-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathensemble.py
234 lines (214 loc) · 10.5 KB
/
ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import sys
import time
import random
import joblib
import itertools
from os import makedirs
from collections import Counter
from os.path import abspath, dirname, exists, join as pjoin
import fire
import torch
import numpy as np
from tqdm import tqdm
from easydict import EasyDict
import sys
sys.path.append(abspath(dirname(dirname(dirname(__file__)))))
from module.metric import get_hit_and_mrr
from module.loader import SessionDataset, SessionDataLoader
from module.utils import get_fallback_sessions_mask, get_fallback_items
from module.loader import SessionDataset, SessionDataLoader
from module.models.pcos import PCos
class EnsembleLogit:
def __init__(self, logit_fnames, folder, device='cpu'):
self.models = {}
self.device = device
self.idmap, self.fidmap, self.idmap_inv, self.feat_idmap_inv = joblib.load(f'{folder}/indices')
self.mapper = np.vectorize(lambda x: self.idmap[x])
for x in logit_fnames:
if len(x) == 3:
key, logit_fname, weight = x
self.set_logic(key, logit_fname, weight=weight)
else:
key, logit_fname = x
self.set_logic(key, logit_fname)
self.folder = folder
print(f'Load {logit_fnames}')
self.set_popularity(folder)
self.logit_min = 100.0
self.logit_max = -100.0
self.pcos_sim = None
self.fallback_items = None
def set_fallback(self, folder, kind='val'):
self.fallback_items = get_fallback_items(joblib.load(f'{folder}/df_train'), joblib.load(f'{folder}/df_{kind}'))
def set_pcos(self, pcos_similarity):
self.pcos_sim = pcos_similarity
# feat = joblib.load(f'{self.folder}/features')
# self.pcos_sim = feat @ feat.T
def set_popularity(self, folder):
df_train = joblib.load(f'{folder}/df_train')
res = [self.mapper(np.array(view)).tolist() for view in df_train[-65000:].views.tolist()]
res2 = self.mapper(df_train.purchase.tolist())
res = list(itertools.chain.from_iterable(res)) + res2.tolist()
popularity = np.zeros(len(self.idmap))
res = Counter(res)
for i, cnt in res.items():
popularity[i] = np.log(1 + cnt)
self.popularity = torch.FloatTensor(popularity)
def similarity_logit(self, batch, mask=True, pool=None):
score = 0.9 * torch.FloatTensor(self.pcos_sim[[views[-1].item() for views in batch.views]]).to(self.device)
score += 0.09 * torch.FloatTensor(self.pcos_sim[[views[-min(len(views),2)].item() for views in batch.views]]).to(self.device)
score += 0.01 * torch.FloatTensor(self.pcos_sim[[views[-min(len(views),3)].item() for views in batch.views]]).to(self.device)
score = torch.log(1e-6 + score)
score = score + 0.0001 * self.popularity.to(self.device)
if mask:
score[batch.extra.histories] = -10000.0
if pool is not None:
score[:, pool] += 10000.0
return score
def set_logic(self, key, logit_fname, weight=1.0):
sessions, logit = joblib.load(logit_fname)
self.models[key] = {'s2i': dict(zip(sessions, range(len(sessions))))}
self.models[key].update({
'logit': logit,
'mapper': np.vectorize(lambda x: self.models[key].s2i[x]),
'weight': float(weight)
})
self.models[key] = EasyDict(self.models[key])
print(f'Set {key} logic')
def get_logit(self, key, session_ids):
model = self.models[key]
return torch.FloatTensor(model.logit[model.mapper(session_ids)]).to(self.device)
def get_weight(self, key):
return self.models[key].weight
def set_weights(self, weight_dict):
for k in self.models.keys():
self.models[k].weight = weight_dict.get(f'{k}', self.models[k].weight)
weights = []
for k in self.models.keys():
weights.append((k, self.models[k].weight))
print(f'Set {weights}')
def forward(self, batch, mask=True, pool=None, fork_fallback=False, fallback_ratio=0.8):
logits = [self.get_weight(key) * self.get_logit(key, batch.extra.sessions).unsqueeze(dim=-1) for key in self.models.keys() if self.get_weight(key) > 0.]
