-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMatrix.java
426 lines (348 loc) · 9.91 KB
/
Matrix.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
/**
* Defines an m by n matrix as a rectangular array of numbers with m rows and n
* columns and supports numerous operations on Matrix classes.
*
* @author Justin C
*/
public class Matrix
{
/**
* This Matrix has final dimensions (m, n).
*/
public final int m, n;
/**
* The entries of this Matrix. The size of a Matrix may not be changed once it
* is created, but individual entries are mutable.
*/
public final double[][] v;
/**
* Constructs a zero Matrix.
*/
public Matrix(int row, int col)
{
if (row < 1 || col < 1)
throw new IllegalArgumentException(
"error: dimensions of a Matrix cannot be nonpositive!");
m = row;
n = col;
v = new double[m][n];
}
/**
* Constructs an identity Matrix.
*/
public Matrix(int dim)
{
this(dim, dim);
for (int i = 0; i < m; i++)
v[i][i] = 1;
}
/**
* Constructs a Matrix from an array.
*/
public Matrix(double[][] o)
{
this(o.length, o[0].length);
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
v[i][j] = o[i][j];
}
/**
* Constructs a Matrix from a column.
*/
public Matrix(double[] o)
{
this(o.length, 1);
for (int i = 0; i < m; i++)
v[i][0] = o[i];
}
/**
* Constructs a 3x3 Identity Matrix.
*/
public Matrix()
{
this(3);
}
/**
* Forces d to show numPlaces decimal places.
*/
public static String round(double d, int numPlaces)
{
double places = Math.pow(10, numPlaces);
String target = "" + Math.round(d * places) / places;
int numZeroesMissing = numPlaces - target.length() + target.indexOf('.');
for (int i = 0; i <= numZeroesMissing; i++)
target += "0";
return target;
}
/**
* Returns a copy of this matrix to prevent mutability.
* Essentially a less verbose copy constructor.
*/
public Matrix copy()
{
return new Matrix(v);
}
/**
* Returns (this + o).
*/
public Matrix add(Matrix o)
{
if (o.m != m || o.n != n)
throw new IllegalArgumentException(
"Cannot perform \"add\" on Matrix:" + this + ", Matrix:" + o + ".");
Matrix r = copy();
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
r.v[i][j] += o.v[i][j];
return r;
}
/**
* Returns (this * o) where every entry of (this) is pairwise multiplied
* with the corresponding entry of (o).
*/
public Matrix dot(Matrix o)
{
if (o.m != m || o.n != n)
throw new IllegalArgumentException(
"Cannot perform \"dot\" on Matrix:" + this + ", Matrix:" + o + ".");
Matrix r = copy();
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
r.v[i][j] *= o.v[i][j];
return r;
}
/**
* Returns (this * o) where o is a scalar.
*/
public Matrix dot(double o)
{
Matrix r = copy();
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
r.v[i][j] *= o;
return r;
}
/**
* Returns the conventional product of two matrices.
*/
public Matrix times(Matrix o)
{
if (n != o.m)
throw new IllegalArgumentException(
"Cannot perform \"times\" on Matrix:" + this + ", Matrix:" + o + ".");
Matrix r = new Matrix(m, o.n);
for (int i = 0; i < m; i++)
for (int j = 0; j < o.n; j++)
for (int k = 0; k < n; k++)
r.v[i][j] += v[i][k] * o.v[k][j];
return r;
}
/**
* Returns the transpose of this matrix.
*/
public Matrix transpose()
{
Matrix r = new Matrix(n, m);
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
r.v[j][i] = v[i][j];
return r;
}
/**
* Returns the determinant of this matrix.
*/
public double determinant()
{
if (m != n)
throw new IllegalArgumentException(
"This Matrix is not a square; no determinant is defined!");
// For the two simplest cases, I wrote the formula directly.
if (m == 1)
return v[0][0];
if (m == 2)
return (v[0][0] * v[1][1]) - (v[0][1] * v[1][0]);
// recursively computing the determinant
double sum = 0;
for (int i = 0; i < n; i += 2)
sum += v[0][i] * subMatrix(0, i).determinant();
for (int i = 1; i < n; i += 2)
sum -= v[0][i] * subMatrix(0, i).determinant();
return sum;
}
/**
* Returns a Matrix with dimensions (m-1, n-1). Every entry is the same, but
* one row and one column have been omitted.
*/
public Matrix subMatrix(int row, int col)
{
Matrix r = new Matrix(m - 1, n - 1);
for (int i = 0; i < row; i++)
{
for (int j = 0; j < col; j++)
r.v[i][j] = v[i][j];
for (int j = col+1; j < n; j++)
r.v[i][j-1] = v[i][j];
}
for (int i = row+1; i < m; i++)
{
for (int j = 0; j < col; j++)
r.v[i-1][j] = v[i][j];
for (int j = col+1; j < n; j++)
r.v[i-1][j-1] = v[i][j];
}
return r;
}
/**
* Returns a Matrix with dimensions (m, n). The entry at row i, col j is the
* determinant of the submatrix created by removing row i and col j,
* multiplied by (-1)^(i+j).
