-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_mlp.py
430 lines (391 loc) · 16.2 KB
/
main_mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
from __future__ import print_function
from torch.utils.data.sampler import SubsetRandomSampler
import numpy as np
import random
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
from utils import plain_log
from npn import NPNLinear
from npn import Linear2Branch
from npn import NPNLinearLite
from npn import NPNSigmoid
from npn import NPNRelu
from npn import NPNDropout
from npn import multi_logistic_loss
from npn import NPNBCELoss
from npn import KL_BG
from npn import KL_loss
from npn import RMSE
from datasets_boston_housing import Dataset_boston_housing
from torch.utils import data
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--num_workers', type=int, default=2,
help='number of workers')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--output_s', type=float, default=1.0,
help='lambda of output_s')
parser.add_argument('--dropout', type=float, default=0.0,
help='dropout rate')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--evaluate', action='store_true', default=False,
help='evaluate only')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=1000, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--checkpoint', type=str, default='none',
help='file name of checkpoint model')
parser.add_argument('--save_interval', type=int, default=100, metavar='N',
help='how many epochs to wait before saving model')
parser.add_argument('--log_file', type=str, default='tmp',
help='log file name')
parser.add_argument('--save_head', type=str, default='tmp',
help='file name head for saving')
parser.add_argument('--type', type=str, default='mlp',
help='mlp/npn')
parser.add_argument('--loss', type=str, default='default',
help='default/npnbce/kl')
parser.add_argument('--num_train', type=int, default=60000,
help='num train')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
random.seed(args.seed)
torch.manual_seed(int(args.seed))
if args.type.startswith('regress_'):
bh_train_dataset = Dataset_boston_housing('./boston_housing_nor_train.pkl')
bh_val_dataset = Dataset_boston_housing('./boston_housing_nor_val.pkl')
train_loader = data.DataLoader(
dataset = bh_train_dataset,
batch_size = args.batch_size,
shuffle = False,
num_workers = args.num_workers,
pin_memory = False
)
test_loader = data.DataLoader(
dataset = bh_val_dataset,
batch_size = args.test_batch_size,
shuffle = False,
num_workers = args.num_workers,
pin_memory = False
)
else:
mnist_train = datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
size_train = len(mnist_train)
indices = list(range(size_train))
np.random.shuffle(indices)
num_train = args.num_train
train_ind = indices[:num_train]
train_sampler = SubsetRandomSampler(train_ind)
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor()
])),
batch_size=args.batch_size, sampler=train_sampler, **kwargs)
#batch_size=args.batch_size, shuffle=False, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor()
])),
batch_size=args.test_batch_size, shuffle=False, **kwargs)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(784, 800)
self.fc2 = nn.Linear(800, 800)
self.fc3 = nn.Linear(800, 10)
self.dropout = args.dropout
self.drop1 = nn.Dropout(self.dropout)
self.drop2 = nn.Dropout(self.dropout)
def forward(self, x):
x = x.view(-1, 784)
x = F.sigmoid(self.fc1(x))
x = self.drop1(x)
x = F.sigmoid(self.fc2(x))
x = self.drop2(x)
#x = F.relu(self.fc1(x))
#x = F.relu(self.fc2(x))
x = self.fc3(x)
return F.log_softmax(x)
##x = torch.log(F.sigmoid(x))
#x = torch.log(F.softmax(F.sigmoid(x)))
#return x
class NPNNet(nn.Module):
def __init__(self):
super(NPNNet, self).__init__()
self.dropout = args.dropout