if logits:
logit = torch.cat(logits, dim=-1).mean(dim=-1)
else:
logit = self.similarity_logit(batch)
if fork_fallback:
fallback_mask = get_fallback_sessions_mask(batch, ratio=fallback_ratio, idmap_inv=self.idmap_inv, fallback_items=self.fallback_items)
# overwrite logit for cold_sessions
logit[fallback_mask] = self.similarity_logit(batch)[fallback_mask]
self.logit_min = min(self.logit_min, logit.min().detach().cpu().item())
self.logit_max = max(self.logit_max, logit.max().detach().cpu().item())
if mask:
logit[batch.extra.histories] = -100000.0
if pool is not None:
logit[:, pool] += 100000.0
return logit
def predict(self, batch, mask=True, pool=None, topk=100, fork_fallback=False):
logit = self.forward(batch, mask=mask, pool=pool, fork_fallback=fork_fallback)
pred = (-logit).argsort()[:, :topk]
return pred
def validate(self, val_dl, topk=100, mask=True, fork_fallback=False, fallback_ratio=0.8, only_warm=False, only_fallback=False, tqdm_off=False):
HIT, MRR = [], []
if tqdm_off:
pbar = val_dl
else:
pbar = tqdm(val_dl, ncols=70)
for batch in pbar:
batch_size = len(batch.views)
val_mask = torch.ones(batch_size, dtype=torch.bool)
pred = self.predict(batch, mask=mask, topk=topk)
fallback_mask = None
if self.fallback_items is not None:
fallback_mask = get_fallback_sessions_mask(batch, ratio=fallback_ratio, idmap_inv=self.idmap_inv, fallback_items=self.fallback_items)
if self.fallback_items is not None and (fork_fallback or only_fallback):
logit = self.similarity_logit(batch, mask=mask)
pred[fallback_mask] = (-logit).argsort()[:, :topk][fallback_mask]
if only_fallback:
val_mask = fallback_mask
assert not only_warm
if only_warm:
if fallback_mask is not None:
val_mask = ~fallback_mask
hit, mrr = get_hit_and_mrr(pred[val_mask], batch.purchases.to(self.device)[val_mask], topk, mean=False)
HIT.extend(hit.tolist())
MRR.extend(mrr.tolist())
return np.mean(HIT) if HIT else 0., np.mean(MRR) if MRR else 0
@classmethod
def get_dataloader(cls, batch_size, folder, kind='val'):
df_val = joblib.load(f'{folder}/df_{kind}')
mlp_params = joblib.load(f'{folder}/mlp_{kind}')
idmap, fidmap, _, _ = joblib.load(f'{folder}/indices')
ds_te = SessionDataset(df_val, idmap, fidmap, mlp_params=mlp_params)
dl_te = SessionDataLoader(ds_te, idmap, fidmap, batch_size=batch_size, mlp_params=mlp_params)
return dl_te
def submit_to_csv(model, dl, topk=100, save_fname='submit.result', folder='data', **kwargs):
import numpy as np
import pandas as pd
print(f'kwargs {kwargs}')
mapper = np.vectorize(lambda x: model.idmap[x])
candidates = pd.read_csv(f'{folder}/candidate_items.csv', dtype='str').item_id.unique()
candidates = mapper(np.array(sorted(candidates, key=lambda x: int(x))))
MSG = 'session_id,item_id,rank\n'
for batch in tqdm(dl, ncols=70):
pred = model.predict(batch, topk, pool=candidates, **kwargs)
sess = batch.extra.sessions
for i, p in enumerate(pred.detach().cpu().numpy().tolist()):
for rank, j in enumerate(p, start=1):
msg = f'{sess[i]},{model.idmap_inv[j]},{rank}\n'
MSG += msg
save_fname = f'{save_fname}-{int(time.time())}'
with open(f'save/{save_fname}', 'w') as fout:
fout.write(MSG)
print(f"Dump 'save/{save_fname}'")
df = pd.read_csv(f'save/{save_fname}', dtype='str')
assert not bool(df.isna().sum().sum())
pool = set(df.item_id.unique())
cand = set(pd.read_csv(f'{folder}/candidate_items.csv', dtype='str').item_id.unique())
assert len(pool - cand) == 0
print(f'logit (min: {model.logit_min}, max: {model.logit_max})')
def main(kind='val', submit=False, **kwargs):
from glob import glob
from module.utils import result_from_models
makedirs('tmp', exist_ok=True)
makedirs(f'logits/{kind}', exist_ok=True)
print(kwargs)
logits = []
for model_name in ['gru', 'grun', 'gnn', 'mlp', 'grun-all', 'mlp-augmentation']:
_logit_fnames = glob(f'save/{model_name}.pt*')
print(_logit_fnames)
if _logit_fnames:
model_kwargs = {}
if len(model_name.split('-', maxsplit=1)) != 1:
_, arguments = model_name.split('-', maxsplit=1)
model_kwargs = {x: True for x in arguments.split('-')}
print('model_kwargs:', model_kwargs)
logit_fname = result_from_models(_logit_fnames, submit=submit, kind=kind, **model_kwargs)
logits.append((model_name, logit_fname))
print(joblib.dump(logits, f'tmp/logit_fnames-{int(time.time())}'))
folder = 'processed'
if submit:
folder += '_submit'
for save_fname in [f'logits/{kind}/pcos.logits', f'logits/{kind}/pcos.similarity']:
if exists(save_fname): continue
pcos = PCos(dir_name=folder, save_fname=save_fname)
pcos.fit('similarity' not in save_fname, kind)
logits.append(('pcos', f'logits/{kind}/pcos.logits'))
bert_logits = glob(f'logits/{kind}/bert4rec_*.logits')
if bert_logits:
bert_logit = sorted(bert_logits, key=lambda x: int(x.split('_')[-1].split('.')[0]))[-1]
logits.append(('bert', bert_logit))
model = EnsembleLogit(logits, folder=folder, device='cuda')
model.set_fallback(folder=folder, kind=kind)
if model.fallback_items is not None:
print(f'Size of fallback items: {len(model.fallback_items)}')
model.set_pcos(joblib.load(f'logits/{kind}/pcos.similarity'))
dl = model.get_dataloader(512, folder, kind=kind)
if kind == 'val':
hit, mrr = model.validate(dl, **kwargs)
print(f'HIT: {hit}, MRR: {mrr}')
else:
assert kind in ['leader', 'final']
model.submit_to_csv(dl, fork_fallback=True)
if __name__ == '__main__':
fire.Fire(main)