDhQnTo0AH169fH8OHD4eXlJVPH1dUVCxcuhLm5Oe7du4dZs2bh9u3bFd5XxioXZwDHFORbvM8fCQ7sGGOs4qgc1NnY2JRHP8qNgYEB7t27hz179sDTU/4PzOjRo7FhwwZMnz4dN2/exJw5c+Dr64tmzZohNjZWDT1mrDIQI/cMXd7rgmVSAJuQu1QnX4pljLGKoHJQFx4eXh79KDc+Pj7w8fEptHzevHnYuXMn9u7dCwCYPn06Bg8ejClTpmDNmjUq709HRwfVq1cXtvPW7tPS0oKWlpbK7bHS09LSglgs5s+/DBE5QSq1LKKGGIAVxOKPIRIVv1Qnj1HlwONUvkhEgBVAhgRRiggIB0QkUqkNHiPNV9wYlWbslArqhgwZgrNnzyI7OxtDhgwpsu6pU6dK3JmKVq1aNXTo0AGrVq0S8ogI58+fR9euXUvU5vfff69wAeW+fftCIpGUtKusFLS0tNC+fXuIRCLk5OSouztVQlRUDwQGFl/P3n4ALCyKnwDFY1Q58DiVn+ia0QiyCkK6TjoAgEDQzdRFy/CWqJdQT+l2eIw0X3FjVNKndgFKBnUnT56Eubk5YmNjcfLkyULrFXdPnaYxNTWFtra2zFp5ABATE4PmzZsL2+fOnYO9vT0MDAwQERGBUaNG4caNGwrbXLVqFTZs2CBsGxkZISoqCufOnUNycnL5HAgrkpaWFogIPj4+/EuujBClAVhYbL1793xw/75yZ+p4jDQfj1P5oOYE6Uj52xTSq6UjoHEAxMfEED1W7owdj5HmK26Mins6V1GUisC0tLRgaWkpvP7Q9O3bV+m6mZmZyMzMhKurK2bOnAmxOPd+o5ycHP4BUyOpVMpjUKYuIXeWqwUUP21QCiASUuklKHtPHY9R5cDjVMZEAPrle12wjABpPykQnPtaGTxGmq+oMSrNuCn97NfQ0FDUqVOnxDvKr3///nBwcBC2XV1dERgYiIMHD6JmzZplsg9lxMXFITs7G2ZmZjL5ZmZmeP36danadnNzQ8uWLdGpU6dStcOYZpIid9mSvNcFywBgjoIyxpgMawDGkA/o8ojel1tXWI9YJaZ0UCcSqXazZlHWrVuHGjVqAMh9QsWvv/6KM2fOwMbGRubSZXnLyspCQEAAevfuLeSJRCL07t0b169fr7B+MFY5eSJ32ZKoAvmR4OVMNJBYDDg5AWPH5v4rVvrXPytPhmVcj33QVLoBrqwe62VjY4Pg4GAAwKeffoq///4bixYtQrt27XDmzJky2UceAwMDNGnSRGbf9vb2ePfuHSIiIrBhwwbs27cPd+7cwa1btzBnzhwYGBjA3d29VPstePmVsarJE7nLlvATJTSaszOweTNgmW/GckQEMHs2oGCpJ1aBUsq4HvugqRTULV++XHjEV2Hmz59fbDuZmZnCI8H69OkDDw8PAMC7d++EM3hl5aOPPsKlS5eE7Y0bNwIA9u7di8mTJ+Ovv/5CnTp1sGzZMpibm+Pu3bsYMGAA3rx5U6r9urm5wc3NDUZGRkhKSipVW4xpNimA4idDMDVxdgaOKVgk2sIiN3/kSA7s1OklgEQANaD4EiwBSHpfj7FiqBTUtW7dGpmZmYWWK3sm79q1a9iwYQP8/f3RqVMnjBkzBgBga2uLyMhIVbpUrMuXLxd76Xjbtm3Ytm1bme6XMcbUTizOPUOX97pgmVQKbNoEeHnlvmYVjwD4ABj9/rWoQBnel5fNhTJWxakU1Dk7O5fJUxb+97//wc3NDSNHjsSMGTPw6tUrAMDAgQOLXCi4MuHLr4wxtXN0lL3kWpBYDFhZ5da7zGdb1eYRgL8ADEDupIg8ScgN6B6po1OsMlI6qCur++kAICIiQuEixvPmzSuzfagbX35ljKldPSUXrVW2His/jwA8Ru4sV0Pk3kP3EnyGjqlE6aCutLNfjYyMhMV3i1tYjxfpZYyxMhAdXbb1WPkiAGHq7gSrzJQO6iZPnozExMQS7yg+Ph716tVDbGwsEhISFJ75E4lEle6pFIwxprGuXs2d5WphoXgJE6kUiIzMrccYq/SUjp7yZqiWVK9evfDu3TsAQM+ePUvVVmXA99QxxtROKs1dtuTYsdzX+X8f5U2MmDOHJ0kwVkVU2CmxK1euKHxdVfE9dYwxjeDpmbtsScF16iIjcwM6Xs6EsSqDr3MyxlhV5+mZu2yJo2PupIjo6NxLrnyGjrEqhYM6xhj7EEilvGwJY1VciW74MjY2xhdffIGVK1fCxMQEANCuXTvUr1+/TDtXmbm6uiIoKAi3bt1Sd1cYY4wx9gFQOahr3bo1nj59im+//RYLFixAzZo1AQAjRozAqlWrlGrD0tIS1atXV3XXlYqbmxtatmyJTp06qbsrjDHGGPsAqBzUbdiwAXv37oWtrS3S09OF/DNnzqBHjx7Fvl8kEuH58+ewLGqVc8YYY4wxphKVg7qOHTtix44dcvlRUVEwNzcv9v1EhGfPnqF27dqq7poxxhhjjBVC5aAuIyMDNWrUkMu3tbVV+rmw3333HdatW4eWLVuqunvGGGOMMaaAyrNfvb298dNPP2H06NEAcs+8WVpaYs2aNTh+/LhSbXh4eEBfXx/37t1DZmYmJBKJTHlVOIvHiw8zxhhjrCKpHNTNnz8fx44dw5s3b6Cnp4fLly/D3Nwc169fx6JFi5RqY86cOaruttLhxYcZY4wxVpFUDuqSkpLQr18/ODg4oE2bNjA0NMR///2HCxcuKN1GaR85xhhjjDHGZJV48WF/f3/4+/uXeMeNGjXC5MmT0bhxY8yePRuxsbEYMGAAwsPDERwcXOJ2GWOMMcY+RCoHdbNmzVKYT0RIT0/H8+fPceXKFUiLePxMjx49cPbsWfj7+6NHjx5YtGgRYmNjYW9vjy+++AKjRo1StVuMMcYYYx80lYO6uXPnok6dOtDX10d8fDwAwMTEBGlpaUhJSUHdunXx4sUL9OzZE5GRkQrbWL16NX788Uds3LhR5n6zixcv4n//+18JD4Uxxhhj7MOl8tTMH374Abdv30bTpk1hamoKU1NT2Nra4ubNm5g9ezasrKzw+vVrbNy4sdA2WrduDU9PT7n8N2/ewNTUVNUuaSR+TBhjTJOIIYYTnDAWY+EEJ4hL9pRIxpiGI1XS8+fPyd7eXi6/bdu2FBISQgCoa9eu9OrVq0LbiIiIoK5duxIASkpKIhsbGwJAw4cPp+fPn6vUH01PRkZGRERkZGSk9r58qElLS4s++eQT0tLSUntfOPEYqSM5w5nCEU4EElI4wskZzjxOVSzxGGl+Km6MShM3qPxftXr16kFbW/6qrba2tvBEiVevXsHIyKjQNg4fPow1a9bAzMwMRASxWIxu3bph/fr1PDOWMcbKkDOccQzHYAELmXwLWOAYjsEZzmrqGWOsrKkc1Pn5+WHHjh1o27atkNe2bVv8/vvvuHjxIoDcy6uhoaGFtvHDDz/g8ePHiIiIgKGhIYKDg3HlyhX8+++/WLFihepHwRhjTI4YYmzGZuF1wTIA2IRNfCmWsSpC5Z/kL774Au/evUNAQADS09ORnp6OO3fu4N27d/jiiy8AACkpKZg/f36hbWRlZeHLL79E48aN8cknn2DixIlo3rw5Pv/88yJnzTLGGFOeIxxhCctCgzYxxLCCFRzhWME9Y4qIATgBGPv+Xw61mapUnv0aExODfv36oVmzZrC1tQUAPHnyBE+fPhXqXLp0qcg2bGxsEBoaioiICERERKjaBcYYY0qoh3plWo+VH2cAmwFY5suLADAbgKdaesQqoxIvPvzkyRM8efKkRO99/vw5IiMjcfnyZVy6dAmXL19GSEhISbvCGGNMgWhEl2k9Vj6cARxTkG/xPn8kOLBjyilRUGdhYYGhQ4fCysoKOjo6MmVFXXbNY2lpiY8//hhOTk745ptvsHPnTrx69QqXL1+Gn58fdu/eXZJuMcYYy+cqriICEbCAhcJLsFJIEYlIXMVVNfSOAbmXWDfne12wTApgEwCv968ZK45K02V79epFKSkpdP/+fcrMzKT//vuP3r17R/Hx8XThwoUSTe9t0qQJubu7U2ZmJmVnZ6t9unFZJl7SRP2Jp/hrfuIxKr/kDGfKQQ7lIEdmSZO8PFWWNeFxKvvkBBApkZx4jKpM0qglTVatWoX169ejTZs2SE9Px6effgpLS0tcvnwZR48eVaoNPT099O3bF7/88gv8/f1x//592NvbY+vWrRgxYoSqXdJIvPgwY0wTeMITIzESUYiSyY9EJEZiJDz5wp5aKXs3I9/1yJSh8uVXOzs7jBs3DgCQnZ0NPT09pKam4qeffoKXlxe2b99ebBsJCQmIj4/HwYMHsXr1aly9ehUJCQkqd16Tubm5wc3NDUZGRjKPQmOMsYrmCU94wQuOcEQ91EM0onEVVyHlC3pqp+zdjHzXI1OGykFdamqqcB9ddHQ0GjdujODgYABQ+hFfZ86cQffu3TF27FiYm5vD3Nwcly5dwrNnz1TtDmOMMSVIIcVlXFZ3N1gBV5E7y9UCipcwkQKIfF+PseKofPn1xo0b6N69O4Dc4OzXX3/FDz/8gD179uDGjRtKteHs7Iw6depgwIABuH79Ovr164erV68iMjISBw4cULVLjDHGWKUkRe6yJXmvC5YBwBwFZYwpovKZunnz5sHQ0BAAsGTJEhgaGmLMmDF49uwZ5s2bp1JbDx48gLa2NnR0dKCrq4v+/ftjzJgxmDhxoqrdYowxxiolT+QuW1JwnbpI5AZ0fNcjU5ZKQZ1YLEaDBg1w//59AEBaWhpmzJih8k7nzp2Ljz/+GN27d4eRkRHu3buHK1eu4I8//sDVq3ySmTHG2IfFE7nLljgid1JENHIvufIZOqYKlYI6qVSKf/75B3Z2dkhMTCzxTseNG4fLly8LQRxPJGCMMfahkwJ81yMrFZUvvz58+BCNGjVCWFhYiXfaqVOnEr+XMcYYY4zJUzmo+/HHH7F+/XosXrwYAQEBSE1NlSlPTk5Wqh1jY2N88cUXsLOzAwAEBwdj9+7dfNaOMcYYY6wEVA7qzpw5AwDw9vYGEQn5IpEIRARt7eKb7NChA3x9fSGRSITFeefOnYsffvgB/fr1Q2BgoKrdYowxxhj7oKkc1PXs2bPUO924cSO8vb0xbdo05OTkAAC0tLSwa9cubNq0CU5OTqXeR1kaPHgwfv31V4jFYqxZs4afTcsYY4wxjaNyUHflypVS7/Sjjz6SCegAICcnB2vXrsWdO3dK3X5Z0tLSwoYNG9CzZ08kJiYiICAAnp6eePfunbq7xhhjjDEmUHnxYQDo3r079u/fD39/f9SvXx8AMHHiRDg4OCj1/qSkJFhZWcnlW1paKn1PXkXp1KkTgoKC8OrVK6SmpuLs2bPo16+furv1AREDcAIw9v2/JfrKMsYYY1Weyn8hR4wYIdwP1759e1SvXh1A7sSHH374Qak2jhw5gt27d2P06NFo0KABGjRogDFjxmDXrl34888/Ve1SkRwdHeHt7Y2oqCgQEYYNGyZXx9XVFaGhoZBIJLhx4wY6duwolNWvXx9RUf//IOyoqChYWFiUaR9ZYZwBhAG4BODP9/+Gvc9njDHGWH4qB3U//vgjpk+fji+//BJZWVlCvr+/P9q3b69UGwsWLMCJEyfg4eGBsLAwhIWFYe/evTh27Bi+/fZbVbtUJAMDA9y7dw8zZ85UWD569Ghs2LABS5cuRfv27XHv3j34+vqiTp06ZdoPpipnAMeQ+0TE/Cze53NgxxhjjOWn8j11zZo1U3hfXWJiImrWrKlUG1lZWZgzZw6+//57NG7cGAAQEhKCzMxM1K1bF9HR0ap2q1A+Pj7w8fEptHzevHnYuXMn9u7dCwCYPn06Bg8ejClTpmDNmjV49eqVzJk5CwsLYcauIjo6OsLZSwAwMjICkHtvnpaWVimP5sNAJIZUuvn9VsH/d4iRu0TnJojFf0MkKn69dS0tLYjFYv78NRiPUeXA46T5eIw0X3FjVJqxUzmoe/36NZo0aYKXL1/K5Hfv3h0vXrxQqS2JRIKHDx8K223atMF///2n1LIoZaFatWro0KEDVq1aJeQREc6fP4+uXbsCAG7duoVWrVqhfv36SExMxMCBA7F8+fJC2/z+++/x888/y+X37dsXEomkzI+hKoqLa4UbNyyLqCEGYIVOnebD1PRhEfVyaWlpoX379hCJRDKTc5jm4DGqHHicNB+PkeYrboz09PRK3LbK0dPOnTuxefNmTJkyBUSE+vXro2vXrli/fn2RwY4mMjU1hba2NmJiYmTyY2Ji0Lx5cwC5s3Lnz58PPz8/iMVirF27tsiZr6tWrcKGDRuEbSMjI0RFReHcuXMaNwlEU0mlNZSqd/NmOMTis8XW09LSAhHBx8eHf8lpKB6jyoHHSfPxGGm+4sYo7wpfSagc1K1evRpisRgXLlyAvr4+rly5goyMDKxfvx5bt24tcUc02alTp3Dq1Cml6mZmZiIzMxOurq6YOXMmxOLcy4c5OTn8A6a0qOKrACCKUvozlUqlPAYajseonIkAWAMwBJAC4CUAKvIdCvE4aT4eI81X1BiVZtxKdJ1z5cqVWLduHZo0aQJDQ0MEBwfLPS6sMoiLi0N2djbMzMxk8s3MzPD69etSte3m5gY3NzcYGRnxo89UdhVABHInRSiayyMFEPm+HmOsWHYABgAwzpeXCMAHwCO19IgxVg5UDuomTJiAEydOQCKR4NEj1X4btG7dusjyZs2aqdqdUsnKykJAQAB69+4NLy8vALmPO+vdu3eVPetYOUgBzEbuLFcpZAO7vIkRc/K9ZmolFgOOjkC9ekB0NHD1KiDlsdEYdgBGK8iv8T7/L3Bgx1gVoXJQt3HjRmzfvh3e3t44cOAAfH19IVXyF/jdu3dBRBCJRHJlefn5nydbFgwMDNCkSRNh28bGBvb29nj37h0iIiKwYcMG7Nu3D3fu3MGtW7cwZ84cGBgYwN3dvVT7LXj5lanKE8BIAJsB5J80EYncgM5TDX1icpydgc2bAct8YxQRAcyeDXjyGKmdCLln6PJeFyyj9+WPUaJLsYwxzaJyUFevXj0MGDAA48aNw1//1979RzV15/njfyZBLT+Ca6tSFgWxDmrRhfqDqdUUW4/Wjm5tpkrV7WjH6XQdaFdG21rb7Wi1rXW0qGOhPzwziFs/fldsWXQdYbQqh/WAKEMzSNFaC/JDoKX+ACSAkPf3j5CUBAIBktzc8Hyc8z6Qe9/35pW8QF7ed97ve+gQGhsbkZqaigMHDiAnJ6fbY0NDQ/scaF9NmzYNZ86cMT/euXMnAGDfvn349a9/jUOHDmHEiBHYvHkz7r//fnz11VeYP38+vv/++349L4dfHSENQDoADYBAAFUwDrnyKpBb0GqBw4c7bw8KMm5fvJiFndRCYDnkak3Rvj8ExnW9iUjWel3UtbW14dixYzh27Bi8vb2h1WqxfPlynD59GhUVFRZXxayVlZX1K9i+yMrK6vLKYEeJiYlITEx0UUTUOwYAWVIHQdaUSuMVOtP31vsMBmDXLiA9nUOxUvJzcD8icmv9GhvU6/XIzMzE8ePHceXKFYwZM8Zm39Gju1t3rDPTPWXlKjY2FkVFRd0uVEwkWxqNccjV1scLlEogONjYj6TT4OB+ROTW+lTUeXt7Y/ny5Th27BgqKysRHx+PtLQ0hIeH2zzm/Pnz+PjjjzFt2jSbffz9/fHCCy+gsLAQzzzzTF9CcxtJSUkIDw9HVFSU1KEQOV5goGP7kXNcg3GWq63Py4n2/dds7CciWen18OvBgwexcOFCNDY24tChQ9iyZQtyc3N7PO7BBx/Em2++iRMnTqCpqQn5+fm4fv06mpqaMGzYMDz44IMIDw/H3//+d7z22ms4frznRWWJSCL23srPgbf8oz4QMC5bEtP+vcJqH9r3c5IEkUfo02fqYmJiupz1Gh4ejqKioi6Pu3HjBtatW4c333wTCxYswKxZsxASEgJvb2/U1tbiwIEDyMzMtHm83HD2K3m07GzjLNegoK6HYA0GoKLC2I+kVQzjsiXW69TVgevUEXkg0Z/m5+cnfvvb34pz586J1tbWfp3LE5tarRZCCKFWqyWPZaA2lUolFi5cKFQqleSxeFTTagXa2oxNiJ+aaZtWyxy5U1NAYAwEJrV/VfT+HMyT+zfmyP1bTznqT93Q58tIGo0G+/btQ1VVFV555RWcOnUKDz/8cF9PR0Ryk5ZmXLak0uq2bhUVXM7EHQkYly252P5VSBkMETlDr4ZfAwIC8Pzzz+M3v/kN/P39cejQIQwZMgRPP/10r+8uQUQeIC3NuGwJ7yhBRCQ5u4u6I0eO4NFHH8WxY8cQHx+PjIwMGAwGrF692pnxkUsowQV+qc8MBiCLawkSEUnN7qLuySefxJ/+9Cd89NFH+Pbbb50Zk0eQz0QJLTrfiqscxnuvcviMiIhILuyuOGbNmgW1Wo38/Hzk5uYiLi4O9913nzNjkzV5rFOnBXAYQJDV9qD27VqXR0RERER9Y3dRd+7cObz44osIDAzEJ598gqVLl+L69etQKpWYO3cu/Px4nxl5UcJ4hc70vfU+ANjVxT4iIiJyR73+i93Y2Ijk5GRoNBpMnjwZH3zwAV5//XV8//33SE9Pd0aM5BQaGIdcbf0IKAEEt/cjIiIid9evyzDffPMN1q9fj1GjRmHZsmWOiolcwt7bN/E2T0RERHLQ6ztKdMVgMCA9PZ1X6jpwzUSJ/sxatff2TbzNExERkRzwA1NO4vyJEloYVxA9A+Bg+9dS2D+5IRvGWa62ikADgLL2fkREROTuWNTJkiNmrRpgXLbE9L31PgCI72IfERERuSMWdbLjyFmraQAWA7C6zRMq2rdznToiIiK5cMhn6siVTLNWbek4a9WeVf7TAKSDd5QgIiKSNxZ1suOMWasG2FcAEnWmhBIaaBCIQFShCtnIhoH/KSAicjkOvzpJbGwsioqKkJeX5+Azc9YquQ8ttChFKc7gDA7iIM7gDEpRCi3vRkJE5HIs6pzEebNfOWuV3IMWWhzGYQRZTdgJQhAO4zALOyIiF2NRJzuctUrSU0KJ3e0TdpRW/4yYHu/Crk77iIjIefgvrixx1ipJSwMNRmO0zaJNCSWCEQwNbzPnNpQAogEsbf/Kf/yJPA8nSsgWZ62SdALtnIhjbz9yLi2MCyF1nDdfDuM1f/4XkMhzsKiTNc5aJWlU2TkRx95+5DympcqtmZYq57V9Is/BK/BE1GvZyEY5ym0uXWKAAWUoQzYn7EjKkUuVE5H74+8yEfWaAQasaZ+wY13YmR7HI57r1UnMtFS5rX/oOy5VTkTyx6KOiPokDWlYjMWotJqwU4EKLMZipHFQT3LOWKqciNwXP1PnJLGxsYiLi4NSybqZPFca0pCOdN5Rwk1xqXKigYVFnZMkJSUhKSkJarUadXV1UodD5DQGGJDFCTtuybRUeRC6HpYxwLgQEj/5SOQZeBmJiMhDcalyooGFRR0RkQfjUuVEAweHX4mIPByXKicaGFjUERENAFyqnMjzcfiViIiIyAOwqCMiIiLyACzqiIiIiDwAizoiIiIiD8Cizg5ffPEFbty4gdTUVKlDISIiIuoSizo77N69GytWrJA6DCIiIiKbWNTZISsrC/X19VKHQeSeFADGAJjU/lUhZTBERAOX7Is6jUaDI0eOoLKyEkIILFq0qFOf2NhYlJSUQK/XIzc3F9OnT5cgUiIPNBHG+0w9D+PtCZ5vfzxRqoCIiAYu2Rd1vr6+0Ol0iIuL63J/TEwMEhIS8Pbbb2PKlCnQ6XTIzMzEiBEjzH0KCgpQWFjYqQUGBrrqZRDJz0QAMQD8rbb7t29nYUdE5FKyv6NERkYGMjIybO5fu3Yt9u7di3379gEAVq9ejQULFmDVqlXYtm0bAOChhx5yWDyDBw/GkCFDzI/VajUAQKVSQaVSOex5yH4qlQpKpZLvvwMJhYBhfvtNpqyHWxUABID5gPKKEgrR83gscyQPzJP7Y47cX0856k/uZF/UdWfQoEGYOnUqtm7dat4mhMDJkycxY8YMpzznhg0bsGnTpk7b586dC71e75TnpO6pVCpMmTIFCoUCbW1tUofjEWrVtcgdmmu7gwLAUCBqSRSG1w/v8XzMkTwwT+6POXJ/PeXI29u7z+f26KJu+PDh8PLyQk1NjcX2mpoaTJgwwe7znDhxAhEREfD19UV5eTmWLFmC3Nyu/6Bt3boVCQkJ5sdqtRqVlZU4ceIEJ1tIRKVSQQiBjIwM/iPnIIZwAzC+537nis5BWdTzpzyYI3lgntwfc+T+esqRaYSvLzy6qHOUuXPn2t23paUFLS0tiI2NRVxcHJRK4x+0trY2/oJJyGAwMAeOVGdfN1En7H7PmSN5YJ7cH3Pk/rrLUX/yJvuJEt2pra1Fa2srAgICLLYHBASgurraqc+dlJSE8PBwREVFOfV5iCRxDcBtGD871xXRvv+ayyIiIhrwPLqou3v3LvLz8zFnzhzzNoVCgTlz5iAnJ0fCyMhuSiUQHQ0sXWr8qvToH1n5EAAyOnxvvQ/t+20VfURE5HCyH3719fXFuHHjzI9DQ0MRERGBGzduoLy8HAkJCUhJScGFCxeQl5eH+Ph4+Pr6Ijk52alxWQ+/Uh9otcDu3cDo0T9tKy8H1qwB0tKki4uMigEcAjAfwNAO2+tgLOiKpQiKiGhgE3Ju0dHRoivJycnmPnFxcaK0tFQ0NTWJ3NxcERUV5bL41Gq1EEIItVot+Xslq6bVCrS1GZsQPzXTNq3W7nOpVCqxcOFCoVKppH9dntgUEBgDgUntXxW9PwdzJI/GPLl/Y47cv/WUo/7UDbK/UpeVlQWFovt1sBITE5GYmOiiiKjflErjFTrT99b7DAZg1y4gPd34PUlLACiVOggiIuLYoJPExsaiqKgIeXl5UociPxqNccjV1tC1UgkEBxv7EREREQAWdU7D2a/9YO/t2XgbNyIiIjMWdeR+qqoc24+IiGgAYFHnJBx+7YfsbOMsV1uflzMYgLIyYz8iIiICwKLOaTj82g8Gg3HZEtP31vsAID6ekySIiIg6YFFH7iktDVi8GKistNxeUWHcznXqiIiILMh+SRPyYGlpxmVLNBrjpIiqKuOQK6/QERERdcKijtybwQBkZUkdBRERkdvj8KuTcKIEERERuRKLOieR1UQJpRKIjgaWLjV+5f1qiYiIZIfDrwOdVmu8Jdfo0T9tKy83zj7lZAQiIiLZ4CWZgUyrBQ4fBoKCLLcHBRm3a7XSxEVERES9xqJuoFIqjVfoTN9b7wOAXbskH4pVQoloRGMpliIa0VDyR5aIiKhL/AvpJG4/UUKjMQ652iralEogONjYTyJaaHFVcRWbxmzCU5OewqYxm3BVcRVa8AoiERGRNX6mzkmSkpKQlJQEtVqNuro65zyJAkAIAD8ADQCuARB2HhsY6Nh+DqaFFssnLodmvgYVQyvM20fdHoWdGTuBYiAN/MwfERGRCYs6uZoIYD6AoR223QaQAaDYjuOrqux7Hnv7OZASSsyfOB8xMTEQVlVqpX8lYmJi8NGhj5BenA4DuBAxERERwOFXeZoIIAaAv9V2//btE+04R3a2cZarwQAY2oDSM0DhQeNXQ5txe1mZsZ+LzVLMwpb5W4wFncJyn1AYi7x357+LWYpZLo+NiIjIXfFKndwoYLxCZ/reep9o338J3Q/FGgzGZUu2LAcyfw/U/zTECfUo4ImdwFv/T5JbcqlCVBZDrtaEQqB8aDnGhYwDSl0XFxERkTtjUSc3IbAccrWmaN8fgp4LnktpQGpa5+KwvhJIXWIsDCVQ7Vft0H7kXEoAGgCBAKoAZAMcFCcikgCHX53EabNf/RzUr+MVv07aL/HNR+eCzwUuNdhXTdrbj5xHC+P/Hc4AONj+tbR9OxERuRaLOidx2m3CGhzUz3TFz1bR1vGKn4uJawL33L4HCtF1cAqhgPdtb4hr9k71JWfQAjgMwGrpagS1b2dhR0TkWizq5OYajLNcbdUzon3/tR7O46grfs4ggKaMJgiIToWdQiggIKDP0Nu/fAs5nBLA7g7fW+8DgF1d7CMiIufhv7lyIwDcjAIUCnQ5U0KhMO7vqeBx1BU/ZykGcAgQdZYvRNQJ4BDsW7aFnEYDYDRs/wOiBBDc3o+IiFyDEyXkRqkENh8G6s4Bf/s9UNdhlqj/KGBeAqCOAvaHdj9z1XTFzx9dD8EKAHXo+YqfMxXDOFmjrwssk9PYuyS1NEtXExENTCzq5MZ0ey+MBiZqgbJsoL4KUAcCwRpAqfqpX1aW7fMIGBcqjmkf0lT8VCmZhjiRAekLKAEuW+KG7F2S2vVLVxMRDVwcfpWbjrftUqqAMbOBycuMX00FnXU/G7TFWqQeSkVQneVH3UfVjULqoVRoi/lRd+paNoBy2F66xACgrL0fERG5Bq/UyY2Dbu+lhBK7sRtBxUHQXtIiOyQbVX5VCGwIhOaaBgqhQBSikA7eios6MwBYA+MsVwMs/3do+mmJB9erIyJyJRZ1cmO6vVdQkPHzddYMBqCiosfbe2mgwWiMNj4QwOzS2Z36BCMYGmiQhW6GcWnASgOwGMZZsKM7bK+AsaBLkyAmIqKBjMOvTuK0xYdNt/cCoLxrQPQZYOlBIPqM8TEAID6+x9t7Bdr5EXZ7+9HAlAZgDIDZAJa1fw0FCzoiIinwSp2TJCUlISkpCWq1GnV1dY49eVoatDO2Y3f5Ooyu+qkuLw80YM3oD5CW1/Of1Co7P8Jubz8auAwAr+USEbkBXqmTIS20OJz3KoKqLNMXVKXE4bxXobVjLf9sZKMc5TY/L2eAAWUoQzY/6k5ERCQLLOpkxjTBwfS99T4A2IVdnfZZM8CANVhj/t56HwDEI56TJIiIiGSCRZ3MmCY42CralFCaJzj0JA1pWIzFqESlxfYKVGAxFiONn4wiIiKSDX6mTmYcPcEhDWlIRzo00CAQgahCFbKRzSt0REREMsOiTmacMcHBAAOXLSEiIpI5Dr/KDCc4EBERUVdY1MkMJzgQERFRV1jUyRAnOBAREZE1FnU9GDVqFE6fPo2ioiLodDosXrxY6pAAGAu7MRiD2ZiNZViG2ZiNUISyoCMiIhqgOFGiB62trYiPj4dOp0NAQADy8/Px17/+FY2NjVKHxgkOREREZMairgfV1dWorq4GANTU1KC2thb33nuvWxR1RERERCayH37VaDQ4cuQIKisrIYTAokWLOvWJjY1FSUkJ9Ho9cnNzMX369D4915QpU6BSqVBRUdHfsImIiIgcSvZFna+vL3Q6HeLi4rrcHxMTg4SEBLz99tuYMmUKdDodMjMzMWLECHOfgoICFBYWdmqBgT8t4Dts2DDs378fL774otNfExEREVFvyX74NSMjAxkZGTb3r127Fnv37sW+ffsAAKtXr8aCBQuwatUqbNu2DQDw0EMPdfscgwcPxv/8z//g/fffR05OTo99hwwZYn6sVqsBACqVCiqVyp6XRA6mUqmgVCr5/rsx5kgemCf3xxy5v55y1J/cyb6o686gQYMwdepUbN261bxNCIGTJ09ixowZdp9n3759OHXqFD777LMe+27YsAGbNm3qtH3u3LnQ6/V2Pyc5jkqlwpQpU6BQKNDW1iZ1ONQF5kgemCf3xxy5v55y5O3t3edze3RRN3z4cHh5eaGmpsZie01NDSZMmGDXOWbOnIlnn30W//jHP/D0008DAH71q1/h4sWLXfbfunUrEhISzI/VajUqKytx4sQJ1NfX9+2FUL+oVCoIIZCRkcF/5NwUcyQPzJP7Y47cX085Mo3w9YVHF3WOcPbs2V5dCm1paUFLSwtiY2MRFxcHpdL4scW2tjb+gknIYDAwB26OOZIH5sn9MUfur7sc9Sdvsp8o0Z3a2lq0trYiICDAYntAQIB5mRJnSUpKQnh4OKKiopz6PERERESAhxd1d+/eRX5+PubMmWPeplAoMGfOnB4nPBARERHJieyHX319fTFu3Djz49DQUERERODGjRsoLy9HQkICUlJScOHCBeTl5SE+Ph6+vr5ITk52alzWw6/UN0oAGgCBAKoAZAMwSBoRERGR+xJybtHR0aIrycnJ5j5xcXGitLRUNDU1idzcXBEVFeWy+NRqtRBCCLVaLfl7JbemBUQZIESHVta+vTfnUalUYuHChUKlUkn+mtiYIzk35sn9G3Pk/q2nHPWnbpD9lbqsrCwoFIpu+yQmJiIxMdFFEZEjaAEc7mJ7UPv2xQDSXBoRERGRe+PYoJPExsaiqKgIeXl5TnsOJYBoAEvbv/Y1mY46j6MoAezu8L31PgDY1cU+IiKigYx/F53E2bNftQBKAZwBcLD9a2n7dinO40gaAKNh+4dTCSC4vR8REREZsaiTIdPQZJDVdtPQpL0FmaPO42iBPXfpVT8iIqKBgEWdkzhr+NVRQ5PuPMRZ5eB+REREAwGLOidx1vCro4Ym3XmIMxtAOWwvXWIAUNbej4iIiIxY1MmMo4Ym3XmI0wBgTYfvrfcBQHwX+4iIiAYyFnUy46ihSXcf4kyDcdmSSqvtFeByJkRERF2R/Tp17spZd5QwDU0GoeuK3ABj4dPT0KSjzuNMaQDSwTtKEBER2YNX6pzEWZ+pc9TQpFyGOA0AsgD8f+1fpY6HiIjIXbGokyFHDU1yiJOIiMhzcPhVphw1NMkhTiIiIs/Aok7GTEOT7nIeIiIikg6HX53EFfd+JSIiIjJhUeckzr73KxEREVFHLOqIiIiIPACLOiIiIiIPwKKOiIiIyAOwqCMiIiLyACzqiIiIiDwAizon4ZImRERE5Eos6pyES5oQERGRK/GOEi6iVqulDmHAUqlU8Pb2hlqtRltbm9ThUBeYI3lgntwfc+T+espRf+oFFnVOZkpOZWWlxJEQERGRXKjVatTX1/fqGAUA4ZxwyOSf//mfe52Y3sjLy3PIMG9fzmPvMfb0666PrX1dbbfeplarUVlZiaCgIKfmoTtyyJE9fR2VI+vtnpSjvp7LUb9LzsoRIH2eBnKObO1jjvp2jLv/TVKr1bh+/XpPL6MTXqlzgb4kpjcMBoNDfnn7ch57j7GnX3d9bO3rarutvvX19ZIVDHLIkT19HZUjW9s9IUd9PZejfpecnSNAujwN5BzZ2scc9e0Yd/+b1Nf3kBMlPEBiYqJk57H3GHv6ddfH1r6utjvq/XAkOeTInr6OylFv43IFR8Yj5e8Sc+S8c0mZI1v7mKO+HeOpf5M4/EoeT61Wo66uDv7+/pJdBaLuMUfywDy5P+bI/TkzR7xSRx6vubkZmzZtQnNzs9ShkA3MkTwwT+6POXJ/zswRr9QREREReQBeqSMiIiLyACzqiIiIiDwAizoiIiIiD8CijoiIiMgDsKijAe+LL77AjRs3kJqaKnUo1IVRo0bh9OnTKCoqgk6nw+LFi6UOiawMHToU58+fR0FBAQoLC/HCCy9IHRLZ4O3tjdLSUmzfvl3qUKgLJSUl0Ol0KCgowKlTp3p9PGe/0oAXHR0NtVqNlStXYsmSJVKHQ1buv/9+BAQEQKfTISAgAPn5+QgLC0NjY6PUoVE7pVKJIUOGQK/Xw8fHBxcvXsS0adNw48YNqUMjK++88w7GjRuH8vJyvPrqq1KHQ1ZKSkowadIk3Llzp0/H80odDXhZWVlcpNONVVdXQ6fTAQBqampQW1uLe++9V+KoqCODwQC9Xg8AGDJkCBQKBRQKhcRRkbVx48ZhwoQJOH78uNShkJOwqCNZ02g0OHLkCCorKyGEwKJFizr1iY2NRUlJCfR6PXJzczF9+nQJIh24HJmjKVOmQKVSoaKiwtlhDyiOyNHQoUPx1VdfoaKiAtu3b8ePP/7oqvAHBEfkaMeOHdiwYYOrQh5wHJEjIQSysrKQl5eH5cuX9zoGFnUka76+vtDpdIiLi+tyf0xMDBISEvD2229jypQp0Ol0yMzMxIgRI1wc6cDlqBwNGzYM+/fvx4svvuiKsAcUR+To9u3biIyMRGhoKJYvX46RI0e6KvwBob85euqpp/DNN9/gypUrrgx7QHHE79GsWbMwbdo0PPXUU3jjjTcwefLkXsch2Ng8oQkhxKJFiyy25ebmij179pgfKxQKUVFRIdavX2/RLzo6WqSmpkr+Gjy99TVHgwcPFllZWeK5556T/DV4euvP75GpJSYmimeeeUby1+KprS85eu+990RZWZkoKSkRP/zwg7h165Z46623JH8tntoc8Xv0xz/+UaxcubJXz8srdeSxBg0ahKlTp+LkyZPmbUIInDx5EjNmzJAwMjKxN0f79u3DqVOn8Nlnn0kR5oBmT45GjhwJPz8/AIC/vz8effRRXL58WZJ4ByJ7cvTGG28gODgYoaGheOWVV7B3715s2bJFqpAHHHty5OPjY/498vX1xeOPP46ioqJePY+X40Imci/Dhw+Hl5cXampqLLbX1NRgwoQJ5scnTpxAREQEfH19UV5ejiVLliA3N9fV4Q5I9uRo5syZePbZZ/GPf/wDTz/9NADgV7/6FS5evOjqcAcke3IUEhKCTz/91DxBYs+ePcyPC9n7bx1Jx54cBQQEIC0tDQCgUqmwd+9eXLhwoVfPw6KOBry5c+dKHQJ14+zZs1CpVFKHQd04f/48HnroIanDIDulpKRIHQJ1oaSkBJGRkf06B4dfyWPV1taitbUVAQEBFtsDAgJQXV0tUVTUEXPk/pgj98ccuT9X5YhFHXmsu3fvIj8/H3PmzDFvUygUmDNnDnJyciSMjEyYI/fHHLk/5sj9uTJHks8SYWPra/P19RUREREiIiJCCCFEfHy8iIiIEKNHjxYARExMjNDr9WLFihViwoQJ4uOPPxY3btwQI0eOlDz2gdKYI/dvzJH7N+bI/Zub5Ej6N4KNra8tOjpadCU5OdncJy4uTpSWloqmpiaRm5sroqKiJI97IDXmyP0bc+T+jTly/+YOOeK9X4mIiIg8AD9TR0REROQBWNQREREReQAWdUREREQegEUdERERkQdgUUdERETkAVjUEREREXkAFnVEREREHoBFHREREZEHYFFHRERE5AFY1BGR3caPH4+cnBzo9XoUFBRIHU6PkpOTkZaW5pRznz59Gjt37nTKueVACIFFixZJHQYRdcCijsgDDR8+HM3NzfDx8YGXlxcaGhowevTofp/37bffxp07dzB+/HjMmTOnyz7JyckQQkAIgZaWFnz33XfYtm0bhgwZ0u/n7601a9bg+eefd/nzAsDKlStx8+bNXh3jjoXixo0buyzg77//fhw/ftypz61UKrF+/XoUFxejsbERP/74I3Jzc/Gb3/zG3Mcd3zMiqXhJHQAROd6MGTOg0+nQ2NiIqKgo3LhxA+Xl5f0+7wMPPIBjx46hrKys237Hjx/Hr3/9awwaNAhTp05FSkoKhBB4/fXX+x1Db9TV1XW7f9CgQbh7966LonEv/X3tNTU1Doymaxs3bsS///u/46WXXsKFCxfg7++PadOmYdiwYU5/biK5EmxsbJ7Vtm7dKnbu3CkAiLVr14qDBw/2eIxCoRBvvfWWKC8vF01NTaKgoEA88cQT5v3WNm7c2OV5kpOTRVpamsW2w4cPi/z8fIvnev3118V3330nGhsbxVdffSWeeeYZi2OefPJJcfnyZdHY2ChOnTolVq5cKYQQYujQoQKA2LhxoygoKLA4Zs2aNaKkpMRmLKdPnxZ79uwRO3fuFD/88IM4deqUACDCw8PFX//6V1FfXy+qq6vF/v37xX333Wc+zsfHR6SkpIj6+npx/fp1sXbtWnH69Gnze9xVW7lypbh586b5sSne5557TpSUlIhbt26JgwcPCj8/P3Os1kJCQuyKz8/PT3z22WeioaFBXL9+XcTHx3eKr6SkRPznf/6nSElJEbdv3xbJyckCgHj//ffF5cuXxZ07d8TVq1fF5s2bhZeXl/k1WFu5cqX552HRokXm80+aNEl8+eWXorGxUdTW1opPPvlE+Pr6dsrFunXrxPXr10Vtba348MMPzc/VVSsoKBB/+MMfbO7vz3tm+lnYs2ePuHXrlvjhhx/E5s2bLc7/u9/9TnzzzTdCr9eL6upqkZqaKvnvNhtbD03yANjY2BzQRo8eLW7evClu3rwpmpubRWNjo7h586ZoamoSer1e3Lx5UyQmJto8Pj4+Xty6dUs8++yzIiwsTLz//vuiublZjBs3TgAQAQEBorCwUGzfvl0EBARY/MHu2KwLqfDwcHH9+nWRk5Nj3vbGG2+Ir7/+WsybN0+EhoaKlStXCr1eLx599FEBQIwaNUro9XqxY8cOERYWJpYvXy6qqqocUtTV1dWJbdu2ibCwMBEWFiaGDh0qampqxLvvvivGjx8vIiMjRWZmpvjyyy/NxyUmJorS0lLx+OOPi0mTJokjR46I27dv97qoq6urE4cPHxbh4eFi1qxZ4vr16+Kdd94RAIS/v784e/as+OSTT0RAQIAICAgQSqXSrvg+/fRTUVJSIh5//HERHh4uPv/8807xmQrJtWvXirFjx4qxY8cKAOLNN98UM2bMECEhIWLhwoWiqqpKvPrqqwKAuOeee8T27dtFYWGhOaZ77rlHAJZFnY+Pj6isrDS/tscee0xcvXrVXDiacnHr1i2RlJQkxo8fLxYsWCAaGhrECy+8YPM9PH78uDhz5owYPnx4l/v7856ZfhZ27txp/hnrGM/UqVPF3bt3xdKlS0VwcLCIjIwUL7/8suS/52xsPTTJA2BjY3NAU6lUIiQkREyePFk0NzeLyZMni7Fjx4q6ujqh0WhESEiIxZUK61ZRUSE2bNhgse3cuXPiww8/ND8uKCiweYXO1JKTk8Xdu3dFfX290Ov1QgghWltbxS9/+UsBQAwePFg0NDSIhx9+2OK4vXv3igMHDggA4t133xUXL1602L9161aHFHUdrxgCxqImIyPDYltQUJAQQoif/exnwtfXVzQ1NYnFixeb9w8bNkzcuXOn10VdQ0OD+cocALFt2zaLYrerq389xefn5yeam5strnT6+/uLhoaGTkXdF1980ePP0bp168T58+ct4rZ+nwHLou6FF14QP/74o/Dx8THvf/LJJ0Vra6sYOXKkORclJSVCqVSa+/z3f/93t1eRJ06cKIqKikRra6vQ6XTio48+EvPnz7fo05f3zHRcUVFRp58x0zatVitu3bplkS82Nndv/EwdkYdoa2vDtWvXsGTJEpw/fx6FhYV45JFHUFNTg+zs7G6PVavVCAoKwtmzZy22nz17FhEREb2O5fTp0/jd734HX19f/P73v0drayu++OILAMC4cePg6+uLEydOWBwzePBg8wfyJ06ciHPnzlnsz8nJ6XUcXcnPz7d4HBERgcceewz19fWd+j7wwAPw9vbGkCFDLOK5efMmLl++3OvnLi0tRUNDg/lxVVUVRo4c2e0x9sQ3ePBg5OXlmbfX1dV1Gd+FCxc6bYuJicF//Md/4IEHHoCfnx+8vLx6/CyitYkTJ5o/w2ly9uxZqFQqjB8/Ht9//z0AoKioCAaDwdynqqoKkydPtnne4uJiTJo0CVOnTsXMmTPx6KOP4ujRo9i3bx9++9vf2jyup/fsypUrAIDc3FyLfTk5OVi3bh2USiVOnDiBa9eu4bvvvkNGRgYyMjKQlpYGvV5v35tCJAEWdUQe4uLFiwgJCcGgQYOgVCpRX18PLy8veHl5ob6+HteuXcOkSZNcEsudO3dw9epVAMCqVaug0+mwatUq/OUvf4Gfnx8AYMGCBaisrLQ4rrm52e7nMBgMUCgUFtsGDRpkV2wd+fn54ejRo1i/fn2nvlVVVRg3bpzdMfXEemKCEAJKZfeLEDgyPuvX/vDDD+PAgQPYuHEjMjMzcfv2bSxduhTr1q2z+5y90ZfXL4TAhQsXcOHCBezevRv/9m//hs8++wzvvvsuSktLuzymp/fMHg0NDZgyZQpmz56NefPmYfPmzdi0aROmT5+O27dv23UOIlfjkiZEHuIXv/gFIiMjUV1djeeeew6RkZG4ePEi4uPjERkZiV/84hc2j62vr0dlZSVmzpxpsX3mzJn4+uuv+xWXEALvvfce3nnnHdxzzz34+uuv0dTUhODgYFy9etWiVVRUADBeoYmKirI4z8MPP2zx+IcffsD9999vsS0yMrLX8f39739HeHg4SktLO8XT2NiIq1evoqWlBT//+c/Nx/zTP/0TwsLCev1cPWlpaYFKpepVfN999x1aWlowffp08zH+/v52xffII4/g2rVreO+995Cfn49vv/0WISEhPcZkrbi4GBEREfDx8TFvmzlzJtra2vp0RbM7pp9HX19fm/H19J6ZdMwpYPwZu3LlivlqYltbG7788kusX78e//Iv/4IxY8bg8ccfd+jrIXIkFnVEHqKsrAwNDQ0ICAhAeno6ysvLER4ejs8//xxXr17tcRmS7du3Y/369YiJiUFYWBi2bt2KyMhI7N69u9+xpaamoq2tDXFxcWhoaMCOHTuwc+dOrFixAmPHjsVDDz2El156CStWrAAAfPzxx/jZz36GP/7xjwgLC8OyZcs6rTd35swZjBgxAq+99hrGjh2L2NhYPPnkk72OLTExEffeey8OHjyIadOmYezYsZg3bx7+8pe/QKlU4s6dO/jzn/+M7du347HHHkN4eDj27dtnMYzoKKWlpfj5z3+OkJAQ3HfffVAoFD3G19DQgJSUFGzfvh2zZ8/Ggw8+iD//+c8wGAwQQnT7fFeuXEFwcDCeffZZjB07Fi+//DK0Wm2nmEJDQxEREYH77rsPgwcP7nSeAwcOoKmpCSkpKQgPD8fs2bOxZ88e/Nd//Zd56LUvUlNTER8fj6ioKAQHByM6OhqJiYm4fPkyLl261Of3zCQ4OBgffPABwsLCsHTpUrz88svmn/cFCxbg5ZdfRkREBIKDg7FixQoolUqHF6lEjsSijsiDzJ49G+fPn0dzczOioqJQUVGB6upqu47905/+hISEBHzwwQcoLCzE/Pnz8dRTT+Hbb7/td1xtbW348MMP8dprr8HHxwdvvfUWtmzZgg0bNqC4uBgZGRlYsGABSkpKAADl5eV45pln8PTTT0On02H16tV44403LM556dIlxMbGIi4uDjqdDlFRUdixY0evY6uqqsLMmTOhUqnwt7/9DYWFhdi1axdu3bplLtxeffVVZGdn4+jRozh58iT+7//+r9Nn8xxhx44daGtrw9dff43a2loEBwfbFd/atWuRk5OD//3f/8XJkydx9uxZFBcXo6mpqdvnO3r0KHbu3IkPP/wQX331FR555BFs2bLFos/nn3+OjIwMnD59GrW1tVi2bFmn8+j1ejzxxBO49957cf78eRw+fBhffvklXnrppX69H5mZmfjXf/1XHD16FN988w1SUlJw6dIlzJs3D21tbf16zwBg//798Pb2Rl5eHhITE7F79258+umnAIBbt27hl7/8JU6dOoXi4mKsXr0ay5Yt6/eVayJnk3y2BhsbG1tPLTo62mL2K5vt5uPjI27evClWrVoleSzu2npaZ5CNTY6NEyWIiGQuMjISEyZMQF5eHoYOHYo//OEPAID09HSJIyMiV2JRR0TkAV555RWMHz8eLS0tyM/Ph0ajwY8//ih1WETkQgoYL9kRERERkYxxogQRERGRB2BRR0REROQBWNQREREReQAWdUREREQegEUdERERkQdgUUdERETkAVjUEREREXkAFnVEREREHoBFHREREZEH+P8Bsm+QPCyCnhoAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -619,7 +619,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "id": "697a88bd", "metadata": {}, "outputs": [ @@ -629,37 +629,37 @@ "text": [ "How much faster X is vs. Y\n", "End Time: 1.0e-03\n", - "\t nbsolve_ivp = 11.38x SciPy\t nbsolve_ivp = 0.24x cysolve_ivp\n", - "\t pysolve_ivp = 15.97x SciPy\t pysolve_ivp = 0.34x cysolve_ivp\n", - "\t cysolve_ivp = 47.31x SciPy\t cysolve_ivp = 2.96x pysolve_ivp\n", + "\t nbsolve_ivp = 11.12x SciPy\t nbsolve_ivp = 0.25x cysolve_ivp\n", + "\t pysolve_ivp = 16.16x SciPy\t