self.fc1 = NPNLinear(784, 800, False)
self.sigmoid1 = NPNSigmoid()
#self.sigmoid1 = NPNRelu()
self.fc2 = NPNLinear(800, 800)
self.sigmoid2 = NPNSigmoid()
#self.sigmoid2 = NPNRelu()
self.fc3 = NPNLinear(800, 10)
self.sigmoid3 = NPNSigmoid()
self.drop1 = NPNDropout(self.dropout)
self.drop2 = NPNDropout(self.dropout)
self.drop3 = NPNDropout(self.dropout)
def forward(self, x):
x = x.view(-1, 784)
x = self.fc1(x)
x = self.sigmoid1(x)
x = self.drop1(x)
x = self.fc2(x)
x = self.sigmoid2(x)
x = self.drop2(x)
x, s = self.sigmoid3(self.fc3(x))
return x, s
class NPNNetLite(nn.Module):
def __init__(self):
super(NPNNetLite, self).__init__()
self.dropout = args.dropout
self.fc1 = Linear2Branch(784, 800, False)
self.sigmoid1 = NPNSigmoid()
#self.sigmoid1 = NPNRelu()
self.fc2 = NPNLinearLite(800, 800)
self.sigmoid2 = NPNSigmoid()
#self.sigmoid2 = NPNRelu()
self.fc3 = NPNLinearLite(800, 10)
self.sigmoid3 = NPNSigmoid()
self.drop1 = NPNDropout(self.dropout)
self.drop2 = NPNDropout(self.dropout)
self.drop3 = NPNDropout(self.dropout)
def forward(self, x):
x = x.view(-1, 784)
x = self.fc1(x)
x = self.sigmoid1(x)
x = self.drop1(x)
x = self.fc2(x)
x = self.sigmoid2(x)
x = self.drop2(x)
x, s = self.sigmoid3(self.fc3(x))
return x, s
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.dropout = args.dropout
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
self.drop1 = nn.Dropout(self.dropout)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
#x = F.dropout(x, training=self.training)
x = self.drop1(x)
x = self.fc2(x)
return F.log_softmax(x)
class NPNCNN(nn.Module):
def __init__(self):
super(NPNCNN, self).__init__()
self.dropout = args.dropout
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = NPNLinear(320, 50, dual_input=False)
self.relu1 = NPNRelu()
self.drop1 = NPNDropout(self.dropout)
self.fc2 = NPNLinear(50, 10)
self.sigmoid1 = NPNSigmoid()
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = self.relu1(self.fc1(x))
x = self.drop1(x)
x = self.fc2(x)
if args.loss == 'nll':
x, _ = x
return F.log_softmax(x), x
else:
x, s = self.sigmoid1(x)
return x, s
class ReNPN(nn.Module):
def __init__(self):
super(ReNPN, self).__init__()
self.dropout = args.dropout
self.fc1 = NPNLinear(13, 50, False)
self.relu1 = NPNRelu()
self.fc2 = NPNLinear(50, 1)
def forward(self, x):
x = self.fc1(x)
x = self.relu1(x)
x, s = self.fc2(x)
return x, s
class ReMLP(nn.Module):
def __init__(self):
super(ReMLP, self).__init__()
self.dropout = args.dropout
self.fc1 = nn.Linear(13, 50)
self.fc2 = nn.Linear(50, 1)
def forward(self, x):
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x)
return x
if args.type == 'mlp':
model = Net()
elif args.type == 'npn':
model = NPNNet()
elif args.type == 'npn_lite':
model = NPNNetLite()
elif args.type == 'cnn':
model = CNN()
elif args.type == 'npncnn':
model = NPNCNN()
elif args.type == 'regress_npn':
model = ReNPN()
elif args.type == 'regress_mlp':
model = ReMLP()
if args.cuda:
model.cuda()
#optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
optimizer = optim.Adadelta(model.parameters(), lr = args.lr, eps = 1e-7) # lr default 0.02
#optimizer = optim.Adam(model.parameters(), lr = args.lr) # lr
ind = list(range(args.batch_size))
ind_test = list(range(1000))
bce = nn.BCELoss()
mse = nn.MSELoss()
def train(epoch):
model.train()
sum_loss = 0
for batch_idx, (data, target) in enumerate(train_loader):
# TODO: expand label here
if not args.type.startswith('regress_'):
target_ex = torch.zeros(target.size()[0], 10)
target_ex[ind[:min(args.batch_size, target.size()[0])], target] = 1
if args.type == 'npn' or args.type == 'npncnn' or args.type == 'npn_lite':
target = target_ex
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
if args.type == 'mlp' or args.type == 'cnn':
