-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustom_transform.py
49 lines (31 loc) · 1.16 KB
/
custom_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import numpy as np
import random
import math
from PIL import Image
from skimage.transform import resize
import skimage
import torch
import matplotlib.pyplot as plt
class CustomResize(object):
def __init__(self, network_type, trg_size):
self.trg_size = trg_size
self.network_type = network_type
def __call__(self, img):
resized_img = self.resize_image(img, self.trg_size)
return resized_img
def resize_image(self, img, trg_size):
img_array = np.asarray(img.get_data())
res = resize(img_array, trg_size, mode='reflect', anti_aliasing=False, preserve_range=True)
# type check
if type(res) != np.ndarray:
raise "type error!"
# PIL image cannot handle 3D image, only return ndarray type, which ToTensor accepts
return res
class CustomToTensor(object):
def __init__(self, network_type):
self.network_type = network_type
def __call__(self, pic):
if isinstance(pic, np.ndarray):
img = torch.from_numpy(pic.transpose((2, 0, 1)))
# backward compatibility
return img.float().div(255)