-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathmaximum-gcd-sum-of-a-subarray.py
130 lines (119 loc) · 4.31 KB
/
maximum-gcd-sum-of-a-subarray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Time: O(nlogr), r = max(nums)
# Space: O(logr)
# number theory, dp, prefix sum
class Solution(object):
def maxGcdSum(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: int
"""
def gcd(a, b):
while b:
a, b = b, a%b
return a
result = prefix = 0
dp = []
for right, x in enumerate(nums):
dp.append((right, x, prefix))
prefix += x
new_dp = []
for left, g, p in dp: # Time: O(logr)
ng = gcd(g, x) # Total Time: O(nlogr)
if not new_dp or new_dp[-1][1] != ng:
new_dp.append((left, ng, p)) # left and ng are both strictly increasing
dp = new_dp
for left, g, p in dp:
if right-left+1 < k:
break
result = max(result, (prefix-p)*g)
return result
# Time: O(nlogr), r = max(nums)
# Space: O(n)
# number theory, dp, prefix sum
class Solution2(object):
def maxGcdSum(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: int
"""
def gcd(a, b):
while b:
a, b = b, a%b
return a
prefix = [0]*(len(nums)+1)
for i, x in enumerate(nums):
prefix[i+1] = prefix[i]+x
result = 0
dp = []
for right, x in enumerate(nums):
dp.append((right, x))
new_dp = []
for left, g in dp: # Time: O(logr)
ng = gcd(g, x) # Total Time: O(nlogr)
if not new_dp or new_dp[-1][1] != ng:
new_dp.append((left, ng)) # left and ng are both strictly increasing
dp = new_dp
for left, g in dp:
if right-left+1 < k:
break
result = max(result, (prefix[right+1]-prefix[left])*g)
return result
# Time: O(n * logr * (logn * logr)) = O(n * (logr)^2 * logn), r = max(nums)
# Space: O(nlogn)
# number theory, binary search, rmq, sparse table, prefix sum
class Solution3_TLE(object):
def maxGcdSum(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: int
"""
def gcd(a, b):
while b:
a, b = b, a%b
return a
def binary_search_right(left, right, check):
while left <= right:
mid = left + (right-left)//2
if not check(mid):
right = mid-1
else:
left = mid+1
return right
# RMQ - Sparse Table
# Template: https://github.com/kamyu104/GoogleCodeJam-Farewell-Rounds/blob/main/Round%20D/genetic_sequences2.py3
# Time: ctor: O(NlogN) * O(fn)
# query: O(fn)
# Space: O(NlogN)
class SparseTable(object):
def __init__(self, arr, fn):
self.fn = fn
self.bit_length = [0]
n = len(arr)
k = n.bit_length()-1 # log2_floor(n)
for i in xrange(k+1):
self.bit_length.extend(i+1 for _ in xrange(min(1<<i, (n+1)-len(self.bit_length))))
self.st = [[0]*n for _ in xrange(k+1)]
self.st[0] = arr[:]
for i in xrange(1, k+1): # Time: O(NlogN) * O(fn)
for j in xrange((n-(1<<i))+1):
self.st[i][j] = fn(self.st[i-1][j], self.st[i-1][j+(1<<(i-1))])
def query(self, L, R): # Time: O(fn)
i = self.bit_length[R-L+1]-1 # log2_floor(R-L+1)
return self.fn(self.st[i][L], self.st[i][R-(1<<i)+1])
prefix = [0]*(len(nums)+1)
for i, x in enumerate(nums):
prefix[i+1] = prefix[i]+x
result = 0
rmq = SparseTable(nums, gcd)
for left, x in enumerate(nums):
right = left
while right < len(nums): # O(logr) times
g = rmq.query(left, right)
right = binary_search_right(right, len(nums)-1, lambda x: rmq.query(left, x) >= g) # Time: O(logn) * O(logr)
if right-left+1 >= k:
result = max(result, (prefix[right+1]-prefix[left])*g)
right += 1
return result