*/
public Matrix cofactor()
{
Matrix r = new Matrix(m, n);
for (int i = 0; i < m; i+=2)
{
for (int j = 0; j < n; j+=2)
r.v[i][j] += subMatrix(i, j).determinant();
for (int j = 1; j < n; j+=2)
r.v[i][j] -= subMatrix(i, j).determinant();
}
for (int i = 1; i < m; i+=2)
{
for (int j = 0; j < n; j+=2)
r.v[i][j] -= subMatrix(i, j).determinant();
for (int j = 1; j < n; j+=2)
r.v[i][j] += subMatrix(i, j).determinant();
}
return r;
}
/**
* Returns the inverse of this Matrix. The cases for 1x1, 2x2, and 3x3
* matrices have already been precomputed.
*/
public Matrix inv()
{
if (m != n)
throw new IllegalArgumentException(
"This Matrix is not square; no inverse is defined!");
if (m == 1)
{
Matrix r = new Matrix(m, n);
r.v[0][0] = 1 / v[0][0];
return r;
}
if (m == 2)
{
Matrix r = new Matrix(m, n);
r.v[0][0] = v[1][1];
r.v[0][1] = -v[0][1];
r.v[1][0] = -v[1][0];
r.v[1][1] = v[0][0];
return r.dot(1 / (v[0][0]*v[1][1] - v[0][1]*v[1][0]));
}
if (m == 3)
{
Matrix r = new Matrix(m, n);
r.v[0][0] = v[1][1] * v[2][2] - v[1][2] * v[2][1];
r.v[0][1] = v[0][2] * v[2][1] - v[0][1] * v[2][2];
r.v[0][2] = v[0][1] * v[1][2] - v[0][2] * v[1][1];
r.v[1][0] = v[1][2] * v[2][0] - v[1][0] * v[2][2];
r.v[1][1] = v[0][0] * v[2][2] - v[0][2] * v[2][0];
r.v[1][2] = v[0][2] * v[1][0] - v[0][0] * v[1][2];
r.v[2][0] = v[1][0] * v[2][1] - v[1][1] * v[2][0];
r.v[2][1] = v[0][1] * v[2][0] - v[0][0] * v[2][1];
r.v[2][2] = v[0][0] * v[1][1] - v[0][1] * v[1][0];
return r.dot(1 / (
v[0][0]*v[1][1]*v[2][2] +
v[0][1]*v[1][2]*v[2][0] +
v[0][2]*v[1][0]*v[2][1] -
v[0][0]*v[1][2]*v[2][1] -
v[0][1]*v[1][0]*v[2][2] -
v[0][2]*v[1][1]*v[2][0]));
}
// A generalized formula for computing an inverse.
return cofactor().transpose().dot(1 / determinant());
}
/**
* Rotates axis counterclockwise by theta around Vertex(l,m,n).
*
* Mathematics attributed to:
* https://en.wikipedia.org/wiki/Transformation_matrix
*/
public static Matrix rotate(double l, double m, double n, double theta)
{
double cos = Math.cos(theta);
double sin = Math.sin(theta);
double cas = 1 - cos;
Matrix r = new Matrix();
r.v[0][0] = l * l * cas + cos;
r.v[0][1] = m * l * cas - n * sin;
r.v[0][2] = n * l * cas + m * sin;
r.v[1][0] = l * m * cas + n * sin;
r.v[1][1] = m * m * cas + cos;
r.v[1][2] = n * m * cas - l * sin;
r.v[2][0] = l * n * cas - m * sin;
r.v[2][1] = m * n * cas + l * sin;
r.v[2][2] = n * n * cas + cos;
return r;
}
/**
* Returns the reduced row echelon form of this Matrix.
*/
public Matrix rref()
{
Matrix r = copy();
// The index of the first row that has not yet been fixed.
int minPivot = 0;
for (int col = 0; col < n && minPivot < m; ++col)
{
// The index of the largest unfixed possible pivot in the column.
int largestPivot = minPivot;
for (int i = minPivot + 1; i < m; ++i)
if (Math.abs(r.v[i][col]) > Math.abs(r.v[largestPivot][col]))
largestPivot = i;
// If the largest pivot is 0, next column.
if (Math.abs(r.v[largestPivot][col]) < 0.00001)
continue;
// Swaps the largest pivot into the first unfixed position.
for (int j = 0; j < n; ++j)
{
double temp = r.v[largestPivot][j];
r.v[largestPivot][j] = r.v[minPivot][j];
r.v[minPivot][j] = temp;
}
// Turns the pivot row's leading entry into a 1.
double largestPivotInverse = 1 / r.v[minPivot][col];
for (int j = 0; j < n; ++j)
r.v[minPivot][j] *= largestPivotInverse;
// Removes the leading entries of all other rows.
for (int i = 0; i < m; ++i)
if (i != minPivot)
{
double t = r.v[i][col];
for (int j = 0; j < n; ++j)
r.v[i][j] -= t * r.v[minPivot][j];
}
minPivot++;
}
return r;
}
/**
* Creates a string representation of this Matrix.
* Example: a 3x3 identity matrix will be represented as
* "{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}"
*/
public String toString()
{
String r = "";
int n1 = n-1;
for (int i = 0; i < m; i++)
{
r += "{";
for (int j = 0; j < n1; j++)
r += v[i][j] + ", ";
r += v[i][n1] + "}";
}
return "{" + r + "}";
}
}