forked from wannier-utils-dev/cif2qewan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwannier_conv.py
173 lines (148 loc) · 5.93 KB
/
wannier_conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#!/usr/bin/env python
import numpy as np
import os
class Hamiltonian(object):
"""
This class contains the information of Hamiltonian generated by wannier90 code.
All units are eV and A
parameters:
num_wann
nrpts
ndegen[1:nrpts]
ham_r[1:num_wann,1:num_wann,1:nrpts]
a[1:3,1:3]
b[1:3,1:3]
"""
def __init__(self, file_hr="", reorder=False):
""" read file_hr and set following variables
num_wann:
nrpts:
ndegen:
ham_r:
optionally, read file_nnkp and set a, b
"""
self.reorder = reorder
if file_hr:
self._read_hr(file_hr)
def _read_hr(self, file_hr):
try:
if os.path.exists(file_hr):
fp = open(file_hr, 'r')
else:
raise Exception
fp.readline() # empty line
self.num_wann = int( fp.readline() )
self.nrpts = int( fp.readline() )
# print(self.num_wann, self.nrpts)
ndegen = []
for i in range( int(self.nrpts/15)+1 ):
ndegen += map(int, fp.readline().split())
if len(ndegen) >= self.nrpts: break
self.ndegen = np.array(ndegen)
# print(ndegen)
self.ham_r = np.zeros((self.num_wann, self.num_wann, self.nrpts), dtype=np.complex)
self.irvec = np.zeros((3,self.nrpts), dtype=np.float64)
self.ir0 = -1
for i in range(self.nrpts):
for m in range(self.num_wann):
for n in range (self.num_wann):
(irx, iry, irz, p, q, tr, ti) = fp.readline().split()
if m == 0 and n == 0:
# self.irvec[0:3,i] = np.array(map(int,[irx,iry,irz]))
self.irvec[0:3, i] = np.array([int(x) for x in [irx, iry, irz]])
if np.all(self.irvec[0:3, i] == 0):
self.ir0 = i
# self.ham_r[m,n,i] = float(tr) + float(ti)*1j
self.ham_r[n, m, i] = float(tr) + float(ti)*1j
fp.close()
except Exception as e:
print ("failed to read: " + file_hr)
print ('type:' + str(type(e)))
print ('args:' + str(e.args))
print (str(e))
def diagonalize(self, k):
""" diagonalize H(k) and return ek, v
"""
kr = np.dot(k, self.irvec)
pi = np.pi
factor = np.exp(2*pi*1j*kr)/self.ndegen
ham = np.dot(self.ham_r, factor)
# return np.linalg.eigh(ham)
(e, v) = np.linalg.eigh(ham)
# e_n v_n[i] = ham[i,j] v_n[j]: e[n], v[j,n]
# ham = np.dot(self.ham_r, factor)
# correct
# p = np.dot(ham, v) - np.einsum("i,ji->ji", e, v)
# not correct
# p = np.dot(ham, np.transpose(v)) - np.einsum("i,ji->ji", e, np.transpose(v))
# for a in p:
# if ( sum(a * np.conjugate(a)) > 1e-9 ) : print (a)
# return (e,v)
return (e, v)
class Nscfout:
"""
Nscf-Calculation must be done with "verbosity = 'high'" !
"""
def __init__(self, nscf_out):
with open(nscf_out, "r") as fp:
lines = fp.readlines()
for i, line in enumerate(lines):
if "Fermi energy" in line:
self.ef = float(line[26:35])
if "number of Kohn-Sham" in line:
self.nbnd = int(line[35:])
if "number of k points=" in line:
self.nk = int(line[25:31])
self.kp_cart = np.zeros([self.nk, 3])
self.kp_cryst = np.zeros([self.nk, 3])
self.wk = np.zeros([self.nk])
for j in range(self.nk):
self.kp_cart[j] = np.array( [float(x) for x in lines[i+j+2][20:56].split()] )
self.wk[j] = float(lines[i+j+2][65:])
self.kp_cryst[j] = np.array( [float(x) for x in lines[i+j+4+self.nk][20:56].split()] )
self.energy = np.zeros([self.nk, self.nbnd])
nline, nlinemod = divmod(self.nbnd, 8)
if(nlinemod > 0): nline += 1
for j in range(self.nk):
kp_str = "k =%7.4f%7.4f%7.4f" % tuple(self.kp_cart[j])
for i, line in enumerate(lines):
if kp_str in line:
self.energy[j, :] = [float(x) for x in ''.join(lines[i+2:i+2+nline]).split()]
def get_nexclude(pwscf_win):
nexclude = 0
with open(pwscf_win) as fp:
for line in fp.readlines():
if "exclude" in line:
nexclude = int(line.split("-")[1])
return nexclude
if __name__ == "__main__":
nscf_data = Nscfout("check_wannier/nscf.out")
nexclude = get_nexclude("./pwscf.win")
h = Hamiltonian(file_hr="./pwscf_hr.dat")
# Energy window for check
emin = -100.0
emax = 0.0
# calculate energy difference
delta_sum = 0
delta_max = 0
nek = 0
for i in range(nscf_data.nk):
(ek, v) = h.diagonalize(nscf_data.kp_cryst[i])
nek_low = np.sum(ek - nscf_data.ef < emin)
nek_max = np.sum(ek - nscf_data.ef < emax)
if nexclude + nek_max > nscf_data.nbnd:
nek_max = nscf_data.nbnd - nexclude
if nek_max == nek_low:
continue
nek += nek_max - nek_low
ediff = (ek[nek_low:nek_max] - nscf_data.energy[i, nexclude+nek_low:nexclude+nek_max])**2
delta_sum += np.sum(ediff)
delta_max = max([delta_max, np.max(ediff)])
# output the results
with open("check_wannier/CONV", "w") as fp:
fp.write("# energy window [{:>5.2f}:{:>5.2f}]\n".format(emin, emax))
if nek > 0:
fp.write("average diff = {:>15.8f}\n".format(np.sqrt(delta_sum/nek)))
else:
fp.write("average diff = NaN")
fp.write("max diff = {:>15.8f}\n".format(np.sqrt(delta_max)))