pysolve_ivp = 0.36x cysolve_ivp\n", + "\t cysolve_ivp = 44.73x SciPy\t cysolve_ivp = 2.77x pysolve_ivp\n", "End Time: 1.0e-02\n", - "\t nbsolve_ivp = 11.06x SciPy\t nbsolve_ivp = 0.23x cysolve_ivp\n", - "\t pysolve_ivp = 16.24x SciPy\t pysolve_ivp = 0.34x cysolve_ivp\n", - "\t cysolve_ivp = 48.14x SciPy\t cysolve_ivp = 2.96x pysolve_ivp\n", + "\t nbsolve_ivp = 10.55x SciPy\t nbsolve_ivp = 0.18x cysolve_ivp\n", + "\t pysolve_ivp = 20.15x SciPy\t pysolve_ivp = 0.35x cysolve_ivp\n", + "\t cysolve_ivp = 57.03x SciPy\t cysolve_ivp = 2.83x pysolve_ivp\n", "End Time: 1.0e-01\n", - "\t nbsolve_ivp = 19.01x SciPy\t nbsolve_ivp = 0.25x cysolve_ivp\n", - "\t pysolve_ivp = 23.34x SciPy\t pysolve_ivp = 0.30x cysolve_ivp\n", - "\t cysolve_ivp = 77.13x SciPy\t cysolve_ivp = 3.30x pysolve_ivp\n", + "\t nbsolve_ivp = 15.04x SciPy\t nbsolve_ivp = 0.21x cysolve_ivp\n", + "\t pysolve_ivp = 20.00x SciPy\t pysolve_ivp = 0.27x cysolve_ivp\n", + "\t cysolve_ivp = 72.88x SciPy\t cysolve_ivp = 3.64x pysolve_ivp\n", "End Time: 1.0e+00\n", - "\t nbsolve_ivp = 29.94x SciPy\t nbsolve_ivp = 0.24x cysolve_ivp\n", - "\t pysolve_ivp = 27.85x SciPy\t pysolve_ivp = 0.22x cysolve_ivp\n", - "\t cysolve_ivp = 125.57x SciPy\t cysolve_ivp = 4.51x pysolve_ivp\n", + "\t nbsolve_ivp = 30.67x SciPy\t nbsolve_ivp = 0.21x cysolve_ivp\n", + "\t pysolve_ivp = 29.54x SciPy\t pysolve_ivp = 0.20x cysolve_ivp\n", + "\t cysolve_ivp = 148.99x SciPy\t cysolve_ivp = 5.04x pysolve_ivp\n", "End Time: 1.0e+01\n", - "\t nbsolve_ivp = 108.80x SciPy\t nbsolve_ivp = 0.28x cysolve_ivp\n", - "\t pysolve_ivp = 39.06x SciPy\t pysolve_ivp = 0.10x cysolve_ivp\n", - "\t cysolve_ivp = 391.80x SciPy\t cysolve_ivp = 10.03x pysolve_ivp\n", + "\t nbsolve_ivp = 103.59x SciPy\t nbsolve_ivp = 0.26x cysolve_ivp\n", + "\t pysolve_ivp = 39.88x SciPy\t pysolve_ivp = 0.10x cysolve_ivp\n", + "\t cysolve_ivp = 404.11x SciPy\t cysolve_ivp = 10.13x pysolve_ivp\n", "End Time: 1.0e+02\n", - "\t nbsolve_ivp = 137.15x SciPy\t nbsolve_ivp = 0.28x cysolve_ivp\n", - "\t pysolve_ivp = 39.95x SciPy\t pysolve_ivp = 0.08x cysolve_ivp\n", - "\t cysolve_ivp = 487.52x SciPy\t cysolve_ivp = 12.20x pysolve_ivp\n", + "\t nbsolve_ivp = 136.64x SciPy\t nbsolve_ivp = 0.28x cysolve_ivp\n", + "\t pysolve_ivp = 41.30x SciPy\t pysolve_ivp = 0.08x cysolve_ivp\n", + "\t cysolve_ivp = 486.34x SciPy\t cysolve_ivp = 11.78x pysolve_ivp\n", "End Time: 1.0e+03\n", - "\t nbsolve_ivp = 143.84x SciPy\t nbsolve_ivp = 0.29x cysolve_ivp\n", - "\t pysolve_ivp = 39.44x SciPy\t pysolve_ivp = 0.08x cysolve_ivp\n", - "\t cysolve_ivp = 495.53x SciPy\t cysolve_ivp = 12.56x pysolve_ivp\n", + "\t nbsolve_ivp = 119.73x SciPy\t nbsolve_ivp = 0.24x cysolve_ivp\n", + "\t pysolve_ivp = 41.18x SciPy\t pysolve_ivp = 0.08x cysolve_ivp\n", + "\t cysolve_ivp = 505.81x SciPy\t cysolve_ivp = 12.28x pysolve_ivp\n", "End Time: 1.0e+04\n", - "\t nbsolve_ivp = 124.73x SciPy\t nbsolve_ivp = 0.25x cysolve_ivp\n", - "\t pysolve_ivp = 40.60x SciPy\t pysolve_ivp = 0.08x cysolve_ivp\n", - "\t cysolve_ivp = 490.09x SciPy\t cysolve_ivp = 12.07x pysolve_ivp\n" + "\t nbsolve_ivp = 120.16x SciPy\t nbsolve_ivp = 0.24x cysolve_ivp\n", + "\t pysolve_ivp = 42.16x SciPy\t pysolve_ivp = 0.09x cysolve_ivp\n", + "\t cysolve_ivp = 491.82x SciPy\t cysolve_ivp = 11.67x pysolve_ivp\n" ] } ], @@ -694,7 +694,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.7" + "version": "3.11.10" } }, "nbformat": 4, diff --git a/Benchmarks/CyRK_CySolver.pdf b/Benchmarks/CyRK_CySolver.pdf index 758b835..539c5da 100644 Binary files a/Benchmarks/CyRK_CySolver.pdf and b/Benchmarks/CyRK_CySolver.pdf differ diff --git a/Benchmarks/CyRK_PySolver (njit).pdf b/Benchmarks/CyRK_PySolver (njit).pdf index 758b835..4e3cf88 100644 Binary files a/Benchmarks/CyRK_PySolver (njit).pdf and b/Benchmarks/CyRK_PySolver (njit).pdf differ diff --git a/Benchmarks/CyRK_PySolver.pdf b/Benchmarks/CyRK_PySolver.pdf index 758b835..539c5da 100644 Binary files a/Benchmarks/CyRK_PySolver.pdf and b/Benchmarks/CyRK_PySolver.pdf differ diff --git a/Benchmarks/CyRK_SciPy_Compare_predprey_v0-11-2.png b/Benchmarks/CyRK_SciPy_Compare_predprey_v0-11-2.png new file mode 100644 index 0000000..2e40d70 Binary files /dev/null and b/Benchmarks/CyRK_SciPy_Compare_predprey_v0-11-2.png differ diff --git a/Benchmarks/CyRK_numba.pdf b/Benchmarks/CyRK_numba.pdf index aff06a0..042cc26 100644 Binary files a/Benchmarks/CyRK_numba.pdf and b/Benchmarks/CyRK_numba.pdf differ diff --git a/Benchmarks/SciPy.pdf b/Benchmarks/SciPy.pdf index 71449f1..30d1571 100644 Binary files a/Benchmarks/SciPy.pdf and b/Benchmarks/SciPy.pdf differ diff --git a/Benchmarks/CyRK_SciPy_Compare_predprey_v0-11-0.png b/Benchmarks/archive/CyRK_SciPy_Compare_predprey_v0-11-0.png similarity index 100% rename from Benchmarks/CyRK_SciPy_Compare_predprey_v0-11-0.png rename to Benchmarks/archive/CyRK_SciPy_Compare_predprey_v0-11-0.png diff --git a/CHANGES.md b/CHANGES.md index 2db25b0..f7e57f5 100644 --- a/CHANGES.md +++ b/CHANGES.md @@ -2,6 +2,18 @@ ## 2024 +#### v0.11.2 (2024-11-12) + +New: +* Using extra output (via `num_extra`) with `cysolve_ivp` and `pysolve_ivp` now works when `dense_output` is set to true. CySolverSolution will now make additional calls to the differential equation to determine correct values for extra outputs which are provided alongside the interpolated y values. + * Added relevant tests. + +Other: +* Refactored some misspellings in the cysolver c++ backend. + +Fix: +* Fixed missing `np.import_array` in cysolver backend. + #### v0.11.1 (2024-11-11) Fixes: diff --git a/CyRK/array/interp.pyx b/CyRK/array/interp.pyx index b3ece94..b87c038 100644 --- a/CyRK/array/interp.pyx +++ b/CyRK/array/interp.pyx @@ -6,8 +6,6 @@ import numpy as np from libc.math cimport isnan, floor -from libc.stdio cimport printf - # Get machine precision. cdef double EPS EPS = np.finfo(dtype=np.float64).eps @@ -504,17 +502,14 @@ cdef void interp_array_ptr( x_slope = 1. cdef double desired_x - printf("\n\n!!!DEBUG:: WORKING ON PRANGE\n") for index in range(desired_len): desired_x = desired_x_array[index] # Perform binary search with guess guess = floor(x_slope * index) - printf("!!!DEBUG:: INDEX = %d; desired_x=%f; guess = %d; len_x = %d\n", index, desired_x, guess, len_x) j = c_binary_search_with_guess(desired_x, x_domain, len_x, guess) # Run interpolation - printf("!!!DEBUG:: j= %d\n", j) result = interp_ptr(desired_x, x_domain, dependent_values, len_x, provided_j=j) # Store result diff --git a/CyRK/cy/cysolution.cpp b/CyRK/cy/cysolution.cpp index 540dc8b..603c3cf 100644 --- a/CyRK/cy/cysolution.cpp +++ b/CyRK/cy/cysolution.cpp @@ -336,7 +336,7 @@ void CySolverResult::update_message(const char* const new_message_ptr) std::strcpy(this->message_ptr, new_message_ptr); } -void CySolverResult::call(const double t, double* y_interp) +void CySolverResult::call(const double t, double* y_interp_ptr) { if (!this->capture_dense_output) [[unlikely]] { @@ -368,7 +368,7 @@ void CySolverResult::call(const double t, double* y_interp) this->time_domain_sorted_ptr + interp_time_len_touse, t) - this->time_domain_sorted_ptr; - auto upper_i = std::upper_bound( + auto upper_i = std::upper_bound( this->time_domain_sorted_ptr, this->time_domain_sorted_ptr + interp_time_len_touse, t) - this->time_domain_sorted_ptr; @@ -401,18 +401,18 @@ void CySolverResult::call(const double t, double* y_interp) } // Call interpolant to update y - this->dense_vector[closest_index]->call(t, y_interp); + this->dense_vector[closest_index]->call(t, y_interp_ptr); } } -void CySolverResult::call_vectorize(const double* t_array_ptr, size_t len_t, double* y_interp) +void CySolverResult::call_vectorize(const double* t_array_ptr, size_t len_t, double* y_interp_ptr) { double* y_sub_ptr; for (size_t i = 0; i < len_t; i++) { // Assume y is passed as a y0_0, y1_0, y2_0, ... y0_1, y1_1, y2_1, ... - y_sub_ptr = &y_interp[this->num_y * i]; + y_sub_ptr = &y_interp_ptr[this->num_dy * i]; this->call(t_array_ptr[i], y_sub_ptr); } diff --git a/CyRK/cy/cysolution.hpp b/CyRK/cy/cysolution.hpp index dd0c50f..08188e2 100644 --- a/CyRK/cy/cysolution.hpp +++ b/CyRK/cy/cysolution.hpp @@ -110,6 +110,6 @@ class CySolverResult { void finalize(); void reset(); void update_message(const char* const new_message_ptr); - void call(const double t, double* y_interp); - void call_vectorize(const double* t_array_ptr, size_t len_t, double* y_interp); + void call(const double t, double* y_interp_ptr); + void call_vectorize(const double* t_array_ptr, size_t len_t, double* y_interp_ptr); }; diff --git a/CyRK/cy/cysolver.cpp b/CyRK/cy/cysolver.cpp index 75ecfe1..5f81189 100644 --- a/CyRK/cy/cysolver.cpp +++ b/CyRK/cy/cysolver.cpp @@ -147,7 +147,7 @@ CySolverBase::CySolverBase( CySolverBase::~CySolverBase() { this->storage_ptr = nullptr; - if (this->use_pysolver) + if (this->deconstruct_python) { // Decrease reference count on the cython extension class instance Py_XDECREF(this->cython_extension_class_instance); @@ -252,9 +252,6 @@ void CySolverBase::reset() this->reset_called = true; } -#include -#include - void CySolverBase::take_step() { if (!this->reset_called) [[unlikely]] @@ -316,8 +313,16 @@ void CySolverBase::take_step() this->t_now_ptr[0], this->y_old_ptr, this->num_y, - 0 // Fake Q order just for consistent constructor call + this->num_extra, + 0, // Fake Q order just for consistent constructor call + this, + this->diffeq, + this->cython_extension_class_instance, + this->t_now_ptr, + this->y_now_ptr, + this->dy_now_ptr ); + // Update the dense output class with integrator-specific data this->p_dense_output_stack(dense_output); @@ -327,7 +332,7 @@ void CySolverBase::take_step() // Check if there are any t_eval steps between this new index and the last index. // Get lowest and highest indices auto lower_i = std::lower_bound(this->t_eval_vec.begin(), this->t_eval_vec.end(), this->t_now_ptr[0]) - this->t_eval_vec.begin(); - auto upper_i = std::upper_bound(this->t_eval_vec.begin(), this->t_eval_vec.end(), this->t_now_ptr[0]) - this->t_eval_vec.begin(); + auto upper_i = std::upper_bound(this->t_eval_vec.begin(), this->t_eval_vec.end(), this->t_now_ptr[0]) - this->t_eval_vec.begin(); size_t t_eval_index_new; if (lower_i == upper_i) @@ -518,7 +523,14 @@ CySolverDense* CySolverBase::p_dense_output_heap() this->t_now_ptr[0], this->y_old_ptr, this->num_y, - 0 // Fake Q order just for consistent constructor call + this->num_extra, + 0, // Fake Q order just for consistent constructor call + this, + this->diffeq, + this->cython_extension_class_instance, + this->t_now_ptr, + this->y_now_ptr, + this->dy_now_ptr ); } @@ -551,8 +563,8 @@ void CySolverBase::set_cython_extension_instance(PyObject* cython_extension_clas } else { - // TODO: Do we need to decref this at some point? During CySolver's deconstruction? Py_XINCREF(this->cython_extension_class_instance); + this->deconstruct_python = true; } } } diff --git a/CyRK/cy/cysolver.hpp b/CyRK/cy/cysolver.hpp index 5ec67ac..e56e8a6 100644 --- a/CyRK/cy/cysolver.hpp +++ b/CyRK/cy/cysolver.hpp @@ -123,6 +123,7 @@ class CySolverBase { bool reset_called = false; bool capture_extra = false; bool user_provided_max_num_steps = false; + bool deconstruct_python = false; // Dense (Interpolation) Attributes bool use_dense_output = false; diff --git a/CyRK/cy/cysolver_api.pyx b/CyRK/cy/cysolver_api.pyx index 264a273..610ea60 100644 --- a/CyRK/cy/cysolver_api.pyx +++ b/CyRK/cy/cysolver_api.pyx @@ -2,6 +2,7 @@ # cython: boundscheck=False, wraparound=False, nonecheck=False, cdivision=True, initializedcheck=False import numpy as np +np.import_array() # ===================================================================================================================== # Import CySolverResult (container for integration results) @@ -27,7 +28,7 @@ cdef class WrapCySolverResult: if not self.cyresult_ptr.capture_dense_output: raise AttributeError("Can not call WrapCySolverResult when dense_output set to False.") - y_interp_array = np.empty(self.cyresult_ptr.num_y, dtype=np.float64, order='C') + y_interp_array = np.empty(self.cyresult_ptr.num_dy, dtype=np.float64, order='C') cdef double[::1] y_interp_view = y_interp_array cdef double* y_interp_ptr = &y_interp_view[0] @@ -42,13 +43,13 @@ cdef class WrapCySolverResult: cdef size_t len_t = len(t_view) - y_interp_array = np.empty(self.cyresult_ptr.num_y * len_t, dtype=np.float64, order='C') + y_interp_array = np.empty(self.cyresult_ptr.num_dy * len_t, dtype=np.float64, order='C') cdef double[::1] y_interp_view = y_interp_array cdef double* y_interp_ptr = &y_interp_view[0] cdef double* t_array_ptr = &t_view[0] self.cyresult_ptr.call_vectorize(t_array_ptr, len_t, y_interp_ptr) - return y_interp_array.reshape(len_t, self.cyresult_ptr.num_y).T + return y_interp_array.reshape(len_t, self.cyresult_ptr.num_dy).T @property def success(self): @@ -87,7 +88,7 @@ cdef class WrapCySolverResult: if type(t) == np.ndarray: return self.call_vectorize(t) else: - return self.call(t).reshape(self.cyresult_ptr.num_y, 1) + return self.call(t).reshape(self.cyresult_ptr.num_dy, 1) # ===================================================================================================================== diff --git a/CyRK/cy/dense.cpp b/CyRK/cy/dense.cpp index 7587122..91be4a8 100644 --- a/CyRK/cy/dense.cpp +++ b/CyRK/cy/dense.cpp @@ -1,15 +1,31 @@ #include "dense.hpp" +// Constructors CySolverDense::CySolverDense( int integrator_int, double t_old, double t_now, double* y_in_ptr, unsigned int num_y, - unsigned int Q_order) : + unsigned int num_extra, + unsigned int Q_order, + CySolverBase* cysolver_instance_ptr, + std::function cysolver_diffeq_ptr, + PyObject* cython_extension_class_instance, + double* cysolver_t_now_ptr, + double* cysolver_y_now_ptr, + double* cysolver_dy_now_ptr + ) : integrator_int(integrator_int), num_y(num_y), + num_extra(num_extra), + cysolver_instance_ptr(cysolver_instance_ptr), + cysolver_diffeq_ptr(cysolver_diffeq_ptr), + cython_extension_class_instance(cython_extension_class_instance), + cysolver_t_now_ptr(cysolver_t_now_ptr), + cysolver_y_now_ptr(cysolver_y_now_ptr), + cysolver_dy_now_ptr(cysolver_dy_now_ptr), t_old(t_old), t_now(t_now), Q_order(Q_order) @@ -18,9 +34,27 @@ CySolverDense::CySolverDense( std::memcpy(this->y_stored_ptr, y_in_ptr, sizeof(double) * this->num_y); // Calculate step this->step = this->t_now - this->t_old; + + // Make a strong reference to the python class (if this dense output was built using the python hooks). + if (cython_extension_class_instance) + { + Py_XINCREF(this->cython_extension_class_instance); + this->deconstruct_python = true; + } + } -void CySolverDense::call(double t_interp, double* y_intepret) +// Destructors +CySolverDense::~CySolverDense() +{ + if (this->deconstruct_python) + { + // Decrease reference count on the cython extension class instance + Py_XDECREF(this->cython_extension_class_instance); + } +} + +void CySolverDense::call(double t_interp, double* y_interp_ptr) { double step_factor = (t_interp - this->t_old) / this->step; @@ -50,7 +84,7 @@ void CySolverDense::call(double t_interp, double* y_intepret) // Finally multiply by step temp_double *= this->step; - y_intepret[y_i] = this->y_stored_ptr[y_i] + temp_double; + y_interp_ptr[y_i] = this->y_stored_ptr[y_i] + temp_double; } break; @@ -75,7 +109,7 @@ void CySolverDense::call(double t_interp, double* y_intepret) // Finally multiply by step temp_double *= this->step; - y_intepret[y_i] = this->y_stored_ptr[y_i] + temp_double; + y_interp_ptr[y_i] = this->y_stored_ptr[y_i] + temp_double; } break; @@ -112,17 +146,55 @@ void CySolverDense::call(double t_interp, double* y_intepret) temp_double += this->Q_ptr[Q_stride + 6]; temp_double *= step_factor; - y_intepret[y_i] = this->y_stored_ptr[y_i] + temp_double; + y_interp_ptr[y_i] = this->y_stored_ptr[y_i] + temp_double; } break; [[unlikely]] default: // Don't know the model. Just return the input. - std::memcpy(y_intepret, this->y_stored_ptr, sizeof(double) * this->num_y); - for (size_t i = 0; i < this->num_y; i++) + std::memcpy(y_interp_ptr, this->y_stored_ptr, sizeof(double) * this->num_y); + break; + } + + if (this->num_extra > 0) + { + // We have interpolated the dependent y-values but have not handled any extra outputs + // We can not use the RK (or any other integration method's) fancy interpolation because extra outputs are + // not included in the, for example, Q matrix building process. + // TODO: Perhaps we could include them in that? + // For now, we will make an additional call to the diffeq using the y0 we just found above and t_interp. + + size_t num_dy = this->num_y + this->num_extra; + + // Store a copy of dy_now, t_now, and y_now into old vectors so we can make the call non destructively. + // y array + double y_tmp[Y_LIMIT]; + double* y_tmp_ptr = &y_tmp[0]; + memcpy(y_tmp_ptr, this->cysolver_y_now_ptr, sizeof(double) * this->num_y); + // dy array + double dy_tmp[DY_LIMIT]; + double* dy_tmp_ptr = &dy_tmp[0]; + memcpy(dy_tmp_ptr, this->cysolver_dy_now_ptr, sizeof(double) * num_dy); + // t + double t_tmp = cysolver_t_now_ptr[0]; + + // Load new values into t and y + memcpy(this->cysolver_y_now_ptr, y_interp_ptr, sizeof(double) * this->num_y); + cysolver_t_now_ptr[0] = t_interp; + + // Call diffeq to update dy_now pointer + this->cysolver_diffeq_ptr(this->cysolver_instance_ptr); + + // Capture extra output and add to the y_interp_ptr array + // We already have y interpolated from above so start at num_y + for (size_t i = this->num_y; i < num_dy; i++) { - y_intepret[i] = 0.75; + y_interp_ptr[i] = this->cysolver_dy_now_ptr[i]; } - break; + + // Reset CySolver state to what it was before + cysolver_t_now_ptr[0] = t_tmp; + memcpy(this->cysolver_y_now_ptr, y_tmp_ptr, sizeof(double) * num_y); + memcpy(this->cysolver_dy_now_ptr, dy_tmp_ptr, sizeof(double) * num_dy); } } \ No newline at end of file diff --git a/CyRK/cy/dense.hpp b/CyRK/cy/dense.hpp index e6de7d6..f7d22b8 100644 --- a/CyRK/cy/dense.hpp +++ b/CyRK/cy/dense.hpp @@ -4,10 +4,16 @@ * S o by avoiding calls to New we greatly improve performance. */ +#include #include +#include "Python.h" #include "common.hpp" +// We need a pointer to the CySolverBase class. But that file includes this one. So we need to do a forward declaration +class CySolverBase; + + class CySolverDense { /* Attributes */ @@ -26,6 +32,16 @@ class CySolverDense // y and t state info unsigned int num_y = 0; + unsigned int num_extra = 0; + + // Pointer to the CySolverBase class + CySolverBase* cysolver_instance_ptr = nullptr; + std::function cysolver_diffeq_ptr = nullptr; + double* cysolver_t_now_ptr = nullptr; + double* cysolver_y_now_ptr = nullptr; + double* cysolver_dy_now_ptr = nullptr; + PyObject* cython_extension_class_instance = nullptr; + bool deconstruct_python = false; // Time step info double step = 0.0; @@ -44,7 +60,7 @@ class CySolverDense protected: public: - virtual ~CySolverDense() { }; + virtual ~CySolverDense(); CySolverDense() {}; CySolverDense( int integrator_int, @@ -52,7 +68,15 @@ class CySolverDense double t_now, double* y_in_ptr, unsigned int num_y, - unsigned int Q_order); + unsigned int num_extra, + unsigned int Q_order, + CySolverBase* cysolver_instance_ptr, + std::function cysolver_diffeq_ptr, + PyObject* cython_extension_class_instance, + double* cysolver_t_now_ptr, + double* cysolver_y_now_ptr, + double* cysolver_dy_now_ptr + ); - virtual void call(double t_interp, double* y_intepret); + virtual void call(double t_interp, double* y_interp_ptr); }; diff --git a/CyRK/cy/pysolver.pyx b/CyRK/cy/pysolver.pyx index 939754b..c6d9d12 100644 --- a/CyRK/cy/pysolver.pyx +++ b/CyRK/cy/pysolver.pyx @@ -7,8 +7,6 @@ from libcpp.cmath cimport fmin, fabs from CyRK.utils.memory cimport make_shared from CyRK.cy.cysolver_api cimport find_expected_size, WrapCySolverResult, INF, EPS_100, Y_LIMIT, DY_LIMIT -cimport numpy as np - import numpy as np np.import_array() diff --git a/CyRK/cy/pysolver_cyhook.pyx b/CyRK/cy/pysolver_cyhook.pyx index 9658bd5..eab70b7 100644 --- a/CyRK/cy/pysolver_cyhook.pyx +++ b/CyRK/cy/pysolver_cyhook.pyx @@ -1,7 +1,6 @@ # distutils: language = c++ # cython: boundscheck=False, wraparound=False, nonecheck=False, cdivision=True, initializedcheck=False - cdef public api void call_diffeq_from_cython(object py_instance, DiffeqMethod diffeq): """Callback function used by the C++ model. The "public api" prefix tells Cython to produce header files "pysolver_api.h" which can be included in diff --git a/CyRK/cy/rk.cpp b/CyRK/cy/rk.cpp index 70efddf..4137ee6 100644 --- a/CyRK/cy/rk.cpp +++ b/CyRK/cy/rk.cpp @@ -1021,7 +1021,14 @@ CySolverDense* RKSolver::p_dense_output_heap() this->t_now_ptr[0], this->y_old_ptr, this->num_y, - this->len_Pcols); + this->num_extra, + this->len_Pcols, + this, + this->diffeq, + this->cython_extension_class_instance, + this->t_now_ptr, + this->y_now_ptr, + this->dy_now_ptr); // Update Q this->p_update_Q(dense_output->Q_ptr); diff --git a/Documentation/Dense Output and t_eval.md b/Documentation/Dense Output and t_eval.md index b083fca..33c41e9 100644 --- a/Documentation/Dense Output and t_eval.md +++ b/Documentation/Dense Output and t_eval.md @@ -26,6 +26,12 @@ Notes: - The dense outputs are relatively large and must be heap allocated at each time step. Therefore it is rather computationally expensive to store them. Leave `dense_output=False` unless required to improve performance. - This performance hit is much less noticeable if only `t_eval` is provided because in that case we can utilize a single stack allocation. +## Interpolating Extra Outputs with Dense Output + +As discussed in the "Extra Output.md" documentation, CyRK can capture additional outputs from the differential equation process. These are non-dependent variables (non-y values) that are not used during integration error calculations but may be useful data for the user. +This is triggered when `num_extra` is set to > 0 in either `pysolve_ivp` or `cysolve_ivp`. If `dense_output` is also set to True, then the final solution interpolators will also interpolate these extra outputs. This is done by making additional calls to the differential equation to determine what the values of the extra outputs are at each interpolated time step. +More details can be found in "Extra Output.md" + ### Using Dense Outputs Example: @@ -34,6 +40,10 @@ def cy_diffeq(dy, t, y): dy[0] = (1. - 0.01 * y[1]) * y[0] dy[1] = (0.02 * y[0] - 1.) * y[1] + # If using extra output: set `num_extra=2` + # dy[2] = (1. - 0.01 * y[1]) + # dy[3] = (0.02 * y[0] - 1.) + import numpy as np from CyRK import pysolve_ivp diff --git a/Documentation/Extra Output.md b/Documentation/Extra Output.md index 7c2fa36..c2551ac 100644 --- a/Documentation/Extra Output.md +++ b/Documentation/Extra Output.md @@ -32,8 +32,7 @@ The values of these extra parameters are not analyzed by the solver when determi Current limitations of this feature as of v0.4.0: - Only numerical parameters can be used as extra outputs (no strings or booleans). -- All extra outputs must have the same _type_ as the input `y`s. This means if you are using `y`s which are floats, but you need to capture a complex number, -then you will either need to change the `y`s to complex-valued (with a zero imaginary portion) or, a better option, return the real and imaginary portions of the extra parameter separately. +- All extra outputs must have the same _type_ as the input `y`s. (for `pysolve_ivp` and `cysolve_ivp` extra outputs can only be doubles). ## How to use with `CyRK.nbsolve_ivp` (Numba-based) @@ -127,12 +126,18 @@ extra_parameter_0 = result.y[2, :] extra_parameter_1 = result.y[3, :] ``` +# Interpolating extra outputs -## Additional Considerations When Using `t_eval` (for numba-based method) +## Interpolating for cython-based `cysolve_ivp` and `pysolve_ivp` -_This is applicable to either the numba- or cython-based solver._ +When using either `dense_output` or `t_eval` then interpolations must be performed. For the dependent y variables, CyRK will utilize the user-specified differential equation method's approach to interpolation. However, this only works for _dependent_ variables. +If you are capturing extra output they will not be included in this interpolation. Instead, both `cysolve_ivp` and `pysolve_ivp` will perform said dependent-variable interpolation and then use the results to make additional calls (one per interpolation, i.e., once per value in t_eval) to the differential equation to find the values of the extra outputs at the requested time steps. -By setting the `t_eval` argument for either the `nbsolve_ivp` or `cyrk_ode` solver, an interpolation will occur at the end of integration. +This approach is similar to "option 1" discussed in the next section for the numba-based solver. + +## Interpolating for numba-based `nbsolve_ivp` + +By setting the `t_eval` argument for either the `nbsolve_ivp` solver, an interpolation will occur at the end of integration. This uses the solved `y`s and `time_domain` to find a new reduced `y_reduced` at `t_eval` intervals using a method similar to `numpy.interp` function. Since we are potentially storing extra parameters during integration, we need to tell the solvers how to handle any potential interpolation on these new parameters. diff --git a/Performance/cyrk_performance-DOP853.csv b/Performance/cyrk_performance-DOP853.csv index 17a29eb..cc9ae29 100644 --- a/Performance/cyrk_performance-DOP853.csv +++ b/Performance/cyrk_performance-DOP853.csv @@ -23,3 +23,4 @@ CyRK Version, Run-on Date, cython (avg), cython (std),CySolver (avg),CySolver (s 0.10.2, 08/11/2024 11:02:10,0.9853,0.0169,0.0553,0.0007,0.1699,0.0033,9.9766,0.09,0.5358,0.0034,1.552,0.0278,0.4402,0.0089,0.0348,0.0008,0.1026,0.0024,4.3588,0.0575,0.3116,0.0045,0.7952,0.0149,1.4109,0.0202,0.0941,0.0009,0.2507,0.0039,19.2016,0.1355,1.2542,0.0158,3.1896,0.0388,1.6382,0.0208,0.0963,0.0011,0.4927,0.0082,22.613,0.3102,1.2996,0.0167,6.5094,0.1422 "After 0.11.0 Changes were made to functions: ""cython"" was `cyrk_ode` now is `pysolve_ivp`. ""CySolver"" was `CySolver` class method now is `cysolve_ivp`. Numba did not change.",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 0.11.0, 08/11/2024 13:34:31, 1.0405, 0.0220, 0.0440, 0.0004, 0.1653, 0.0037, 10.6848, 0.0518, 0.4168, 0.0055, 1.5772, 0.0952, 0.4697, 0.0056, 0.0350, 0.0010, 0.1027, 0.0017, 4.5382, 0.0695, 0.2962, 0.0080, 0.8286, 0.0180, 1.5190, 0.0184, 0.0886, 0.0108, 0.3325, 0.1084, 21.0697, 0.8173, 1.0653, 0.0440, 3.3296, 0.0833, 1.7694, 0.0377, 0.0796, 0.0011, 0.5066, 0.0051, 24.3005, 0.1841, 1.0867, 0.0503, 6.9565, 0.2617 +0.11.2, 13/11/2024 09:47:14, 1.0383, 0.0482, 0.0459, 0.0011, 0.1791, 0.0065, 10.4672, 0.3348, 0.4292, 0.0054, 1.5538, 0.0164, 0.4595, 0.0036, 0.0361, 0.0011, 0.1058, 0.0015, 4.6616, 0.1080, 0.3028, 0.0064, 0.8637, 0.0168, 1.4801, 0.0422, 0.0815, 0.0003, 0.2740, 0.0060, 20.1617, 0.3500, 1.0886, 0.0310, 3.4030, 0.0480, 1.7564, 0.0416, 0.0840, 0.0008, 0.5297, 0.0179, 23.9814, 0.4823, 1.1206, 0.0153, 6.7479, 0.0770 diff --git a/Performance/cyrk_performance-RK23.csv b/Performance/cyrk_performance-RK23.csv index 95c637d..4702a9f 100644 --- a/Performance/cyrk_performance-RK23.csv +++ b/Performance/cyrk_performance-RK23.csv @@ -23,3 +23,4 @@ CyRK Version, Run-on Date, cython (avg), cython (std),CySolver (avg),CySolver (s 0.10.2, 08/11/2024 10:59:41,69.5788,112.0606,0.2889,0.0047,0.8876,0.019,46.7394,1.616,2.8167,0.0156,10.889,0.7678,55.4932,91.253,0.2294,0.0037,0.6269,0.0189,29.2544,0.9478,2.2476,0.0679,6.5125,0.2182,56.9203,90.3589,0.3629,0.0033,1.0035,0.0335,82.3765,0.9914,6.1898,0.1192,21.0103,0.4202,62.2463,97.7605,0.3806,0.0013,1647.3621,2850.1921,99.4554,2.4595,6.9598,0.3918,40.5718,2.4595 "After 0.11.0 Changes were made to functions: ""cython"" was `cyrk_ode` now is `pysolve_ivp`. ""CySolver"" was `CySolver` class method now is `cysolve_ivp`. Numba did not change.",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 0.11.0, 08/11/2024 13:32:05, 5.2024, 0.4024, 0.2878, 0.0104, 0.8329, 0.0146, 48.9279, 1.0915, 2.8651, 0.0911, 9.6346, 0.4435, 3.0034, 0.0548, 0.2512, 0.0073, 0.6391, 0.0091, 30.1886, 1.3712, 2.5126, 0.0594, 6.1286, 0.1974, 5.0243, 0.0111, 0.3568, 0.0029, 0.9418, 0.0134, 81.3716, 0.9542, 6.0864, 0.2366, 21.4152, 0.6340, 5.8757, 0.0795, 0.3821, 0.0257, 1511.3296, 2614.5716, 103.0198, 4.8289, 6.7153, 0.1536, 40.7782, 2.6646 +0.11.2, 13/11/2024 09:44:47, 58.5798, 92.5131, 0.3027, 0.0073, 0.9652, 0.0611, 50.2554, 3.1065, 3.0509, 0.1734, 11.0730, 0.5532, 3.0001, 0.0297, 0.2962, 0.0300, 0.6303, 0.0107, 29.3821, 0.6157, 2.4788, 0.0442, 8.6115, 2.1469, 54.1616, 85.1339, 0.3808, 0.0043, 1.1505, 0.0435, 83.2819, 0.6580, 6.1863, 0.0625, 22.4879, 0.1939, 59.9757, 93.5368, 0.3924, 0.0084, 1633.8436, 2826.6269, 105.4013, 5.7465, 7.0494, 0.0526, 41.1053, 0.3990 diff --git a/Performance/cyrk_performance-RK45.csv b/Performance/cyrk_performance-RK45.csv index bf40773..58ca5b3 100644 --- a/Performance/cyrk_performance-RK45.csv +++ b/Performance/cyrk_performance-RK45.csv @@ -23,3 +23,4 @@ CyRK Version, Run-on Date, cython (avg), cython (std),CySolver (avg),CySolver (s 0.10.2, 08/11/2024 11:01:14,1.282,0.0152,0.0677,0.0051,0.2105,0.0027,12.0276,0.239,0.6024,0.0323,2.1004,0.1252,0.8241,0.0072,0.0588,0.0008,0.1763,0.0045,8.0075,0.2124,0.5632,0.0183,1.4761,0.0137,1.5839,0.0111,0.0953,0.0011,0.2975,0.0098,23.2598,0.4245,1.3887,0.0382,4.1253,0.1807,1.9,0.0226,0.1015,0.0015,0.5913,0.0336,27.3948,0.5865,1.4385,0.0357,8.1818,0.0734 "After 0.11.0 Changes were made to functions: ""cython"" was `cyrk_ode` now is `pysolve_ivp`. ""CySolver"" was `CySolver` class method now is `cysolve_ivp`. Numba did not change.",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 0.11.0, 08/11/2024 13:33:35, 1.4157, 0.1032, 0.0647, 0.0010, 0.2163, 0.0069, 13.2409, 0.2058, 0.5789, 0.0121, 1.9120, 0.1314, 0.8558, 0.0112, 0.0684, 0.0049, 0.1836, 0.0083, 8.6953, 0.4141, 0.5989, 0.0051, 1.5423, 0.0157, 1.6548, 0.0253, 0.0998, 0.0011, 0.3134, 0.0323, 24.1535, 0.2564, 1.4176, 0.0167, 4.1044, 0.1653, 2.0023, 0.0453, 0.1063, 0.0046, 0.5995, 0.0094, 29.3136, 0.4531, 1.4513, 0.0394, 8.1298, 0.0426 +0.11.2, 13/11/2024 09:46:20, 1.2497, 0.0190, 0.0645, 0.0006, 0.2333, 0.0074, 12.5791, 0.2532, 0.6023, 0.0184, 2.0329, 0.0377, 0.8824, 0.0160, 0.0676, 0.0001, 0.1932, 0.0074, 8.4859, 0.0106, 0.6328, 0.0072, 1.5491, 0.0287, 1.7246, 0.0188, 0.1056, 0.0016, 0.3201, 0.0090, 25.1528, 0.5846, 1.4855, 0.0071, 4.6009, 0.1266, 2.0235, 0.0174, 0.1135, 0.0025, 0.6057, 0.0057, 29.2690, 0.5148, 1.5547, 0.0225, 8.8452, 0.2573 diff --git a/README.md b/README.md index 87e8635..96fa20d 100644 --- a/README.md +++ b/README.md @@ -11,7 +11,7 @@ --- -CyRK Version 0.11.0 Alpha +CyRK Version 0.11.2 Alpha **Runge-Kutta ODE Integrator Implemented in Cython and Numba** @@ -28,7 +28,7 @@ The [cython-based](https://cython.org/) `cysolver_ivp` function that works with An additional benefit of the two cython implementations is that they are pre-compiled. This avoids most of the start-up performance hit experienced by just-in-time compilers like numba. -CyRK Performance Graphic +CyRK Performance Graphic ## Installation diff --git a/Tests/D_PySolver_Tests/test_b_pysolve_dense.py b/Tests/D_PySolver_Tests/test_b_pysolve_dense.py new file mode 100644 index 0000000..f1d6e70 --- /dev/null +++ b/Tests/D_PySolver_Tests/test_b_pysolve_dense.py @@ -0,0 +1,52 @@ +import numpy as np +from CyRK import pysolve_ivp + +def diffeq(dy, t, y,): + # Real dy + dy[0] = 3.1 * t - y[1] + dy[1] = y[0] * (0.3 * t * y[1]) + # Extra output + dy[2] = 0.25 + dy[3] = t / 2. + +t_span = (0.0, 10.0) +y0 = np.asarray([5., 2.], dtype=np.float64) + +def test_pysolve_extra_output_with_dense(): + """ Test that pysolve (and by extension, cysolve) can interpolate extra outputs when `dense_output = True` """ + + result = pysolve_ivp( + diffeq, + t_span, + y0, + method = 'RK45', + t_eval = None, + dense_output = True, + args = None, + expected_size = 0, + num_extra = 2, + first_step = 0.0, + max_step = 100_000, + rtol = 1.0e-3, + atol = 1.0e-6, + max_num_steps = 0, + max_ram_MB = 2000, + pass_dy_as_arg = True + ) + + assert result.success + + # Call dense output with a float + dense_out_float = result(0.3) + expected_float = np.asarray([[4.52627329], [2.13093483], [0.25 ], [0.15 ]], dtype=np.float64) + assert dense_out_float.shape == (4, 1) + assert np.allclose(dense_out_float, expected_float) + + # Call dense output with an array + dense_out_array = result(np.asarray([0.3, 4.0, 8., 9.10, 9.9])) + expected_array = np.asarray([[ 4.52627329, 1.87160845, 0.13355624, 1.57871591, -1.01590877], + [ 2.13093483, 21.05384256, 10.31201731, 48.55169176, 57.06848508], + [ 0.25, 0.25, 0.25, 0.25, 0.25 ], + [ 0.15, 2., 4., 4.55, 4.95 ]], dtype=np.float64) + assert dense_out_array.shape == (4, 5) + assert np.allclose(dense_out_array, expected_array) diff --git a/Tests/Dense Extra Output Testing.ipynb b/Tests/Dense Extra Output Testing.ipynb new file mode 100644 index 0000000..35f36cf --- /dev/null +++ b/Tests/Dense Extra Output Testing.ipynb @@ -0,0 +1,1103 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "f42995c9-51f5-42fd-b59c-8ebc78418f64", + "metadata": {}, + "outputs": [], + "source": [ + "import Cython" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "6eacd895-3692-4402-9c99-1081a047108b", + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext cython" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "155cdcf8-3aea-4564-8d79-2b5fa18258ee", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Content of