loss = F.nll_loss(output, target)
else:
if args.type != 'regress_mlp':
x, s = output
#loss = F.nll_loss(torch.log(x+1e-10), target) + args.output_s * torch.sum(s)
#loss = multi_logistic_loss(x, target) + args.output_s * torch.sum(s)
if args.loss == 'default':
loss = bce(x, target) + args.output_s * torch.sum(s ** 2)
elif args.loss == 'npnbce':
loss = NPNBCELoss(x, s, target) + args.output_s * torch.sum(s ** 2)
elif args.loss == 'kl':
loss = KL_BG(x, s, target) + args.output_s * torch.sum(s ** 2)
elif args.loss == 'nll':
loss = F.nll_loss(x, target)
elif args.loss == 'gaussian':
loss = KL_loss(output, target) + 0.5 * args.output_s * torch.sum(s ** 2)
elif args.loss == 'mse':
loss = mse(output, target)
# TODO: use BCELoss
#sum_loss += loss.data[0]
sum_loss += loss.item()
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0 and batch_idx != 0:
log_txt = 'Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.7f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item())
#100. * batch_idx / len(train_loader), loss.data[0])
print(log_txt)
plain_log(args.log_file,log_txt+'\n')
avg_loss = sum_loss / len(train_loader.dataset) * args.batch_size
log_txt = 'Train Epoch {}: Average Loss = {:.7f}'.format(epoch, avg_loss)
print(log_txt)
plain_log(args.log_file,log_txt+'\n')
if epoch % args.save_interval == 0 and epoch != 0:
torch.save(model, '%s.model' % args.save_head)
def test():
model.eval()
test_loss = 0
rmse_loss = 0
correct = 0
for data, target in test_loader:
if not args.type.startswith('regress_'):
target_ex = torch.zeros(target.size()[0], 10)
target_ex[ind_test[:min(1000, target.size()[0])], target] = 1
if args.cuda:
if not args.type.startswith('regress_'):
data, target_ex, target = data.cuda(), target_ex.cuda(), target.cuda()
else:
data, target = data.cuda(), target.cuda()
if not args.type.startswith('regress_'):
data, target_ex = Variable(data, volatile=True), Variable(target_ex)
else:
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
if args.type == 'npn' or args.type == 'npncnn' or args.type == 'npn_lite' or args.type.startswith('regress_'):
if args.type != 'regress_mlp':
output, s = output
#test_loss += F.nll_loss(torch.log(output+1e-10), target, size_average=False).data[0] # sum up batch loss
if args.loss == 'default':
test_loss += (bce(output, target_ex) + args.output_s * torch.sum(s ** 2)).item()
elif args.loss == 'npnbce':
test_loss += (NPNBCELoss(output, s, target_ex) + args.output_s * torch.sum(s ** 2)).item()
elif args.loss == 'kl':
test_loss += (KL_BG(output, s, target_ex) + args.output_s * torch.sum(s ** 2)).item()
elif args.loss == 'gaussian':
test_loss += KL_loss((output, s), target).item()
rmse_loss += RMSE(output, target).item()
elif args.loss == 'mse':
test_loss += mse(output, target).item()
rmse_loss += RMSE(output, target).item()
else:
test_loss += F.nll_loss(output, target, size_average=False).item() # sum up batch loss
if not args.type.startswith('regress_'):
pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).cpu().sum()
test_loss /= len(test_loader.dataset)
if not args.type.startswith('regress_'):
log_txt = 'Test set: Average loss: {:.7f}, Accuracy: {}/{} ({:.0f}%)'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset))
else:
log_txt = 'Test set: Average loss: {:.7f}, RMSE: {:.6f}'.format(test_loss, rmse_loss)
print(log_txt)
plain_log(args.log_file,log_txt+'\n')
if args.checkpoint != 'none':
model = torch.load(args.checkpoint)
print(str(model))
for key, module in model._modules.items():
print('key', key)
print('module', module)
if module.__class__.__name__ == 'NPNLinear':
print('para\n', torch.log(torch.exp(module.W_s_[:8,:8])+1))
if not args.evaluate:
for epoch in range(1, args.epochs + 1):
train(epoch)
if epoch % 1 == 0:
test()
test()