-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathfind-the-closest-marked-node.py
39 lines (35 loc) · 1.17 KB
/
find-the-closest-marked-node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# Time: O((|E| + |V|) * log|V|) = O(|E| * log|V|) by using binary heap,
# if we can further to use Fibonacci heap, it would be O(|E| + |V| * log|V|)
# Space: O(|E| + |V|) = O(|E|)
import heapq
# dijkstra's algorithm
class Solution(object):
def minimumDistance(self, n, edges, s, marked):
"""
:type n: int
:type edges: List[List[int]]
:type s: int
:type marked: List[int]
:rtype: int
"""
def dijkstra(start):
best = [float("inf")]*len(adj)
best[start] = 0
min_heap = [(0, start)]
while min_heap:
curr, u = heapq.heappop(min_heap)
if curr > best[u]:
continue
if u in target:
return curr
for v, w in adj[u]:
if curr+w >= best[v]:
continue
best[v] = curr+w
heapq.heappush(min_heap, (best[v], v))
return -1
target = set(marked)
adj = [[] for _ in xrange(n)]
for u, v, w in edges:
adj[u].append((v, w))
return dijkstra(s)