forked from bracci/Qlockthree
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEffects.cpp
218 lines (199 loc) · 5.65 KB
/
Effects.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
/**
Effects.cpp
Klasse für diverse Effekte
@mc Arduino/UNO
@autor Manuel Bracher / [email protected]
@version 1.0
@created 02.01.15
Versionshistorie:
V 1.0: - Erstellt.
*/
#include "Effects.h"
#include "Staben.h"
// #define DEBUG
#include "Debug.h"
void Effects::showTickerString(const char* str2disp, byte tickerSpeed, eColors color) {
word matrix [16];
byte strLength = strlen(str2disp);
unsigned int bufLen;
char actChar;
char lastChar;
byte offsetV = 2;
bool finish = false;
unsigned int i = 0;
while (!finish) {
renderer.clearScreenBuffer(matrix);
lastChar = 'W';
unsigned int shift = 0; // Schiebekorrektur aufgrund variierender Buchstabenbreite
for (byte k = 0; k < strLength; k++) {
actChar = str2disp[k];
if (actChar == ' ') {
shift += 3; //bei einem Space eine Lücke von:
}
else {
shift -= pgm_read_byte_near(&(stabenBig[lastChar - '!'][7]));
for (byte j = 0; j < 7; j++) {
matrix[offsetV + j] |= (pgm_read_byte_near(&(stabenBig[actChar - '!'][j])) << (1 - shift + i)) & 0b1111111111100000;
}
if (k < (strLength - 1)) {
shift += 6; // Max. Buchstabenbreite + ein Pixel Lücke
}
lastChar = actChar;
}
}
writeToBuffer(matrix, 3 * (10 - tickerSpeed), color);
bufLen = shift + 15;
if (i == bufLen) {
finish = true;
}
else {
i++;
}
}
}
/**
Intro
*/
void Effects::showIntro(eColors color) {
word matrix [16];
renderer.clearScreenBuffer(matrix);
for (int j = 0; j < 11; j++) {
for (byte i = 0; i < 10; i++) {
matrix[i] |= 0b1 << (15 - j);
}
writeToBuffer(matrix, 5, color);
}
for (int j = 0; j < 11; j++) {
for (int i = 0; i < 10; i++) {
matrix[i] ^= 0b1 << (5 + j);
}
writeToBuffer(matrix, 5, color);
}
renderer.clearScreenBuffer(matrix);
for (int i = 9; i >= 0; i--) {
matrix[i] |= 0b1111111111100000;
writeToBuffer(matrix, 5, color);
}
for (int i = 0; i < 10; i++) {
matrix[i] ^= 0b1111111111100000;
writeToBuffer(matrix, 5, color);
}
}
/**
Pulsierender Herz-Effekt
*/
void Effects::showHeart(byte duration, eColors color) {
word matrix [16];
for (byte y = 0; y < 3; y++) {
renderer.clearScreenBuffer(matrix);
for (byte j = 0; j < 8; j++) {
matrix[1 + j] |= (pgm_read_word_near(&(effectMasksHeart[0][j])) << 5);
}
writeToBuffer(matrix, 11 * duration, color);
for (byte i = 0; i < 2; i++) {
renderer.clearScreenBuffer(matrix);
for (byte z = 0; z < 2; z++) {
for (byte j = 0; j < 8; j++) {
matrix[1 + j] |= (pgm_read_word_near(&(effectMasksHeart[z][j])) << 5);
}
writeToBuffer(matrix, 4 * duration, color);
}
}
}
renderer.clearScreenBuffer(matrix);
for (byte j = 0; j < 8; j++) {
matrix[1 + j] |= (pgm_read_word_near(&(effectMasksHeart[0][j])) << 5);
}
writeToBuffer(matrix, 14 * duration, color);
}
/**
Feuerwerk-Effekt
*/
void Effects::showFireWork(byte posX, eColors color) {
word matrix [16];
for (byte i = 9; i >= 3; i--) {
renderer.clearScreenBuffer(matrix);
ledDriver.setPixelInScreenBuffer(posX, i, matrix);
writeToBuffer(matrix, 7, color);
}
for (byte i = 0; i <= 2; i++) {
renderer.clearScreenBuffer(matrix);
for (byte j = 0; j < 10; j++) {
matrix[j] |= (pgm_read_word_near(&(effectMasksFireWork[i][j])) << (10 - posX)) & 0b1111111111100000;
}
writeToBuffer(matrix, 3 + round(10 * i / 3), color);
}
for (byte i = 0; i <= 10; i++) {
renderer.clearScreenBuffer(matrix);
for (byte j = 0; j < 10 - i; j++) {
matrix[j + i] |= (pgm_read_word_near(&(effectMasksFireWork[3 + i % 3][j])) << (10 - posX)) & 0b1111111111100000;
}
writeToBuffer(matrix, 20, color);
}
}
/**
Kerzen-Effekt
*/
void Effects::showCandle(eColors color) {
word matrix [16];
for (byte k = 0; k < 5; k++) {
for (int j = -4; j < 4; j++) {
renderer.clearScreenBuffer(matrix);
for (byte i = 5; i < 10; i++) {
matrix[i] |= (pgm_read_word_near(&(effectMasksCandle[5][i])) << 5);
}
for (byte i = 0; i < 5; i++) {
matrix[i] |= (pgm_read_word_near(&(effectMasksCandle[4 - abs(j % 4)][i])) << 5);
}
writeToBuffer(matrix, 10, color);
}
}
}
/**
Bitmap
*/
void Effects::showBitmap(byte bitmapIdx, byte duration, eColors color) {
word matrix [16];
renderer.clearScreenBuffer(matrix);
for (byte i = 0; i < 10; i++) {
for (byte j = 0; j < 11; j++) {
matrix[i] |= ((pgm_read_word_near(&(bitmaps[bitmapIdx - BITMAP_MIN][j])) >> i) & 0x0001) << (15 - j);
}
}
writeToBuffer(matrix, 15 * duration, color);
}
/**
Bitmap-Effekt
*/
void Effects::showAnimatedBitmap(byte animatedBitmap, byte duration, eColors color) {
switch (animatedBitmap) {
case ANI_BITMAP_CHAMPGLASS:
for (byte i = 0; i < 6; i++) {
showBitmap(BITMAP_CHAMPGLASS1 + i % 2, duration, color);
}
break;
case ANI_BITMAP_CHRISTTREE:
for (byte i = 0; i < 4; i++) {
showBitmap(BITMAP_CHRISTTREE1 + i % 2, duration, color);
}
break;
case ANI_BITMAP_SMILEY_WINK:
showBitmap(BITMAP_SMILEY, 2 * duration, color);
showBitmap(BITMAP_SMILEY_WINK, duration, color);
showBitmap(BITMAP_SMILEY, duration, color);
break;
default:
;
}
}
void Effects::writeToBuffer(word aMatrix[], unsigned int aDuration, eColors color)
{
#if defined(RGB_LEDS) || defined(RGBW_LEDS)
ledDriver.writeScreenBufferToMatrix(aMatrix, true, color);
delay(aDuration * RGB_SPEED_CORRECTION);
#else
for (int i = 0; i < aDuration; i++) {
ledDriver.writeScreenBufferToMatrix(aMatrix, true, color);
}
#endif
}