-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathdata.py
112 lines (81 loc) · 4.12 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
from functools import partial
import numpy as np
import torch
import torchvision.transforms as T
from torch.utils.data import DataLoader, TensorDataset
import datasets
# --------------------
# Helper functions
# --------------------
def logit(x, eps=1e-5):
x.clamp_(eps, 1 - eps)
return x.log() - (1 - x).log()
def one_hot(x, label_size):
out = torch.zeros(len(x), label_size).to(x.device)
out[torch.arange(len(x)), x] = 1
return out
def load_dataset(name):
exec('from datasets.{} import {}'.format(name.lower(), name))
return locals()[name]
# --------------------
# Dataloaders
# --------------------
def fetch_dataloaders(dataset_name, batch_size, device, flip_toy_var_order=False, toy_train_size=25000, toy_test_size=5000):
# grab datasets
if dataset_name in ['GAS', 'POWER', 'HEPMASS', 'MINIBOONE', 'BSDS300']: # use the constructors by MAF authors
dataset = load_dataset(dataset_name)()
# join train and val data again
train_data = np.concatenate((dataset.trn.x, dataset.val.x), axis=0)
# construct datasets
train_dataset = TensorDataset(torch.from_numpy(train_data.astype(np.float32)))
test_dataset = TensorDataset(torch.from_numpy(dataset.tst.x.astype(np.float32)))
input_dims = dataset.n_dims
label_size = None
lam = None
elif dataset_name in ['MNIST']:
dataset = load_dataset(dataset_name)()
# join train and val data again
train_x = np.concatenate((dataset.trn.x, dataset.val.x), axis=0).astype(np.float32)
train_y = np.concatenate((dataset.trn.y, dataset.val.y), axis=0).astype(np.float32)
# construct datasets
train_dataset = TensorDataset(torch.from_numpy(train_x), torch.from_numpy(train_y))
test_dataset = TensorDataset(torch.from_numpy(dataset.tst.x.astype(np.float32)),
torch.from_numpy(dataset.tst.y.astype(np.float32)))
input_dims = dataset.n_dims
label_size = 10
lam = dataset.alpha
elif dataset_name in ['TOY', 'MOONS']: # use own constructors
train_dataset = load_dataset(dataset_name)(toy_train_size, flip_toy_var_order)
test_dataset = load_dataset(dataset_name)(toy_test_size, flip_toy_var_order)
input_dims = train_dataset.input_size
label_size = train_dataset.label_size
lam = None
# imaging dataset pulled from torchvision
elif dataset_name in ['CIFAR10']:
label_size = 10
# MAF logit trainform parameter (cf. MAF paper 4.3
lam = 1e-6 if dataset_name == 'mnist' else 5e-2
# MAF paper converts image data to logit space via transform described in section 4.3
image_transforms = T.Compose([T.ToTensor(),
T.Lambda(lambda x: x + torch.rand(*x.shape) / 256.), # dequantize (cf MAF paper)
T.Lambda(lambda x: logit(lam + (1 - 2 * lam) * x))]) # to logit space (cf MAF paper)
target_transforms = T.Lambda(lambda x: partial(one_hot, label_size=label_size)(x))
train_dataset = load_dataset(dataset_name)(root=datasets.root, train=True, transform=image_transforms, target_transform=target_transforms)
test_dataset = load_dataset(dataset_name)(root=datasets.root, train=True, transform=image_transforms, target_transform=target_transforms)
input_dims = train_dataset[0][0].shape
else:
raise ValueError('Unrecognized dataset.')
# keep input dims, input size and label size
train_dataset.input_dims = input_dims
train_dataset.input_size = int(np.prod(input_dims))
train_dataset.label_size = label_size
train_dataset.lam = lam
test_dataset.input_dims = input_dims
test_dataset.input_size = int(np.prod(input_dims))
test_dataset.label_size = label_size
test_dataset.lam = lam
# construct dataloaders
kwargs = {'num_workers': 1, 'pin_memory': True} if device.type is 'cuda' else {}
train_loader = DataLoader(train_dataset, batch_size, shuffle=True, **kwargs)
test_loader = DataLoader(test_dataset, batch_size, shuffle=False, **kwargs)
return train_loader, test_loader