stdout:\n", + "_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963.cpp\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\numpy\\core\\include\\numpy\\npy_1_7_deprecated_api.h(14) : Warning Msg: Using deprecated NumPy API, disable it with #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\dense.cpp(175): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\cysolution.cpp(53): warning C5051: attribute [[likely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\cysolution.cpp(68): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\cysolution.cpp(98): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\cysolution.cpp(130): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\cysolution.cpp(341): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\cysolver.cpp(184): warning C5051: attribute [[likely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\cysolver.cpp(257): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\cysolver.cpp(267): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\cysolver.cpp(273): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\cysolver.cpp(285): warning C5051: attribute [[likely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\cysolver.cpp(576): warning C5051: attribute [[likely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(50): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(52): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(57): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(75): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(85): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(160): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(226): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(444): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(510): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(574): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(579): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(603): warning C5051: attribute [[likely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(621): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\rk.cpp(989): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\cysolve.cpp(111): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\cysolve.cpp(265): warning C5051: attribute [[unlikely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\cysolve.cpp(270): warning C5051: attribute [[likely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\anaconda3\\envs\\cyrk11py311\\Lib\\site-packages\\CyRK\\cy\\cysolve.cpp(297): warning C5051: attribute [[likely]] requires at least '/std:c++20'; ignored\n", + "C:\\Users\\joepr\\.ipython\\cython\\_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963.cpp(25001): warning C4551: function call missing argument list\n", + " Creating library C:\\Users\\joepr\\.ipython\\cython\\Users\\joepr\\.ipython\\cython\\_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963.cp311-win_amd64.lib and object C:\\Users\\joepr\\.ipython\\cython\\Users\\joepr\\.ipython\\cython\\_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963.cp311-win_amd64.exp\n", + "Generating code\n", + "Finished generating code\n", + "Integration Done!\n", + "teval i = 0 ys= 4.526273291353615\t|\t2.130934826873202\t|\t0.25\t|\t0.15\n", + "teval i = 1 ys= 1.8716084470161582\t|\t21.05384255519958\t|\t0.25\t|\t2.0\n", + "teval i = 2 ys= 0.13355624397337607\t|\t10.312017312712717\t|\t0.25\t|\t4.0\n", + "teval i = 3 ys= 1.578715913166198\t|\t48.55169176359066\t|\t0.25\t|\t4.55\n", + "teval i = 4 ys= -1.015908770745836\t|\t57.06848507859018\t|\t0.25\t|\t4.95\n", + "INTERP AT r=0.3: 4.526\t|\t2.131\t|\t0.250\t|\t0.150\n", + "INTERP AT r=4.0: 1.872\t|\t21.054\t|\t0.250\t|\t2.000\n", + "INTERP AT r=8.0: 0.134\t|\t10.312\t|\t0.250\t|\t4.000\n", + "INTERP AT r=9.1: 1.579\t|\t48.552\t|\t0.250\t|\t4.550\n", + "INTERP AT r=9.9: -1.016\t|\t57.068\t|\t0.250\t|\t4.950\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + " \n", + " Cython: _cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963.pyx\n", + " \n", + "\n", + "\n", + "

Generated by Cython 3.0.11

\n", + "

\n", + " Yellow lines hint at Python interaction.
\n", + " Click on a line that starts with a \"+\" to see the C code that Cython generated for it.\n", + "

\n", + "
+01: # distutils: language = c++
\n", + "
  __pyx_t_7 = __Pyx_PyDict_NewPresized(0); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 1, __pyx_L1_error)\n",
+       "  __Pyx_GOTREF(__pyx_t_7);\n",
+       "  if (PyDict_SetItem(__pyx_d, __pyx_n_s_test, __pyx_t_7) < 0) __PYX_ERR(0, 1, __pyx_L1_error)\n",
+       "  __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0;\n",
+       "
 02: # cython: boundscheck=False, wraparound=False, nonecheck=False, cdivision=True, initializedcheck=False
\n", + "
 03: 
\n", + "
+04: import numpy as np
\n", + "
  __pyx_t_7 = __Pyx_ImportDottedModule(__pyx_n_s_numpy, NULL); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 4, __pyx_L1_error)\n",
+       "  __Pyx_GOTREF(__pyx_t_7);\n",
+       "  if (PyDict_SetItem(__pyx_d, __pyx_n_s_np, __pyx_t_7) < 0) __PYX_ERR(0, 4, __pyx_L1_error)\n",
+       "  __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0;\n",
+       "
 05: cimport numpy as np
\n", + "
 06: 
\n", + "
+07: np.import_array()
\n", + "
  __pyx_t_9 = __pyx_f_5numpy_import_array(); if (unlikely(__pyx_t_9 == ((int)-1))) __PYX_ERR(0, 7, __pyx_L1_error)\n",
+       "
 08: 
\n", + "
 09: from CyRK cimport PreEvalFunc, cysolve_ivp, CySolveOutput
\n", + "
+10: cdef void diffeq(double* dy, double t, double* y, const void* args, PreEvalFunc NA) noexcept nogil:
\n", + "
static void __pyx_f_54_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963_diffeq(double *__pyx_v_dy, double __pyx_v_t, double *__pyx_v_y, CYTHON_UNUSED void const *__pyx_v_args, CYTHON_UNUSED PreEvalFunc __pyx_v_NA) {\n",
+       "/* … */\n",
+       "  /* function exit code */\n",
+       "}\n",
+       "
 11:     # Real dy
\n", + "
+12:     dy[0] = 3.1 * t - y[1]
\n", + "
  (__pyx_v_dy[0]) = ((3.1 * __pyx_v_t) - (__pyx_v_y[1]));\n",
+       "
+13:     dy[1] = y[0] * (0.3 * t * y[1])
\n", + "
  (__pyx_v_dy[1]) = ((__pyx_v_y[0]) * ((0.3 * __pyx_v_t) * (__pyx_v_y[1])));\n",
+       "
 14:     # Extra
\n", + "
+15:     dy[2] = 0.25
\n", + "
  (__pyx_v_dy[2]) = 0.25;\n",
+       "
+16:     dy[3] = t / 2.
\n", + "
  (__pyx_v_dy[3]) = (__pyx_v_t / 2.);\n",
+       "
 17: 
\n", + "
+18: cdef CySolveOutput run():
\n", + "
static __pyx_t_4CyRK_2cy_12cysolver_api_CySolveOutput __pyx_f_54_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963_run(void) {\n",
+       "  double __pyx_v_t_span[2];\n",
+       "  double *__pyx_v_t_span_ptr;\n",
+       "  double __pyx_v_y0[2];\n",
+       "  double *__pyx_v_y0_ptr;\n",
+       "  double __pyx_v_t_eval[5];\n",
+       "  double *__pyx_v_t_eval_ptr;\n",
+       "  int __pyx_v_num_t_eval;\n",
+       "  __pyx_t_4CyRK_2cy_12cysolver_api_CySolveOutput __pyx_v_cyresult;\n",
+       "  __pyx_t_4CyRK_2cy_12cysolver_api_CySolveOutput __pyx_r;\n",
+       "/* … */\n",
+       "  /* function exit code */\n",
+       "  __pyx_L0:;\n",
+       "  return __pyx_r;\n",
+       "}\n",
+       "
 19: 
\n", + "
+20:     cdef double[2] t_span = [0.0, 10.0]
\n", + "
  __pyx_t_1[0] = 0.0;\n",
+       "  __pyx_t_1[1] = 10.0;\n",
+       "  memcpy(&(__pyx_v_t_span[0]), __pyx_t_1, sizeof(__pyx_v_t_span[0]) * (2));\n",
+       "
+21:     cdef double* t_span_ptr = &t_span[0]
\n", + "
  __pyx_v_t_span_ptr = (&(__pyx_v_t_span[0]));\n",
+       "
 22: 
\n", + "
+23:     cdef double[2] y0 = [5., 2.]
\n", + "
  __pyx_t_2[0] = 5.;\n",
+       "  __pyx_t_2[1] = 2.;\n",
+       "  memcpy(&(__pyx_v_y0[0]), __pyx_t_2, sizeof(__pyx_v_y0[0]) * (2));\n",
+       "
+24:     cdef double* y0_ptr = &y0[0]
\n", + "
  __pyx_v_y0_ptr = (&(__pyx_v_y0[0]));\n",
+       "
+25:     cdef double[5] t_eval = [0.3, 4.0, 8., 9.10, 9.9]
\n", + "
  __pyx_t_3[0] = 0.3;\n",
+       "  __pyx_t_3[1] = 4.0;\n",
+       "  __pyx_t_3[2] = 8.;\n",
+       "  __pyx_t_3[3] = 9.10;\n",
+       "  __pyx_t_3[4] = 9.9;\n",
+       "  memcpy(&(__pyx_v_t_eval[0]), __pyx_t_3, sizeof(__pyx_v_t_eval[0]) * (5));\n",
+       "
+26:     cdef double* t_eval_ptr = &t_eval[0]
\n", + "
  __pyx_v_t_eval_ptr = (&(__pyx_v_t_eval[0]));\n",
+       "
+27:     cdef int num_t_eval = 5
\n", + "
  __pyx_v_num_t_eval = 5;\n",
+       "
 28: 
\n", + "
 29:     cdef CySolveOutput cyresult = \\
\n", + "
+30:         cysolve_ivp(
\n", + "
  __pyx_t_5.__pyx_n = 16;\n",
+       "  __pyx_t_5.method = 1;\n",
+       "  __pyx_t_5.rtol = 1.0e-3;\n",
+       "  __pyx_t_5.atol = 1.0e-6;\n",
+       "  __pyx_t_5.args_ptr = NULL;\n",
+       "  __pyx_t_5.num_extra = 2;\n",
+       "  __pyx_t_5.max_num_steps = 0;\n",
+       "  __pyx_t_5.max_ram_MB = 0x7D0;\n",
+       "  __pyx_t_5.dense_output = 1;\n",
+       "  __pyx_t_5.t_eval = __pyx_v_t_eval_ptr;\n",
+       "  __pyx_t_5.len_t_eval = __pyx_v_num_t_eval;\n",
+       "  __pyx_t_5.pre_eval_func = NULL;\n",
+       "  __pyx_t_5.rtols_ptr = NULL;\n",
+       "  __pyx_t_5.atols_ptr = NULL;\n",
+       "  __pyx_t_5.max_step = 10000.;\n",
+       "  __pyx_t_5.first_step = 0.0;\n",
+       "  __pyx_t_5.expected_size = 0;\n",
+       "  __pyx_t_4 = __pyx_f_4CyRK_2cy_12cysolver_api_cysolve_ivp(__pyx_f_54_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963_diffeq, __pyx_v_t_span_ptr, __pyx_v_y0_ptr, 2, &__pyx_t_5); \n",
+       "  __pyx_v_cyresult = __PYX_STD_MOVE_IF_SUPPORTED(__pyx_t_4);\n",
+       "
 31:             diffeq,
\n", + "
 32:             t_span_ptr,
\n", + "
 33:             y0_ptr,
\n", + "
 34:             2,
\n", + "
 35:             1,
\n", + "
 36:             1.0e-3,
\n", + "
 37:             1.0e-6,
\n", + "
 38:             NULL,
\n", + "
 39:             2, # num extra
\n", + "
 40:             0,
\n", + "
 41:             2000,
\n", + "
 42:             True,
\n", + "
 43:             t_eval_ptr,
\n", + "
 44:             num_t_eval,
\n", + "
 45:             NULL,
\n", + "
 46:             NULL,
\n", + "
 47:             NULL,
\n", + "
 48:             10000.,
\n", + "
 49:             0.0,
\n", + "
 50:             0)
\n", + "
 51: 
\n", + "
+52:     return cyresult
\n", + "
  __pyx_r = __pyx_v_cyresult;\n",
+       "  goto __pyx_L0;\n",
+       "
 53: 
\n", + "
+54: cdef CySolveOutput res = run()
\n", + "
  __pyx_t_10 = __pyx_f_54_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963_run(); if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 54, __pyx_L1_error)\n",
+       "  __pyx_v_54_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963_res = __PYX_STD_MOVE_IF_SUPPORTED(__pyx_t_10);\n",
+       "
+55: print('')
\n", + "
  __pyx_t_7 = __Pyx_PyObject_Call(__pyx_builtin_print, __pyx_tuple__23, NULL); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 55, __pyx_L1_error)\n",
+       "  __Pyx_GOTREF(__pyx_t_7);\n",
+       "  __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0;\n",
+       "/* … */\n",
+       "  __pyx_tuple__23 = PyTuple_Pack(1, __pyx_kp_u__22); if (unlikely(!__pyx_tuple__23)) __PYX_ERR(0, 55, __pyx_L1_error)\n",
+       "  __Pyx_GOTREF(__pyx_tuple__23);\n",
+       "  __Pyx_GIVEREF(__pyx_tuple__23);\n",
+       "
+56: print('Integration Done!')
