-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathdefault_dae.m
125 lines (104 loc) · 3.53 KB
/
default_dae.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
% default_dae -
% Copyright (C) 2011 KyungHyun Cho, Tapani Raiko, Alexander Ilin
%
% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License
% as published by the Free Software Foundation; either version 2
% of the License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
%
function [D] = default_dae (n_visible, n_hidden);
% data type
D.data.binary = 0;
%D.data.binary = 1;
% hidden type: sigmoid or linear
D.hidden.binary = 1;
%D.data.binary = 0; % for linear units
% nonlinearity: the name of the variable will change in the later revision
% 0 - sigmoid
% 1 - tanh
% 2 - relu
D.hidden.use_tanh = 0;
% use sigmoid nonlinearity
D.visible.use_tanh = 0;
%% use tanh nonlinearity
%D.visible.use_tanh = 1;
% learning parameters
D.learning.lrate = 1e-2;
D.learning.lrate0 = 5000;
D.learning.momentum = 0;
D.learning.weight_decay = 0;
D.learning.weight_scale = sqrt(6)/sqrt(n_visible + n_hidden);
D.learning.minibatch_sz = 100;
D.learning.lrate_anneal = 0.9;
D.valid_min_epochs = 10;
% sparsity
D.sparsity.target = 0;
D.sparsity.cost = 0;
% cae
D.cae.cost = 0;
% Gaussian-Bernoulli RBM
D.do_normalize = 1;
D.do_normalize_std = 1;
% stopping criterion
% if you happen to know some other criteria, please, do add them.
% if the criterion is zero, it won't stop unless the whole training epochs were consumed.
D.stop.criterion = 0;
% criterion == 1
D.stop.recon_error.tolerate_count = 1000;
% denoising
D.noise.drop = 0.1;
D.noise.level = 0.1;
% structure
D.structure.n_visible = n_visible;
D.structure.n_hidden = n_hidden;
% reconstruct ICA
D.rica.cost = 0;
% initializations
D.W_init = 2 * D.learning.weight_scale * (rand(n_visible, n_hidden) - 0.5);
D.vbias_init = zeros(n_visible, 1);
D.hbias_init = zeros(n_hidden, 1);
D.W = D.W_init;
D.vbias = D.vbias_init;
D.hbias = D.hbias_init;
% adagrad
D.adagrad.use = 0;
D.adagrad.epsilon = 1e-8;
D.adagrad.W = zeros(n_visible, n_hidden);
D.adagrad.vbias = zeros(n_visible, 1);
D.adagrad.hbias = zeros(n_hidden, 1);
% adadelta
D.adadelta.use = 0;
D.adadelta.epsilon = 1e-6;
D.adadelta.momentum = 0.99;
D.adadelta.gW = zeros(n_visible, n_hidden);
D.adadelta.gvbias = zeros(n_visible, 1);
D.adadelta.ghbias = zeros(n_hidden, 1);
D.adadelta.W = zeros(n_visible, n_hidden);
D.adadelta.vbias = zeros(n_visible, 1);
D.adadelta.hbias = zeros(n_hidden, 1);
% iteration
D.iteration.n_epochs = 100;
D.iteration.n_updates = 0;
% learning signals
D.signals.recon_errors = [];
D.signals.valid_errors = [];
D.signals.lrates = [];
D.signals.n_epochs = 0;
% debug
D.verbose = 0;
D.debug.do_display = 0;
D.debug.display_interval = 10;
D.debug.display_fid = 1;
D.debug.display_function = @visualize_rbm;
% hook
D.hook.per_epoch = {@save_intermediate, {'dae.mat'}};
D.hook.per_update = {@print_n_updates, {}};