\n", + "
  __pyx_t_7 = __Pyx_PyObject_Call(__pyx_builtin_print, __pyx_tuple__24, NULL); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 56, __pyx_L1_error)\n",
+       "  __Pyx_GOTREF(__pyx_t_7);\n",
+       "  __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0;\n",
+       "/* … */\n",
+       "  __pyx_tuple__24 = PyTuple_Pack(1, __pyx_kp_u_Integration_Done); if (unlikely(!__pyx_tuple__24)) __PYX_ERR(0, 56, __pyx_L1_error)\n",
+       "  __Pyx_GOTREF(__pyx_tuple__24);\n",
+       "  __Pyx_GIVEREF(__pyx_tuple__24);\n",
+       "
 57: 
\n", + "
 58: 
\n", + "
+59: cdef double[4] y_arr = [-999, -999, -999, -999]
\n", + "
  __pyx_t_11[0] = -999.0;\n",
+       "  __pyx_t_11[1] = -999.0;\n",
+       "  __pyx_t_11[2] = -999.0;\n",
+       "  __pyx_t_11[3] = -999.0;\n",
+       "  memcpy(&(__pyx_v_54_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963_y_arr[0]), __pyx_t_11, sizeof(__pyx_v_54_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963_y_arr[0]) * (4));\n",
+       "
+60: cdef double* y_arr_ptr = &y_arr[0]
\n", + "
  __pyx_v_54_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963_y_arr_ptr = (&(__pyx_v_54_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963_y_arr[0]));\n",
+       "
 61: 
\n", + "
 62: cdef int i
\n", + "
+63: for i in range(5):
\n", + "
  for (__pyx_t_9 = 0; __pyx_t_9 < 5; __pyx_t_9+=1) {\n",
+       "    __pyx_v_54_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963_i = __pyx_t_9;\n",
+       "
+64:     print(f"teval i = {i} ys= {res.get().solution[4*i]}\\t|\\t{res.get().solution[4*i+1]}\\t|\\t{res.get().solution[4*i+2]}\\t|\\t{res.get().solution[4*i+3]}")
\n", + "
    __pyx_t_7 = PyTuple_New(10); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 64, __pyx_L1_error)\n",
+       "    __Pyx_GOTREF(__pyx_t_7);\n",
+       "    __pyx_t_12 = 0;\n",
+       "    __pyx_t_13 = 127;\n",
+       "    __Pyx_INCREF(__pyx_kp_u_teval_i);\n",
+       "    __pyx_t_12 += 10;\n",
+       "    __Pyx_GIVEREF(__pyx_kp_u_teval_i);\n",
+       "    PyTuple_SET_ITEM(__pyx_t_7, 0, __pyx_kp_u_teval_i);\n",
+       "    __pyx_t_4 = __Pyx_PyUnicode_From_int(__pyx_v_54_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963_i, 0, ' ', 'd'); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 64, __pyx_L1_error)\n",
+       "    __Pyx_GOTREF(__pyx_t_4);\n",
+       "    __pyx_t_12 += __Pyx_PyUnicode_GET_LENGTH(__pyx_t_4);\n",
+       "    __Pyx_GIVEREF(__pyx_t_4);\n",
+       "    PyTuple_SET_ITEM(__pyx_t_7, 1, __pyx_t_4);\n",
+       "    __pyx_t_4 = 0;\n",
+       "    __Pyx_INCREF(__pyx_kp_u_ys);\n",
+       "    __pyx_t_12 += 5;\n",
+       "    __Pyx_GIVEREF(__pyx_kp_u_ys);\n",
+       "    PyTuple_SET_ITEM(__pyx_t_7, 2, __pyx_kp_u_ys);\n",
+       "    __pyx_t_4 = PyFloat_FromDouble((__pyx_v_54_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963_res.get()->solution[(4 * __pyx_v_54_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963_i)])); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 64, __pyx_L1_error)\n",
+       "    __Pyx_GOTREF(__pyx_t_4);\n",
+       "    __pyx_t_5 = __Pyx_PyObject_FormatSimple(__pyx_t_4, __pyx_empty_unicode); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 64, __pyx_L1_error)\n",
+       "    __Pyx_GOTREF(__pyx_t_5);\n",
+       "    __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;\n",
+       "    __pyx_t_13 = (__Pyx_PyUnicode_MAX_CHAR_VALUE(__pyx_t_5) > __pyx_t_13) ? __Pyx_PyUnicode_MAX_CHAR_VALUE(__pyx_t_5) : __pyx_t_13;\n",
+       "    __pyx_t_12 += __Pyx_PyUnicode_GET_LENGTH(__pyx_t_5);\n",
+       "    __Pyx_GIVEREF(__pyx_t_5);\n",
+       "    PyTuple_SET_ITEM(__pyx_t_7, 3, __pyx_t_5);\n",
+       "    __pyx_t_5 = 0;\n",
+       "    __Pyx_INCREF(__pyx_kp_u__25);\n",
+       "    __pyx_t_12 += 3;\n",
+       "    __Pyx_GIVEREF(__pyx_kp_u__25);\n",
+       "    PyTuple_SET_ITEM(__pyx_t_7, 4, __pyx_kp_u__25);\n",
+       "    __pyx_t_5 = PyFloat_FromDouble((__pyx_v_54_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963_res.get()->solution[((4 * __pyx_v_54_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963_i) + 1)])); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 64, __pyx_L1_error)\n",
+       "    __Pyx_GOTREF(__pyx_t_5);\n",
+       "    __pyx_t_4 = __Pyx_PyObject_FormatSimple(__pyx_t_5, __pyx_empty_unicode); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 64, __pyx_L1_error)\n",
+       "    __Pyx_GOTREF(__pyx_t_4);\n",
+       "    __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;\n",
+       "    __pyx_t_13 = (__Pyx_PyUnicode_MAX_CHAR_VALUE(__pyx_t_4) > __pyx_t_13) ? __Pyx_PyUnicode_MAX_CHAR_VALUE(__pyx_t_4) : __pyx_t_13;\n",
+       "    __pyx_t_12 += __Pyx_PyUnicode_GET_LENGTH(__pyx_t_4);\n",
+       "    __Pyx_GIVEREF(__pyx_t_4);\n",
+       "    PyTuple_SET_ITEM(__pyx_t_7, 5, __pyx_t_4);\n",
+       "    __pyx_t_4 = 0;\n",
+       "    __Pyx_INCREF(__pyx_kp_u__25);\n",
+       "    __pyx_t_12 += 3;\n",
+       "    __Pyx_GIVEREF(__pyx_kp_u__25);\n",
+       "    PyTuple_SET_ITEM(__pyx_t_7, 6, __pyx_kp_u__25);\n",
+       "    __pyx_t_4 = PyFloat_FromDouble((__pyx_v_54_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963_res.get()->solution[((4 * __pyx_v_54_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963_i) + 2)])); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 64, __pyx_L1_error)\n",
+       "    __Pyx_GOTREF(__pyx_t_4);\n",
+       "    __pyx_t_5 = __Pyx_PyObject_FormatSimple(__pyx_t_4, __pyx_empty_unicode); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 64, __pyx_L1_error)\n",
+       "    __Pyx_GOTREF(__pyx_t_5);\n",
+       "    __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;\n",
+       "    __pyx_t_13 = (__Pyx_PyUnicode_MAX_CHAR_VALUE(__pyx_t_5) > __pyx_t_13) ? __Pyx_PyUnicode_MAX_CHAR_VALUE(__pyx_t_5) : __pyx_t_13;\n",
+       "    __pyx_t_12 += __Pyx_PyUnicode_GET_LENGTH(__pyx_t_5);\n",
+       "    __Pyx_GIVEREF(__pyx_t_5);\n",
+       "    PyTuple_SET_ITEM(__pyx_t_7, 7, __pyx_t_5);\n",
+       "    __pyx_t_5 = 0;\n",
+       "    __Pyx_INCREF(__pyx_kp_u__25);\n",
+       "    __pyx_t_12 += 3;\n",
+       "    __Pyx_GIVEREF(__pyx_kp_u__25);\n",
+       "    PyTuple_SET_ITEM(__pyx_t_7, 8, __pyx_kp_u__25);\n",
+       "    __pyx_t_5 = PyFloat_FromDouble((__pyx_v_54_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963_res.get()->solution[((4 * __pyx_v_54_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963_i) + 3)])); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 64, __pyx_L1_error)\n",
+       "    __Pyx_GOTREF(__pyx_t_5);\n",
+       "    __pyx_t_4 = __Pyx_PyObject_FormatSimple(__pyx_t_5, __pyx_empty_unicode); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 64, __pyx_L1_error)\n",
+       "    __Pyx_GOTREF(__pyx_t_4);\n",
+       "    __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;\n",
+       "    __pyx_t_13 = (__Pyx_PyUnicode_MAX_CHAR_VALUE(__pyx_t_4) > __pyx_t_13) ? __Pyx_PyUnicode_MAX_CHAR_VALUE(__pyx_t_4) : __pyx_t_13;\n",
+       "    __pyx_t_12 += __Pyx_PyUnicode_GET_LENGTH(__pyx_t_4);\n",
+       "    __Pyx_GIVEREF(__pyx_t_4);\n",
+       "    PyTuple_SET_ITEM(__pyx_t_7, 9, __pyx_t_4);\n",
+       "    __pyx_t_4 = 0;\n",
+       "    __pyx_t_4 = __Pyx_PyUnicode_Join(__pyx_t_7, 10, __pyx_t_12, __pyx_t_13); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 64, __pyx_L1_error)\n",
+       "    __Pyx_GOTREF(__pyx_t_4);\n",
+       "    __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0;\n",
+       "    __pyx_t_7 = __Pyx_PyObject_CallOneArg(__pyx_builtin_print, __pyx_t_4); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 64, __pyx_L1_error)\n",
+       "    __Pyx_GOTREF(__pyx_t_7);\n",
+       "    __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;\n",
+       "    __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0;\n",
+       "  }\n",
+       "
 65: 
\n", + "
 66: cdef double rr
\n", + "
+67: for r in [0.3, 4.0, 8., 9.10, 9.9]:
\n", + "
  __pyx_t_7 = __pyx_tuple__26; __Pyx_INCREF(__pyx_t_7);\n",
+       "  __pyx_t_12 = 0;\n",
+       "  for (;;) {\n",
+       "    if (__pyx_t_12 >= 5) break;\n",
+       "    #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS\n",
+       "    __pyx_t_4 = PyTuple_GET_ITEM(__pyx_t_7, __pyx_t_12); __Pyx_INCREF(__pyx_t_4); __pyx_t_12++; if (unlikely((0 < 0))) __PYX_ERR(0, 67, __pyx_L1_error)\n",
+       "    #else\n",
+       "    __pyx_t_4 = __Pyx_PySequence_ITEM(__pyx_t_7, __pyx_t_12); __pyx_t_12++; if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 67, __pyx_L1_error)\n",
+       "    __Pyx_GOTREF(__pyx_t_4);\n",
+       "    #endif\n",
+       "    if (PyDict_SetItem(__pyx_d, __pyx_n_s_r, __pyx_t_4) < 0) __PYX_ERR(0, 67, __pyx_L1_error)\n",
+       "    __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;\n",
+       "/* … */\n",
+       "  }\n",
+       "  __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0;\n",
+       "
+68:     rr = r
\n", + "
    __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_r); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 68, __pyx_L1_error)\n",
+       "    __Pyx_GOTREF(__pyx_t_4);\n",
+       "    __pyx_t_14 = __pyx_PyFloat_AsDouble(__pyx_t_4); if (unlikely((__pyx_t_14 == (double)-1) && PyErr_Occurred())) __PYX_ERR(0, 68, __pyx_L1_error)\n",
+       "    __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;\n",
+       "    __pyx_v_54_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963_rr = __pyx_t_14;\n",
+       "
+69:     res.get().call(rr, y_arr_ptr)
\n", + "
    __pyx_v_54_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963_res.get()->call(__pyx_v_54_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963_rr, __pyx_v_54_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963_y_arr_ptr);\n",
+       "
+70:     print(f"INTERP AT r={rr}: {y_arr_ptr[0]:0.3f}\\t|\\t{y_arr_ptr[1]:0.3f}\\t|\\t{y_arr_ptr[2]:0.3f}\\t|\\t{y_arr_ptr[3]:0.3f}")
\n", + "
    __pyx_t_4 = PyTuple_New(10); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 70, __pyx_L1_error)\n",
+       "    __Pyx_GOTREF(__pyx_t_4);\n",
+       "    __pyx_t_15 = 0;\n",
+       "    __pyx_t_13 = 127;\n",
+       "    __Pyx_INCREF(__pyx_kp_u_INTERP_AT_r);\n",
+       "    __pyx_t_15 += 12;\n",
+       "    __Pyx_GIVEREF(__pyx_kp_u_INTERP_AT_r);\n",
+       "    PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_kp_u_INTERP_AT_r);\n",
+       "    __pyx_t_5 = PyFloat_FromDouble(__pyx_v_54_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963_rr); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 70, __pyx_L1_error)\n",
+       "    __Pyx_GOTREF(__pyx_t_5);\n",
+       "    __pyx_t_16 = __Pyx_PyObject_FormatSimple(__pyx_t_5, __pyx_empty_unicode); if (unlikely(!__pyx_t_16)) __PYX_ERR(0, 70, __pyx_L1_error)\n",
+       "    __Pyx_GOTREF(__pyx_t_16);\n",
+       "    __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;\n",
+       "    __pyx_t_13 = (__Pyx_PyUnicode_MAX_CHAR_VALUE(__pyx_t_16) > __pyx_t_13) ? __Pyx_PyUnicode_MAX_CHAR_VALUE(__pyx_t_16) : __pyx_t_13;\n",
+       "    __pyx_t_15 += __Pyx_PyUnicode_GET_LENGTH(__pyx_t_16);\n",
+       "    __Pyx_GIVEREF(__pyx_t_16);\n",
+       "    PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_16);\n",
+       "    __pyx_t_16 = 0;\n",
+       "    __Pyx_INCREF(__pyx_kp_u_);\n",
+       "    __pyx_t_15 += 2;\n",
+       "    __Pyx_GIVEREF(__pyx_kp_u_);\n",
+       "    PyTuple_SET_ITEM(__pyx_t_4, 2, __pyx_kp_u_);\n",
+       "    __pyx_t_16 = PyFloat_FromDouble((__pyx_v_54_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963_y_arr_ptr[0])); if (unlikely(!__pyx_t_16)) __PYX_ERR(0, 70, __pyx_L1_error)\n",
+       "    __Pyx_GOTREF(__pyx_t_16);\n",
+       "    __pyx_t_5 = __Pyx_PyObject_Format(__pyx_t_16, __pyx_kp_u_0_3f); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 70, __pyx_L1_error)\n",
+       "    __Pyx_GOTREF(__pyx_t_5);\n",
+       "    __Pyx_DECREF(__pyx_t_16); __pyx_t_16 = 0;\n",
+       "    __pyx_t_13 = (__Pyx_PyUnicode_MAX_CHAR_VALUE(__pyx_t_5) > __pyx_t_13) ? __Pyx_PyUnicode_MAX_CHAR_VALUE(__pyx_t_5) : __pyx_t_13;\n",
+       "    __pyx_t_15 += __Pyx_PyUnicode_GET_LENGTH(__pyx_t_5);\n",
+       "    __Pyx_GIVEREF(__pyx_t_5);\n",
+       "    PyTuple_SET_ITEM(__pyx_t_4, 3, __pyx_t_5);\n",
+       "    __pyx_t_5 = 0;\n",
+       "    __Pyx_INCREF(__pyx_kp_u__25);\n",
+       "    __pyx_t_15 += 3;\n",
+       "    __Pyx_GIVEREF(__pyx_kp_u__25);\n",
+       "    PyTuple_SET_ITEM(__pyx_t_4, 4, __pyx_kp_u__25);\n",
+       "    __pyx_t_5 = PyFloat_FromDouble((__pyx_v_54_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963_y_arr_ptr[1])); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 70, __pyx_L1_error)\n",
+       "    __Pyx_GOTREF(__pyx_t_5);\n",
+       "    __pyx_t_16 = __Pyx_PyObject_Format(__pyx_t_5, __pyx_kp_u_0_3f); if (unlikely(!__pyx_t_16)) __PYX_ERR(0, 70, __pyx_L1_error)\n",
+       "    __Pyx_GOTREF(__pyx_t_16);\n",
+       "    __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;\n",
+       "    __pyx_t_13 = (__Pyx_PyUnicode_MAX_CHAR_VALUE(__pyx_t_16) > __pyx_t_13) ? __Pyx_PyUnicode_MAX_CHAR_VALUE(__pyx_t_16) : __pyx_t_13;\n",
+       "    __pyx_t_15 += __Pyx_PyUnicode_GET_LENGTH(__pyx_t_16);\n",
+       "    __Pyx_GIVEREF(__pyx_t_16);\n",
+       "    PyTuple_SET_ITEM(__pyx_t_4, 5, __pyx_t_16);\n",
+       "    __pyx_t_16 = 0;\n",
+       "    __Pyx_INCREF(__pyx_kp_u__25);\n",
+       "    __pyx_t_15 += 3;\n",
+       "    __Pyx_GIVEREF(__pyx_kp_u__25);\n",
+       "    PyTuple_SET_ITEM(__pyx_t_4, 6, __pyx_kp_u__25);\n",
+       "    __pyx_t_16 = PyFloat_FromDouble((__pyx_v_54_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963_y_arr_ptr[2])); if (unlikely(!__pyx_t_16)) __PYX_ERR(0, 70, __pyx_L1_error)\n",
+       "    __Pyx_GOTREF(__pyx_t_16);\n",
+       "    __pyx_t_5 = __Pyx_PyObject_Format(__pyx_t_16, __pyx_kp_u_0_3f); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 70, __pyx_L1_error)\n",
+       "    __Pyx_GOTREF(__pyx_t_5);\n",
+       "    __Pyx_DECREF(__pyx_t_16); __pyx_t_16 = 0;\n",
+       "    __pyx_t_13 = (__Pyx_PyUnicode_MAX_CHAR_VALUE(__pyx_t_5) > __pyx_t_13) ? __Pyx_PyUnicode_MAX_CHAR_VALUE(__pyx_t_5) : __pyx_t_13;\n",
+       "    __pyx_t_15 += __Pyx_PyUnicode_GET_LENGTH(__pyx_t_5);\n",
+       "    __Pyx_GIVEREF(__pyx_t_5);\n",
+       "    PyTuple_SET_ITEM(__pyx_t_4, 7, __pyx_t_5);\n",
+       "    __pyx_t_5 = 0;\n",
+       "    __Pyx_INCREF(__pyx_kp_u__25);\n",
+       "    __pyx_t_15 += 3;\n",
+       "    __Pyx_GIVEREF(__pyx_kp_u__25);\n",
+       "    PyTuple_SET_ITEM(__pyx_t_4, 8, __pyx_kp_u__25);\n",
+       "    __pyx_t_5 = PyFloat_FromDouble((__pyx_v_54_cython_magic_59bc496467a07a2a1edef61fe2c0dbdd79a68963_y_arr_ptr[3])); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 70, __pyx_L1_error)\n",
+       "    __Pyx_GOTREF(__pyx_t_5);\n",
+       "    __pyx_t_16 = __Pyx_PyObject_Format(__pyx_t_5, __pyx_kp_u_0_3f); if (unlikely(!__pyx_t_16)) __PYX_ERR(0, 70, __pyx_L1_error)\n",
+       "    __Pyx_GOTREF(__pyx_t_16);\n",
+       "    __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;\n",
+       "    __pyx_t_13 = (__Pyx_PyUnicode_MAX_CHAR_VALUE(__pyx_t_16) > __pyx_t_13) ? __Pyx_PyUnicode_MAX_CHAR_VALUE(__pyx_t_16) : __pyx_t_13;\n",
+       "    __pyx_t_15 += __Pyx_PyUnicode_GET_LENGTH(__pyx_t_16);\n",
+       "    __Pyx_GIVEREF(__pyx_t_16);\n",
+       "    PyTuple_SET_ITEM(__pyx_t_4, 9, __pyx_t_16);\n",
+       "    __pyx_t_16 = 0;\n",
+       "    __pyx_t_16 = __Pyx_PyUnicode_Join(__pyx_t_4, 10, __pyx_t_15, __pyx_t_13); if (unlikely(!__pyx_t_16)) __PYX_ERR(0, 70, __pyx_L1_error)\n",
+       "    __Pyx_GOTREF(__pyx_t_16);\n",
+       "    __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;\n",
+       "    __pyx_t_4 = __Pyx_PyObject_CallOneArg(__pyx_builtin_print, __pyx_t_16); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 70, __pyx_L1_error)\n",
+       "    __Pyx_GOTREF(__pyx_t_4);\n",
+       "    __Pyx_DECREF(__pyx_t_16); __pyx_t_16 = 0;\n",
+       "    __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;\n",
+       "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%cython -a -f\n", + "# distutils: language = c++\n", + "# cython: boundscheck=False, wraparound=False, nonecheck=False, cdivision=True, initializedcheck=False\n", + "\n", + "import numpy as np\n", + "cimport numpy as np\n", + "\n", + "np.import_array()\n", + "\n", + "from CyRK cimport PreEvalFunc, cysolve_ivp, CySolveOutput\n", + "cdef void diffeq(double* dy, double t, double* y, const void* args, PreEvalFunc NA) noexcept nogil:\n", + " # Real dy\n", + " dy[0] = 3.1 * t - y[1]\n", + " dy[1] = y[0] * (0.3 * t * y[1])\n", + " # Extra\n", + " dy[2] = 0.25\n", + " dy[3] = t / 2.\n", + "\n", + "cdef CySolveOutput run():\n", + " \n", + " cdef double[2] t_span = [0.0, 10.0]\n", + " cdef double* t_span_ptr = &t_span[0]\n", + " \n", + " cdef double[2] y0 = [5., 2.]\n", + " cdef double* y0_ptr = &y0[0]\n", + " cdef double[5] t_eval = [0.3, 4.0, 8., 9.10, 9.9]\n", + " cdef double* t_eval_ptr = &t_eval[0]\n", + " cdef int num_t_eval = 5\n", + " \n", + " cdef CySolveOutput cyresult = \\\n", + " cysolve_ivp(\n", + " diffeq,\n", + " t_span_ptr,\n", + " y0_ptr,\n", + " 2,\n", + " 1,\n", + " 1.0e-3,\n", + " 1.0e-6,\n", + " NULL,\n", + " 2, # num extra\n", + " 0,\n", + " 2000,\n", + " True,\n", + " t_eval_ptr,\n", + " num_t_eval,\n", + " NULL,\n", + " NULL,\n", + " NULL,\n", + " 10000.,\n", + " 0.0,\n", + " 0)\n", + "\n", + " return cyresult\n", + "\n", + "cdef CySolveOutput res = run()\n", + "print('')\n", + "print('Integration Done!')\n", + "\n", + "\n", + "cdef double[4] y_arr = [-999, -999, -999, -999]\n", + "cdef double* y_arr_ptr = &y_arr[0]\n", + "\n", + "cdef int i\n", + "for i in range(5):\n", + " print(f\"teval i = {i} ys= {res.get().solution[4*i]}\\t|\\t{res.get().solution[4*i+1]}\\t|\\t{res.get().solution[4*i+2]}\\t|\\t{res.get().solution[4*i+3]}\")\n", + "\n", + "cdef double rr\n", + "for r in [0.3, 4.0, 8., 9.10, 9.9]:\n", + " rr = r\n", + " res.get().call(rr, y_arr_ptr)\n", + " print(f\"INTERP AT r={rr}: {y_arr_ptr[0]:0.3f}\\t|\\t{y_arr_ptr[1]:0.3f}\\t|\\t{y_arr_ptr[2]:0.3f}\\t|\\t{y_arr_ptr[3]:0.3f}\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0c4a6148-51a4-4013-97bd-2062746107bb", + "metadata": {}, + "outputs": [], + "source": [ + "# 0.11.1 result:\n", + "Finished generating code\n", + "Integration Done!\n", + "INTERP AT r=0.3: 4.526\t|\t2.131\t|\t-999.000\t|\t-999.000\n", + "INTERP AT r=4.0: 1.872\t|\t21.054\t|\t-999.000\t|\t-999.000\n", + "INTERP AT r=8.22: 2.500\t|\t23.547\t|\t-999.000\t|\t-999.000\n", + "INTERP AT r=9.1: 1.579\t|\t48.552\t|\t-999.000\t|\t-999.000\n", + "\n", + "# v0.11.2a1:\n", + "Integration Done!\n", + "teval i = 0 ys= 4.526273291353615\t|\t2.130934826873202\t|\t0.25\t|\t0.15\n", + "teval i = 1 ys= 1.8716084470161582\t|\t21.05384255519958\t|\t0.25\t|\t2.0\n", + "teval i = 2 ys= 0.13355624397337607\t|\t10.312017312712717\t|\t0.25\t|\t4.0\n", + "teval i = 3 ys= 1.578715913166198\t|\t48.55169176359066\t|\t0.25\t|\t4.55\n", + "teval i = 4 ys= -1.015908770745836\t|\t57.06848507859018\t|\t0.25\t|\t4.95\n", + "INTERP AT r=0.3: 4.526\t|\t2.131\t|\t0.250\t|\t0.150\n", + "INTERP AT r=4.0: 1.872\t|\t21.054\t|\t0.250\t|\t2.000\n", + "INTERP AT r=8.0: 0.134\t|\t10.312\t|\t0.250\t|\t4.000\n", + "INTERP AT r=9.1: 1.579\t|\t48.552\t|\t0.250\t|\t4.550\n", + "INTERP AT r=9.9: -1.016\t|\t57.068\t|\t0.250\t|\t4.950" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "8622ddd6-4fdc-48ea-af8b-2927980f9b71", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[4.52627329]\n", + " [2.13093483]\n", + " [0.25 ]\n", + " [0.15 ]]\n", + "[[ 4.52627329 1.87160845 0.13355624 1.57871591 -1.01590877]\n", + " [ 2.13093483 21.05384256 10.31201731 48.55169176 57.06848508]\n", + " [ 0.25 0.25 0.25 0.25 0.25 ]\n", + " [ 0.15 2. 4. 4.55 4.95 ]]\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "from CyRK import pysolve_ivp\n", + "\n", + "def diffeq(dy, t, y,):\n", + " # Real dy\n", + " dy[0] = 3.1 * t - y[1]\n", + " dy[1] = y[0] * (0.3 * t * y[1])\n", + " # Extra\n", + " dy[2] = 0.25\n", + " dy[3] = t / 2.\n", + "\n", + "t_span = (0.0, 10.0)\n", + "y0 = np.asarray([5., 2.], dtype=np.float64)\n", + "\n", + "result = pysolve_ivp(\n", + " diffeq,\n", + " t_span,\n", + " y0,\n", + " method = 'RK45',\n", + " t_eval = None,\n", + " dense_output = True,\n", + " args = None,\n", + " expected_size = 0,\n", + " num_extra = 2,\n", + " first_step = 0.0,\n", + " max_step = 100_000,\n", + " rtol = 1.0e-3,\n", + " atol = 1.0e-6,\n", + " max_num_steps = 0,\n", + " max_ram_MB = 2000,\n", + " pass_dy_as_arg = True\n", + " )\n", + "\n", + "\n", + "print(result(0.3))\n", + "\n", + "print(result(np.asarray([0.3, 4.0, 8., 9.10, 9.9])))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3aa6ce4a-0805-4e14-b03c-fc93315e4aa5", + "metadata": {}, + "outputs": [], + "source": [ + "INTERP AT r=0.3: 4.526\t|\t2.131\t|\t0.250\t|\t0.150\n", + "INTERP AT r=4.0: 1.872\t|\t21.054\t|\t0.250\t|\t2.000\n", + "INTERP AT r=8.0: 0.134\t|\t10.312\t|\t0.250\t|\t4.000\n", + "INTERP AT r=9.1: 1.579\t|\t48.552\t|\t0.250\t|\t4.550\n", + "INTERP AT r=9.9: -1.016\t|\t57.068\t|\t0.250\t|\t4.950" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "85f6611a-3406-4b46-9c43-eacb6d596c1b", + "metadata": {}, + "outputs": [], + "source": [ + "a = np.asarray([[ 0. , -0.01009679, -0.01770902, -0.02944017, -0.03746355, -0.04979285, -0.05820319, -0.07109606, -0.07987127, -0.08878659, -0.09783883, -0.11166704, -0.12104794, -0.13055501, -0.14018526, -0.14993579, -0.15980367, -0.16978604, -0.17988004, -0.19008282, -0.20039155, -0.2108034 , -0.22131555, -0.23192516, -0.23726562, -0.24801612, -0.25885698, -0.26978534, -0.28079832, -0.28633564, -0.29747012, -0.30868194, -0.31996812, -0.32563817, -0.33703029, -0.34848924, -0.3542428 , -0.36579619, -0.37740862, -0.38323597, -0.39493095, -0.40079776, -0.41256793, -0.42438406, -0.43030829, -0.44218693, -0.44814046, -0.4600737 , -0.46605252, -0.47803222], [ 1. , 1.01004581, 1.0175522 , 1.02900672, 1.03676154, 1.04855242, 1.05650795, 1.06856553, 1.07667645, 1.08483727, 1.0930411 , 1.10541272, 1.11369461, 1.12199607, 1.13031055, 1.13863152, 1.14695249, 1.15526699, 1.16356859, 1.17185088, 1.18010744, 1.18833188, 1.19651779, 1.20465879, 1.20871044, 1.21677202, 1.22477264, 1.23270583, 1.24056512, 1.24446502, 1.25220125, 1.25984725, 1.26739643, 1.27113263, 1.27852409, 1.28580202, 1.28939629, 1.29649117, 1.30345545, 1.30688644, 1.31364175, 1.31696431, 1.32349477, 1.32986634, 1.33299028, 1.33910985, 1.34210362, 1.34795443, 1.35080957, 1.35637452]])\n", + "b= np.asarray([[ 0. , -0.0102039 , -0.02040675, -0.03060746, -0.04080499, -0.05099828, -0.06118625, -0.07136785, -0.08154202, -0.0917077 , -0.10186383, -0.11200935, -0.12214321, -0.13226436, -0.14237173, -0.15246428, -0.16254095, -0.1726007 , -0.18264248, -0.19266524, -0.20266794, -0.21264953, -0.22260899, -0.23254527, -0.24245733, -0.25234415, -0.26220469, -0.27203793, -0.28184285, -0.29161842, -0.30136363, -0.31107746, -0.3207589 , -0.33040694, -0.34002057, -0.34959881, -0.35914064, -0.36864508, -0.37811113, -0.38753782, -0.39692415, -0.40626915, -0.41557185, -0.42483129, -0.43404648, -0.44321649, -0.45234034, -0.4614171 , -0.47044581, -0.47942554], [ 1. , 1.01015184, 1.02019851, 1.03013895, 1.03997212, 1.04969702, 1.05931261, 1.06881791, 1.07821192, 1.08749367, 1.09666218, 1.1057165 , 1.1146557 , 1.12347883, 1.13218499, 1.14077326, 1.14924275, 1.15759258, 1.16582187, 1.17392978, 1.18191546, 1.18977807, 1.1975168 , 1.20513084, 1.2126194 , 1.2199817 , 1.22721697, 1.23432446, 1.24130343, 1.24815316, 1.25487292, 1.26146202, 1.26791978, 1.27424551, 1.28043857, 1.28649831, 1.29242409, 1.29821531, 1.30387135, 1.30939162, 1.31477556, 1.32002261, 1.32513221, 1.33010383, 1.33493696, 1.33963109, 1.34418574, 1.34860043, 1.3528747 , 1.3570081 ]])" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "51d0fe0a-f838-43a4-b261-cce298408482", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 0. , -0.01009679, -0.01770902, -0.02944017, -0.03746355,\n", + " -0.04979285, -0.05820319, -0.07109606, -0.07987127, -0.08878659,\n", + " -0.09783883, -0.11166704, -0.12104794, -0.13055501, -0.14018526,\n", + " -0.14993579, -0.15980367, -0.16978604, -0.17988004, -0.19008282,\n", + " -0.20039155, -0.2108034 , -0.22131555, -0.23192516, -0.23726562,\n", + " -0.24801612, -0.25885698, -0.26978534, -0.28079832, -0.28633564,\n", + " -0.29747012, -0.30868194, -0.31996812, -0.32563817, -0.33703029,\n", + " -0.34848924, -0.3542428 , -0.36579619, -0.37740862, -0.38323597,\n", + " -0.39493095, -0.40079776, -0.41256793, -0.42438406, -0.43030829,\n", + " -0.44218693, -0.44814046, -0.4600737 , -0.46605252, -0.47803222],\n", + " [ 1. , 1.01004581, 1.0175522 , 1.02900672, 1.03676154,\n", + " 1.04855242, 1.05650795, 1.06856553, 1.07667645, 1.08483727,\n", + " 1.0930411 , 1.10541272, 1.11369461, 1.12199607, 1.13031055,\n", + " 1.13863152, 1.14695249, 1.15526699, 1.16356859, 1.17185088,\n", + " 1.18010744, 1.18833188, 1.19651779, 1.20465879, 1.20871044,\n", + " 1.21677202, 1.22477264, 1.23270583, 1.24056512, 1.24446502,\n", + " 1.25220125, 1.25984725, 1.26739643, 1.27113263, 1.27852409,\n", + " 1.28580202, 1.28939629, 1.29649117, 1.30345545, 1.30688644,\n", + " 1.31364175, 1.31696431, 1.32349477, 1.32986634, 1.33299028,\n", + " 1.33910985, 1.34210362, 1.34795443, 1.35080957, 1.35637452]])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "a" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "1beb6de7-f6bc-451f-a89d-4dd3e10f6bbb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 0. , -0.0102039 , -0.02040675, -0.03060746, -0.04080499,\n", + " -0.05099828, -0.06118625, -0.07136785, -0.08154202, -0.0917077 ,\n", + " -0.10186383, -0.11200935, -0.12214321, -0.13226436, -0.14237173,\n", + " -0.15246428, -0.16254095, -0.1726007 , -0.18264248, -0.19266524,\n", + " -0.20266794, -0.21264953, -0.22260899, -0.23254527, -0.24245733,\n", + " -0.25234415, -0.26220469, -0.27203793, -0.28184285, -0.29161842,\n", + " -0.30136363, -0.31107746, -0.3207589 , -0.33040694, -0.34002057,\n", + " -0.34959881, -0.35914064, -0.36864508, -0.37811113, -0.38753782,\n", + " -0.39692415, -0.40626915, -0.41557185, -0.42483129, -0.43404648,\n", + " -0.44321649, -0.45234034, -0.4614171 , -0.47044581, -0.47942554],\n", + " [ 1. , 1.01015184, 1.02019851, 1.03013895, 1.03997212,\n", + " 1.04969702, 1.05931261, 1.06881791, 1.07821192, 1.08749367,\n", + " 1.09666218, 1.1057165 , 1.1146557 , 1.12347883, 1.13218499,\n", + " 1.14077326, 1.14924275, 1.15759258, 1.16582187, 1.17392978,\n", + " 1.18191546, 1.18977807, 1.1975168 , 1.20513084, 1.2126194 ,\n", + " 1.2199817 , 1.22721697, 1.23432446, 1.24130343, 1.24815316,\n", + " 1.25487292, 1.26146202, 1.26791978, 1.27424551, 1.28043857,\n", + " 1.28649831, 1.29242409, 1.29821531, 1.30387135, 1.30939162,\n", + " 1.31477556, 1.32002261, 1.32513221, 1.33010383, 1.33493696,\n", + " 1.33963109, 1.34418574, 1.34860043, 1.3528747 , 1.3570081 ]])" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "b" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_build_cyrk.py b/_build_cyrk.py index 84c2050..70771f6 100644 --- a/_build_cyrk.py +++ b/_build_cyrk.py @@ -11,7 +11,7 @@ import numpy as np num_procs = os.cpu_count() -num_threads = int(math.floor(num_procs * 0.75)) +num_threads = max(1, num_procs - 1) install_platform = platform.system() diff --git a/pyproject.toml b/pyproject.toml index 9a35355..0cf44a1 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [project] name='CyRK' -version = '0.11.1' +version = '0.11.2' description='Runge-Kutta ODE Integrator Implemented in Cython and Numba.' authors= [ {name = 'Joe P. Renaud', email = 'joe.p.renaud@gmail.com'}